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Algebraic Integers

I Recall: α ∈ C is an algebraic integer if there exists a monotonic
polynomial p(x) with integer coefficients s.t. p(α) = 0.

I That is, there are a0, . . . , ak−1 ∈ Z such that

a0 + a1α+ · · ·+ ak−1α
k−1 + αn = 0.

I Fact: we can take p(x) minimal, i.e. of smallest degree. Such
p(x) is unique.
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Conjugates and Pisot Numbers

I The (Galois) conjugates of α are the other k − 1 zeros of p(x).

I α is Pisot if α ∈ R and the conjugates of α have modulus
strictly less than 1.

I E.g. φ = (
√
5+ 1)/2 ≈ 1.61803399.

I Then φ2 − φ− 1 = 0, so φ is an algebraic integer with minimal
polynomial x2 − x − 1. The other root is
(−
√

5 + 1)/2 ≈ −0.61803399.
I So φ is a Pisot number

I Also works for largest real root of xk − (xk−1 + xk−2 + · · ·+ 1)
(Simple Pisot number)
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Bernoulli Convolutions

I Let λ ∈ (0, 1) be a parameter and consider the independent
random sum

∞∑
n=1

±λn

(take + with probability 1/2 and − with probability 1/2)

I Distribution has rule µ, i.e.

P
( ∞∑
n=1

±λn ∈ A
)
= µ(A).
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Self-similarity

I µ is self-similar:

µ(A) =
1
2
µ(A/λ+ 1) +
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Absolute Continuity

I If λ = 1/2, then µ is the uniform distribution on [−1, 1] (very
uniform)

I If 0 < λ < 1/2, then µ is (rescaled) Hausdorff measure
restricted to a λ-Cantor set (“fractal”, but very uniform)

I What about λ > 1/2? Overlaps...
I Recall: µ is absolutely continuous (w.r.t. Lebesgue measure) if

it has a probability density f :

µ([a, b]) =

∫ b

a
f (x)dx

I If the overlaps are “random” would expect µ to be absolutely
continuous
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Pisot Bernoulli Convolutions

Theorem (Erdós, 1935)
If λ ∈ (1/2, 1) and 1/λ is Pisot, then µ is singular with respect to
Lebesgue.

Proof.

Let θ = 1/λ. Fact: dist(θn,Z)→ 0 geometrically fast since θ is
Pisot. Why? If θ has conjugates θ2, . . . , θk , then

θn +
k∑

j=2

θnj ∈ Z

(symmetric function of roots). But maxj=2,...,k |θj | = ρ < 1 so
dist(θn,Z) ≤ (k − 1)ρn.
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Proof Cont.

Now

µ̂(πθN) =

∫
R
e itπθ

N
dµ(t) =

∞∏
n=1

1
2

̂(δλn + δ−λn)(πθ
N)

=
∞∏
n=1

cos(λnπθN) =
N∏

n=1

cos(πθn) · µ̂(π).

But πθn converges to an integer multiple of π geometrically fast,
so for some ρ ∈ (0, 1)

|µ̂(πθN)| ≥
∞∏
n=1

| cos(ρn)| · |µ̂(π)| ≥ δ > 0

for all N ≥ 1. Thus |µ̂(ξ)| 6→ 0 as ξ →∞, so µ is not absolutely
continuous by the Riemann-Lebesgue lemma.
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Open question

Theorem (Solomyak, Shmerkin)
For all λ ∈ (1/2, 1) outside an exceptional set with Lebesgue
measure 0 (Solomyak) or Hausdorff dimension 0 (Shmerkin), the
Bernoulli convolution is absolutely continuous.

Open question: what is the exceptional set? Only known
counterexamples are reciprocals of Pisot numbers (countable set!)
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