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Fractals

What is a fractal?

Technically speaking, there is no formal definition of a fractal. However, there are certain

properties that one might associate to fractals, such as:

Fine or complicated detail at arbitrarily small scales.

Self-similarity.

Non-integer dimension.
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Some examples

Figure: Middle third Cantor set
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Some examples

Figure: Sierpinski triangle
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Some examples

Figure: The coastline of the UK
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Dimension theory

The dimension of a set can be viewed as a way of quantifying how much space that set

fills up.

Dimension theory involves rigorously defining notions of dimension, and in particular this

can be done in ways which extend beyond the natural integer-valued notions of

dimension.

To make this idea a bit more rigorous, it can be useful to think of these sets as having

some ‘mass’ associated to them, and asking how this mass changes as you scale the

object.
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Dimension theory

For example, consider a line segment, which for simplicity’s sake we will assume has

‘mass’ = 1.

0 1

0 2

So scaling by a factor of 2 scales the ‘mass’ by a factor of 21.
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Dimension theory

What if we instead consider a square with ‘mass’ = 1?

0 1 0 2

So scaling by a factor of 2 scales the ‘mass’ by a factor of 22.
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Dimension theory

What about something more complex, like the Sierpiński triangle?

0 1 0 2

So scaling by a factor of 2 scales the ‘mass’ by a factor of 3 = 2log 3/ log 2.
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Hausdorff measure

This notion of mass can be made more rigorous by Hausdorff measure.

In particular,

given s ≥ 0, we write Hs to denote the s-dimensional Hausdorff measure. Given a set F ,

Hs(F ) could be thought of as asking ’how much s-dimensional mass does this set F

have?’ e.g. H1(F ) corresponds to the ‘length’ of the set F , H2(F ) corresponds to its

‘area’, etc...
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Hausdorff measure

Hs(F )

s

∞

0

log 3
log 2

Figure: A plot of Hs(F ) against s where F is the Sierpiński triangle.

This value where the jump occurs is called the Hausdorff dimension of F , written as

dimHF .
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Beyond the self-similar case

The issue with the approach used on the Sierpiński triangle is that fractals need not be

self-similar. For example, the aforementioned coastline of a country will be far more

erratic in nature compared to these ‘nice’ self-similar sets. So how can we get a handle

on the dimensions of more complicated fractal sets?
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Box counting dimension

Let’s consider a disc lying in R2, and overlay a grid of boxes.

We have the intuition that scaling by a factor of s should scale the measure of the object

by a factor of sdim where dim is the dimension.
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Box counting dimension

Therefore, suppose we double the radius of the disc.

We would expect the number of boxes being touched by the larger disc to be about 22 as

many as the smaller disc. In this case, we get 62/16 = 3.875 ≈ 22.
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Box counting dimension

More generally, suppose for a set F we were to plot the number of boxes touched N(F )

against the scaling factor s. The graph of best fit should take the form

N(F ) = Csdim(F).

Note that if we take logs of both sides of this equation, this becomes

log(N(F )) = log sdim(F ) + logC, so plotting log(N(F )) against log s should lead to a

line of best fit with gradient equal to dim(F ).
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Box counting dimension

More formally, the box dimension of F is defined as

dimBF = lim
r→0

logNr(F )

− log r

where Nr(F ) denotes the smallest number of boxes of side length r required to cover F .

So if dimBF = d, then Nr(F ) ≈ r−d.
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Dynamical systems and fractals

Dynamical systems involves the study of systems which change over time, with an

attempt at understanding the long-term behaviour.

The behaviour of these systems can be very chaotic, making understanding this

challenging.

In particular, this chaotic behaviour means fractals can tend to show up naturally.
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The Mandelbrot set

As an example, fix c ∈ C and consider the map fc(z) = z2 + c. Suppose we start at the

point 0 and repeatedly apply the map fc(z).

So

fc(0) = c

(fc)
2(0) = c2 + c

(fc)
3(0) = (c2 + c)2 + c

. . .

What happens to (fc)
n(0) as n → ∞?
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The Mandelbrot set

It’s possible that (fc)
n(0) → ∞ as n → ∞, e.g. when c = 1

fc(0) = 1

(fc)
2(0) = 12 + 1 = 2

(fc)
3(0) = 22 + 1 = 5

It’s also possible that (fc)
n(0) remains bounded, e.g. when c = −1

fc(0) = −1

(fc)
2(0) = (−1)2 − 1 = 0

(fc)
3(0) = 02 − 1 = −1.

We define the Mandelbrot set M as

M = {c ∈ C | (fc)n(0) ̸→ ∞}.
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The Mandelbrot set

Figure: The Mandelbrot set
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Mandelbrot set

Figure: The Mandelbrot set (again)
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Brownian motion

Brownian motion is an example of a random process which can give rise to fractals via

its graphs.

Let 0 < α < 1. Fractional Brownian motion of index-α is defined to be a Gaussian

process Bα : [0,∞) → R such that

Almost surely, Bα(0) = 0 and Bα is continuous.

The increments are normally distributed with

Bα(t)−Bα(s) ∼ N (0, |s− t|2α).
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Brownian motion

Figure: Some graphs of index-α Brownian motion. Taken from ‘Fractal Geometry:

Mathematical Foundations and Applications’ by Kenneth Falconer.
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Thank you for listening!

Figure: Apollonian gasket
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