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I. Field Theory in C

1 FIELDS OVER QQ

1.1 ALGEBRAIC NUMBERS

Definition. An algebraic integer is a root of a monic polynomial in Z[z]|. An algebraic number
is the root of any non-zero polynomial in Z[z]|. A number field is a finite extension of Q. If
K, L are fields and K C L, we say that L is an extension field of K and K is a subfield of L.
We write [L : K| = dimg L, the dimension of L over K.

Example. Equivalently, algebraic numbers are the roots of polynomials in Q[z]. v/—5is a
root of 22 + 5 € Z[z] is an algebraic integer, and [Q(v/—5) : Q] = 2. A basis for Q(y/—5)
over Qis given by {1,v/—5}.

Definition. If K is a field, then f € K|z] is irreducible if whenever f = gh, g,h € K|x],
then g or h is constant.

1.1 Proposition. Let K C C is a subfield and suppose f € K|z is irreducible. Then, f has
distinct roots in C.

Proof. Suppose not and write f(z) = a,(r — «)?g(z) in C[z]. Then f'(z) = 2a,(z —
@)g(z) + an(x — a)?g(z), and f'(a) = 0. Let p be the minimal polynomial of «. Then p|f
so p = f up to a constant. As well, f = p|f’, a contradiction. O

1.2 FIELD EXTENSIONS

Definition. If K C L are fields, then we write L/K and say that L is a extension of K. If
K C Cisafield § € C, then the field K adjoin 6, denoted K (), is defined to be the smallest
subfield of C containing K and 6.

Example. Set L := {a + b\/=5 : a,b € Q}; why is it that Q(v/—5) = L? Certainly L is a
field: the inverse of a + by/=5 is given by aagi\é?, which always since a? + 5b is not zero
whenever a # 0. To see equality, let M be any field containing Q and v/—5. Then if a, b are
both rational, then ¢ € M and b\/—5 € M so a + by/—5 € M. Thus L is the smallest field

containing Q and v/—5.
Example. Consider ¢ = ¢2™/3, Then one can verify that Q(¢) = {a 4 b¢ + ¢¢? : a,b,c € Q}.

Definition. Let K C C be a subfield. Then we say 6 € C is algebraic over K if there exists a
polynomial f € K|z] such that f(§) = 0. We say p € K|[z] is the minimal polynomial of 6 if
it is monic, has 6 as a root, and if it has minimal degree. The degree of 6 over K is deg p(z).

Example. /=5 has minimal polynomial 2* + 5, and ¢ has minimal polynomial 22 + = + 1.
1.2 Proposition (Properties of the Minimal Polynomial). Let K C C be a subfield, 6

C algebraic over K. Then there exists a unique minimal polynomial p(z) of 6 over K. In
particular, the following hold:
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L If f(6) =0, plf.
2. pisirreducible in K [x]

Proof. 1f p,q € K[z] are both minimal polynomials, then r = p — ¢ has lower degree
and r(0) = 0. If  is non-zero, let it have leading coefficient ¢ so that r(x)/c is monic. But
then deg(r/c) < degp and r(6)/c = 0, contradicting minimality of p.

1. By the division algorithm, write f = pg +r. If r # 0, then degr < degp and (f) =0,

a contradiction by the same reasoning above.
2. If p is reducible, write p = fg where f, g are not constant. Since F'[z] is a UFD,
0=p(0) = f(6)g(0) so @ is aroot of f or g, contradicting minimality.
Thus the result holds. O

Remark. Since p is irreducible, p has n = deg p distinct roots in C.

Definition. Suppose 6 has minimal polynomial p(z). The roots 61, ...,6, € C of p are
called the conjugates of 6.

1.3 Proposition. Let K C C, § € C algebraic over K, and let n = degp be the degree of the
minimal polynomial. Then every element o € K (0) has a unique representation in the form

a=ap+aif+- -+ a,_160""
where a; € K.
Proof. First note that

k0 = {29 1.9 € Klal.g00) # 0}
9(0)
Seta = f(0)/g(6) € K(0). Let’s first see that p and g are coprime. Suppose not; then there
exists non-constant h € K|[z| such that h|p and h|g. Since p is irreducible, h = ¢p for some
¢ € K*. Then since h|g, p|g as well and g(#) = 0, a contradiction.
Since K|z] is a PID and p, g are coprime, there exist polynomials s,t € K|[z] so that
sp +tg = 1. Evaluating at g, we must have ¢(6)g(6) = 1 and

so « is a polynomial in #. By the division algorithm, ft = pq + r where degr < n — 1 and
a = r(0) is a polynomial expression in § with degree n — 1.

It remains to see uniqueness. Suppose o = 71(0) = r2() where 1,7, € K|[z] and
degr; < n.If ri(z) — ra(z) # 0, then deg(ry — r2) < n. But then r; — r9 has 6 as a root and
deg(r1 — r2) < n, contradicting minimality of p. O

Remark. This says that {1,0,...,6" 1} is a basis for K(¢) over K. In general, when 0 is
algebraic over K, K(0) = K[0).

1.4 Corollary. Suppose M/L/K. Then [M : K| = [M : L|[L : K].

Proof. Exercise. O
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2 FINITE EXTENSIONS AND EMBEDDINGS

Definition. An injective ring homomorphism ¢ : R — S is called an embedding. We write
R — S is the inclusion map.

2.1 Theorem. Let K C C is a subfield, L/ K is a finite extension field. If o : K — C is an
embedding, then o extends to an embedding L — C in exactly [L : K| ways.

Proof. First, let’s prove the theorem for extensions of the form K («)/K. Let p(z) =
ag + -+ + apx™ € Klz] be the minimal polynomial of o over K. Since o is injective,
K =~ o(K) C C. Let g(x) = o(ag) + - - + 0(am_1)x™ ! 4+ 2™, which is irreducible over
o(K). To see this, if (co +ciz+ - - -+ cy2")(do + dix + - - - + dyx?) is any factorization (with
ci,d; € o(K)), then (67 (co) + o7 (c)z + - + 29 (07 (do) + o~ (dy)z + - +a¥)isa
factorization of p(x), so it must be trivial. Now, let 1, . .., 8, € C be the distinct roots of
g(x), and let 5 := f3; be arbitrary. Given an element v = by + b + boa? + -+ byt
in K(«), let

As(7) = a(bo) + o (b1)B + -+ + o (by—1) 8"

One can verify that this is a ring homomorphism which respects o. Furthermore, there
no other embeddings A since 0 = A\(0) = A(p(@)) = g(A(a)). Thus, A(«) is a root of g, so
M) = p; for some i. Since A is a homomorphism, if A\; () = A2(«), then A; = Ay, so there
are at most [K («) : K] embeddings.

Now, the proof follows by induction. If [L : K] = 1, we are done; if [L : K] > 1, get
a € L\ K. From above, o extends to [K(«) : K] embeddings A : K(a) — C, and by
induction, any such embedding extends to [L : K («)] embeddings A : L — C. Thus there
are [L : K(a)][K(«) : K] = [L : K] embeddings extending o, as desired. O

Remark. Our most common use case will be when ¢ is the identity map on K.

Example. Consider the embedding of Q < C. If Q(v/d)/ Q, then the two embeddings are
given by v/d +— v/d or v/d — —+/d. Note that ++/d are conjugates: both are roots of the
minimal polynomial 22 — d.

Example. Suppose K = Q, and L = Q(+/2). Since 3 — 2 is the minimal polynoial of v/2,
its conjugates are /2, V/2w, V/2w? where w = ¢?™/3, All embedings extend Q C C are
given by v/2 — 2wk for k = 0,1, 2.

2.2 Theorem (Primitive Element). Let K C L C Cwith [L : K| < oo. Then there § € L
such that L = K (0).

Proof. Since [L : K] < oo, we have L = K(aq,as,...,q,) for some m. By induction
on m, it suffices to handle the case L = K(«, 3).

Let {a1, ..., oy} be the conjugates of o and {31, ..., 3,,} are conjugates of 5 (over K).
Let ¢ € K* be such that o + ¢ # «; + ¢f; for any (i, ) # (1, 1) (K is an infinite field, so
such a c certainly exists), and set 6 := « + ¢f. Certainly K () C K(«, 3); for the reverse
inclusion, it suffices to show that 8 € K(#). Let f(z) be the minimal polynomial of « over
K, and g(z) the minimal polynomial of 5 over K. Note that 5 is a root of both f (6 — cx)
and g(x); and by choice of ¢, there are no others in common.

Let h(z) be the minimal polynomial of 5 over K (6). Since 3 is a root of both f(6 — cx)
and g(z) € K[z] C K(0)[z], we must have h|f(0 — cx) and h|g(x), so degh = 1 and
g e K(0). O
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2.1 NORMAL EXTENSIONS

Definition. Let K C L C C, [L : K| < co. We say L is a normal extension of K if it is closed
under taking conjugates over K.

Example. For example, Q(v/d)/ Q is a normal extension. If o € L, then o = a + bV/d. The
conjugate of a is a — bv/d, which is also an element of L. On the other hand, a classic
non-example is L = Q(v/2)/ Q. Then v/2 € L but wv/2 ¢ L, since wv/2 ¢ R.

2.3 Proposition. Let K C L C C, [L: K| < co. Then L/K is normal if and only if for all
o : L — Csuch that o|g = idg, o is an automorphism of L.

Proof. Note that o is an automorphism of L if and only if o(L) = L.

If L/K is normal, let & € L be such that L = K(«). Then o : L — C is specified fully
by o(a) = a;, where ¢; is a conjugate of a. But then o : K(a) — K(«;) is an isomorphism,
and since L/K is normal, K (o) = K(«;) and o is an automorphism of L.

Conversely, let’s show that L/K is normal. Let o € L, let o; be the conjugates of «
over K: we need to show that o; € L. Let o(«) = ; extend idg, and by hypothesis, o is
an automorphism so «; € K(«) = L. O

Remark. Recall that there are [L : K] embeddings that fix K; in other words, o : L — C
such that o|x = idg. The corollary says that L/K is normal if and only if all of these
embeddings are automorphisms. Thus L/K is normal if and only if exactly [L : K]
automorphisms of L fixing K.

2.4 Corollary. Let K C C, oy € C algebraic over K. Then L = K (o, ..., ay) is normal
over K if all the conjugates of o; are in L.

Proof. Let o : L — C be an embedding extending idg. If 6 € L, then § = f(a,..., )
for f(x) € K[z1,x2,...,2,). Theno(0) = f(o(aq),...,0(o,)) where o(c;) is some conju-
gate of a;, an element of L by hypothesis. Thus o(f) € Lso § € L as well. O

2.5 Corollary. K C L C C, [L : K] < oo. Then there exists a finite extension M /L such
that M /K is normal.

Proof. Get o € L so that L = K(«). Let a1, ..., oy, be the conjugates of o over K. Set
M = K(a,...,ay), and by the previous corollary, M /K is normal. O

Example. Let L = Q(4/2), K = Q. L/K is not normal, but M = Q(V/2, V2w, V2w?)/ Q is
normal.

3 GALOIS THEORY OVER QQ

Definition. Let L/ K be any finite extension. The Galois group of L/K is defined
Gal(L/K) = {0 € Aut(L) | o|x =idx}

Now if H < Gal(L/K), L¥ ={a € L : o(a) = aVo € H} is called the fixed field of H.

4



ALGEBRAIC NUMBER THEORY

Remark. Recall that | Gal(L/K)| < [L : K], with equality if and only if L /K is normal. As
well, one can verify that L7 isindeed a field, so L / L is an extension. In particular, this
extension has certain properties:

3.1 Theorem. Given K C L C C, L/ K a finite normal extension. Let G = Gal(L/K). Then
o LY=K
. IfHSGandLH:K,thenH:G

Proof. We first see that K = L¢. Let o : L — C be an embedding fixing K. Since L is
normal, o € Gal(L/K), so by definition of LY, o fixes LY. But then [L : LY|[LY : K] < [L:
L%, s0[LY: K] <land LY = K.

Suppose now that L = K. Set L = K(«) and consider the polynomial

7@y =TT @ = o)) =2l eral = ot ey (~1)1
occH
where the e; are elementary symmetric functions in the o(«a). If 7 € H, then

T(e1) = > 7To(a) =Y ola)=e

oc€H o€eH

since 7 € H permutes the o(a) and e; is a symmetric polynomial in o(«). The same
argument holds for any e;, so e; € L = K for all i; thus, f(z) € K[z]. Sinceid € H,
f(a) = 0; and deg f = | H|. Since the minimal polynomial of & over K has degree < |H]|,

L: K] = [K(a): K] < |H| < |G| = [L: K]
so H =G. O

Remark. Suppose L/K is normal, and L O F' O K where F is a field. Then L/F is also
normal since conjugates of & € L over F are a subset of conjugates of o over K.

3.2 Theorem (Fundamental Theorem of Galois Theory). Let K C L C C, L/K normal,
with L/F/K.
(i) LGal(L/F) —F

(i) If H < G = Gal(L/K), then Gal(L/L") = H.
(iii) F'/K is normal if and only if Gal(L/F) < Gal(L/K). In this case,
Gal(F/K) = Gal(L/K)/Gal(L/F)

Proof. (i) Since L/K is normal, L/F is normal and Theorem 3.1 states that F' =
1,Gal(L/F)

(ii) Let H' = Gal(L/L™). By definition, H fixes L, so H < H' = Gal(L/L"). Since
L/L" is normal and H < Gal(L/L") has L as its fixed field, by the previous
theorem, H = Gal(L/L") = H'.

(iii) Let H = Gal(L/F). If 0 € Gal(L/K), then o : F — ¢(F) is an isomorphism and
o Gal(L/F)o~! = Gal(L/o(F)). Thus,

Gal(L/F) 9 Gal(L/K) <= Gal(L/o(F)) = 0 Gal(L/F)o ™! = Gal(L/F)
<= o(F)=Fforallo
<= F/K is normal
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since a field is normal if and only if it is fixed by all its automorphisms.

When this holds, we can compute Gal(F/K). Since o(F) = F, we have a well-

defined map Gal(L/K) — Gal(F/K) given by ¢ +— o|p. The kernel is {o €

Gal(L/K) : o|p =idp} = Gal(L/F). Then by first isomorphism theorem,
Gal(F/K) = Gal(L/K)/Gal(L/F)

as required.



II. The Ring of Algebraic Integers

4 NUMBER FIELDS

We now focus our attention on extensions, in particular finite extensions, of Q in C. A
major example throughout this section are the cyclotomic extensions of Q; many of the
theorems we will prove will provide tools to better understand extensions Q(¢,)/ Q. Recall
that « is an algebraic integer if it has a minimal polynomial in Z[z].

Definition. K is a number field if K is a finite extension of Q. The set of algebraic numbers
over Q is denoted Q. The set of algebraic integers is denoted Og- We write Og C K =
Og N K to denote the subset of algebraic integers of K.

We can prove Gauss’ Lemma under the observation that Z,[z] is an integral domain.

4.1 Lemma (Gauss). If f, g € Z[x] are primitive (their coefficients have no non-trivial com-
mon factor), then fg is also primitive.

Proof. Suppose f,g € Z[x] are primitive. If fg is not primitive, then some prime p
divides all coefficients of fg. Consider modulo p, so fg = 0. Then f =0org =0,s0p
divides all coefficients of f or g and f, g are not primitive. O

4.2 Proposition. Let o be an algebraic integer. Then the minimal polynomial of o over Q is
in Z|x].

Proof. Let o be an algebraic integer, so there exists i € Z[z] monic such that h(a) = 0.
Let f € Q[z] be the minimal polynomial of o over Q. Then h = fg in Q[z]. Since h, f
are monic, g is also monic. Let a,b € Z so that af,bg € Z[z] and af, bg are primitive
polynomials. Then by Gauss’s Lemma Lemma 4.1, abh = (af)(bg) € Z[x] is primitive, so
ab = =+1,s0a,b = =*1and f, g € Z[z] to begin with. O

A simple observation following from this fact is that Og = Z.
Example (Quadratic Extensions). Let d be a squarefree integer. Then

o Z[d] :d=2,3 (mod 4)
Q(Wd) — {%‘/&;azb (mod2)} :d=1 (mod 4)

Leta=r+sVdrscQIfs=0thena=recQ,soac OQ(\/@. Now consider s # 0.
The minimal polynomial of o over Q is

(a: —(r+ 5\/@) (x —(r— 5\/8)) =22 — 2rz + (r* — ds?)

By a € Oy /g if and only if 2r € Z, r* — ds® € Z.
First, if r € Z, so ds® € Z and since d is squarefree, s € Z.

7
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The other case is r = %, where a is an odd integer. Then ds? = integer + a?/4, so
s = b/2 where b is an odd integer. Since r? — ds? € Z, we need 4 | (a* — db?). Modulo 4,
a? = db?, and since a,b are odd, a> = b?> =1 (mod 4) and d = 1 (mod 4).

Remark. Notice in the preceding examples, we got

O =% Oqvay = {Z [l+\/3}

which are all rings!

4.3 Theorem. Let o € C. Then the following are equivalent:
(i) « isan algebraic integer
(i) Z|co] is finitely generated as an additive group
(iii) o is an element of some subring of C having finitely generated additive group.
(iv) oA C A for some finitely generated additive subgroup A C C.

Proof. (i = ii) We know Z[a] = {ag + a1+ -+ + ap—10"" ! : a; € Z} where n is the
degree of a over Q. Then it is generated over Z by {1,a,a?,...,a" 1}.

(i1 = 1ii) o € Z]o] and Z[a] is a subring of C with finitely generated additive group.

(1771 = iv) Let A C C denote the subring with o € A4; then A C A.

(iv =1i) Let{ai,...,a,} generate A as an additive group with «A C A. In particular,
aa; € A, so there exists {m;; : j = 1,...,n} C Z such that aa; = 377 mjja;. Let
M = (m;j;) in Z, so that

ai
(aly —M) | :]| =0
Qn
Thus, « is a root of det(xI,, — M) € Z[z]. O

Remark. The proof of (iv = i) gives a general method for computing polynomials which
have a specific algebraic integer as a root.

4.4 Corollary. Og is aring. In particular, O is a ring for any number field K.

Proof. Say « has degree n and /5 has degree m over Q. Then Z[«, 8] C C is a subring
with a finitely generated additive group because it is generated by o3’ where 0 < i < n,
0 < j < m. Since af,a + § € Z|a, ] we are done by (iii) in Theorem 4.3. Finally,
Ok = K N Og is an intersection of rings and thus also a ring. O

4.5 Proposition. Let o be an algebraic number. Then there exists r € Z such that rois an
algebraic integer.

This essentially says that if « € K and K is a number field, then there exists r € Z* such
that ra € Ok.

Proof. Since « is an algebraic number, « satisfies a polynomial in Q[z]. Clear denomi-
nators to get h € Z[z] so h(a) = 0. Write h(z) = a,z™ + an—12" 1 + - -+ + ag. Then
a" h(z) = a"z" + a" ta, 2" 4+ aLag

= (apx)" + an_l(anw)”*l 4t azflao
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Let g(x) = 2" + ap—12" 1 + - - - + a? tag, so g(a,a) = 0 and a,« is an algebraic integer. If
ap is negative, take —a,a instead. O

4.1 CycLoTOMIC EXTENSIONS I: INTRODUCTION

Definition. We say (, is a primitive n'!" root of unity if " = 1 and ¢¥ # 1 for any k < n. We
call the extension Q(¢,,) a cyclotomic field.

Example. The 4™ roots of unity are 1,4, —1, —i, so ¢« and —i are the primitive 4™ roots of
unity.

The cyclotomic fields play a fundamental role in number theory. For example, in class
field theory, we have the following theorem:

4.6 Theorem (Kronecker-Weber). If K/ Q is a finite normal extension and Gal(K/ Q) is
abelian, then K C Q((,) for some n.

We will not prove this theorem in full generality, but we will see partial results on assign-
ments.

4.7 Theorem. (, is an algebraic integer with minimal polynomial

Cu(x) = [[ (x-¢)

JE(Zn)*

Proof. Note that (, is a root of 2™ — 1, so (, is an algebraic integer. As in Proposition
4.2,let f(x) € Z[z] be the minimal polynomial of ¢,, over Q so that f(z) = (2™ — 1) over
Z[z]. Recall that

o= 1= [ @=¢))

J€Ln

If j ¢ (Zy)*, then C% satisfies z&1m9 — 1 but ¢, does not, so ¢ and Cﬂ; are not conjugates.
Thus the only possible conjugates for ¢, are the ¢}, where j € (Z,)*; it suffices to show that
these are precisely the conjugates. In particular, let’s show that if § = ¢/, and p is prime
with p { n, then 67 is conjugate to 6. With this, the result follows: if j is coprime to n, write
J =pi' - pSm with p; f nand repeatedly apply the above result to ¢, for each p;, e; times.

Thus let’s prove the claim. Write " — 1 = f(z)g(z) with f,g € Z[z]; since 6? is a
root of 2™ — 1, either it is a root of f(x) - in which case we’re done - or it is a root of g(x).
Suppose ¢g(07) = 0, so 0 is a root of g(zP) € Z[z] so f(x) + g(2P) over Z[z]. Modulo p,
f(x) +g(zP) = g(z)? in Zy[x). Since Z,[z] is a UFD, let s(z) be an irreducible factor of f(x)
so that s|f and thus s|g. But then 2" — 1 = fg,s0 s? = (z" — 1) and s + na""!. Since n is
coprime to p, this implies s = cx for some ¢ € Z,. But then cx + 2™ — 1, a contradiction.(]

Remark. 1. For p prime, we have
(= j aP —1 -1 -2
@p(g;):H(xfgg)): — — Pl 244
j=1
2. Q(¢n)/ Q is a normal extension since conjugates of (,, are G oe Q). As well,
[Q(Cn) : Q = [(Zn) ™| = (n).



II. THE RING OF ALGEBRAIC INTEGERS

4.8 Proposition. Gal(Q((,)/ Q) = (Z,)*.

Proof. Set G = Gal(Q(¢,)/ Q), which consists of automorphisms o : Q(¢,) — Q((y)
fixing Q. For such a o, we must have o((,) = C% for some ged(j,n) = 1. Thus to every
o € G, we can associate the index j € (Z,)* so that 0;((,) = ¢). This gives us a map
G — (Zyp)* by o — j. This map is a homomorphism:

005 (Cn) = 0%(C]) = 0 (Cn) = ¢F = ou(Cn)

and bijectivity is left as a straightforward exercise. O

5 TRACES, NORMS, AND UNITS

Definition. Suppose K is a number field with [K : Q] = n, and letoy,...,0, : K — Cbe
the usual embeddings extending Q C C. Given o € K, we say its trace is

and its norm

5.1 Proposition. Letr € Q, a, f € K as above. Then
(i) Trg(ra) = rTrQ( a)
(ii) TrQ (o + ﬂ) Tr@( a) + Trg(ﬂ)
(i) N@ (af) = ( )N@ (B)
(iv) NK(ra) = r"NK( )

Proof. Exercise. O

Example. Consider V2 e Q(\@, \/§) = K. The minimal polynomial of V2is 22 — 2. The 4
embeddings K — C are given by V2,V3 — £v2, £/3, so
N (V2) = V2v/2(—V2)(-V?2) = 4.
5.2 Theorem. If [K : Q] = n, o € K, then

! T (e =

1 Q@)
K Q g e @

and . )
NE (o) T = Ng(a)(a)f@m‘):@]

Proof. Each of the [Q(«) : Q] embeddings Q — Q(«) extend to [K : Q(a)] embeddings
Q — K. So, letting o; be the embeddings Q(«) < C, let 0;; be the [K : Q(«)] extensions.
Then

[K:Q(a)] n (K:Q)] / n
Z Za,] Z (Z Ui(Oé)) = [K : Q(«a)] Trg(a) oi(a)

j=1 i=1

and the proof is identical for Ng (). O

10
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Remark. Given « an algberaic integer, the value Tr(a) does not necessarily make sense
since you need to choose the number field K containing . However, the previous
proposition Theorem 5.2 says that this distinction is not too important: if we divide by
1/[K : Q], the trace does not depend on K containing a.

5.3 Corollary. If « € K, K is a number field, then Tr(g(a), N(g(a) € Q. In particular, if
o € Ok, then Tr(g(a), Ng(a) cZ.

Proof. Let o have minimal polynomial 2" + a,,—12" "1 + - - - + ag. Note that Trg(a) is

the —a,,—1 coefficient and Ng(a) is the +ag coefficient of the minimal polynomial. These
are both rationals, and if « is an algebraic integer, then they are both integers. Then by
Theorem 5.2, Trg and Ng are integer multples / powers, and are thus still rational or
integer. O

Since Ok is a ring, it is natural to ask what the units are.

5.4 Proposition. Let K be a number field and o € Og. Then o € O if and only if
N§(a) = +1.

Proof. If v € O, then a8 = 1 for some 3 € Ok. Then 1 = Nf (1) = N§(ap) =
Ng (a)Néf (B) is a product of integers, so they must be £1.

Otherwise, suppose a € Ok and Néf(a) =1, so that Ng(a)(a) = 41. Then if o; are
the embeddings Q(«) — C fixing Q, o1 = id,

n n

+1 = Hai(a) = aHai(a)
i=1 =2
Note that each o;(a) € Og, but since Q(a) may not be normal, o; () may not be in Q().
However [[IL, 0;(a) = £a~! € Q(a) is an algebraic integeer and thus in Ok, so ais a
unit. g

Example. In K = Q(i), O = Z[i]* and N(a + bi) = a* + b*. Thus the units are given by
{=£1, +4} More generally, if ¢ is a root of unity and ¢ € K, then ¢ € Op. This follows since
NS(O (¢) =1 and we can apply Theorem 5.2.

5.1 UNITS IN QUADRATIC EXTENSIONS

5.5 Proposition. Let d be a square-free negative integer. Then (9(5
® d = —1, in which case the units are {+1, +i}.
e d = -3, in which case the units are {il, M}

Wa) = {£1} unless

2

Proof. First suppose a € (9(5 ay where d is square-free. If d # 1 (mod 4), then

a = a+bV/d, so a € Z[\d)* if and only if N(a) = a® — db®> = +1. So a + bV/d is a unit
if and only if (a,b) is a solution to the diophantine equation 2% — dy?> = +1. Similarly,

atbyVd ¢ Og(va) for d =1 (mod 4) is a unit if and only if a® — db® = +4. Now suppose

additionally that d < 1.

11
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Case 1: d # 1 (mod 4). If d < —1, then the only solution to 72 — dy? = +1is (£1,0). If
d = —1, then solutions to 2 + y? = +1 are (£1,0) and (0, £1).

Case 2: d = 1 (mod 4). We want solutions to 22 — dy? = 4. If d < —3, then the only
solutions are (£2, 0), which correspond to {£1} € Og. If d = —3, then the solutions are
(£1,0) and (0, +1). 0

Remark. When d < 0, the graph of 22 — dy? = {£1, £4} is an ellipse so there are only a
finite number of integer pair solutions. On the other hand, consider d = 2, so the graph
is a hyperbola with asymptotes ++/2. If we want integer solutions, we want solutions
b/a that are close to /2, so we're looking for (good) rational approximations to v/2. In a
precise sense, one can define the “best” rational approximation to v/2. One intuition about
“best” is to bound the denominator and be close to v/2. Given «, its continued fraction

approximation of « is
1

a=agp+
al +

1
ast

The first few convergents to the continued fraction expansion of /2 are 1, 3/2,7/5.

Consider ¢ = 14 /2 € Z[v/2]*,s0 N(e) = —1. As well, ¢" is also a unit for any n. For
example, €2 = 3 + 2v/2, €3 = 7+ 5/2. It turns out that € = p,, + ¢,,v/2, where p,, /g, is the
n'h convergent of the continued fraction expansion of v/2.

5.6 Theorem (Dirichlet Approximation). Let o € R\ Q, let Q > 1, Q € Z. Then there
exists p,q € Z such that 1 < q < Q and |qa — p| < % In particular, there are infinitely many

pairs (p,q) € Z* for which |a — p/q| < 1/¢>

Proof. The “in particular” statement follows from the first statement because |a—p/q| <
& < q%. Since () can be chosen arbitrarily, there are infinitely many such solutions.

Let’s now prove the main statement. For any = € R, let {z} = x — |z| denote the
integer part of . Consider the () intervals

(203}

and consider the Q + 1 numbers {{a}, {2a},...,{(Q + 1)a}}. Since « is irrational, each
of these numbers lies in one of the above intervals. By the pidgeonhole principle, get
1 <m < n <@ such that [{na} — {ma}| < 1/Q so that

Ina — [na) — ma+ [maf| = |(n — m)a — (|na — [mal)| <

1
Q
Take ¢ =n —m, p = |na] — |ma/, and we are done. O

5.7 Theorem (Dirichlet Unit, Quadratic Extensions). If d > 1 be squarefree and set K =
Q(v/d). Then, there exists a smallest unit € > 1 such that

Op ={xe" nel} =7y x1Z

Proof. We treat the case where d # 1 (mod 4); the proof when d = 1 (mod 4) follows
identically.

12
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Let =p+qVd, p,q €Z,q> 0. Then,

IN(O)| = Ip+ qVllp - ¢V = \Z 4 \/&\ \5 Vi

q2

By Dirichlet approximation Theorem 5.6, there are infinitely many pairs (p, q) € Z? such
that [p/q — v/d| < 1/¢>. For such (p, q), % + \/ﬁ’ < 2v/d + 1. Since 2v/d + 1 is independent

of the value of (p, ¢), by the pidgeonhole principle, there exists m € Z* such that there
are infinintely many 6 = p 4 ¢v/d with [N (#)| = m. Enumerate these by 6; = p; + ¢;v/d for
i €N,

Let’s show that Oj; is an infinite set. We might take 6;/6, for infinitely many 6; (which
certainly has norm 1), but 6, /6; might not be an algebraic integer. We can, however, amend
this as follows. By the pidgeonhole principle, there exists some fy := 6; such there are
infinitely many 6; with p; = py (mod m) and ¢; = qo (mod m). Let 6], be the conjugate of
0y, so that

0; 0; — 6o 0; — 6o
~1
fo o T 000,

(pi — po) + (¢ — qo)Vd

0

=1+ 96601{

Thus, we have infinitely many 5 € O%.

Now, let S = {y € O : v > 0}, s0 |S| = oc; let’s show that S has a minimal element.
Assuming this, let € € S be minimal and set A € O taking —\ if necessary, we may
assume \ > 0. Then there exists n € Z so that €* < A < ¢"*1. Then 1 < A" < ¢, and since
€ > 1is minimal, we must have \/e" = 1;i.e. A = €".

Note the following: if 1 <y =z + yv/d is a unit, then z, y > 1. To see this, consider the
four values v, —v,vy~*, —v~!, which are %M. Since z and z~! cannot both be greater
than 1, exactly one of the four values are greater than 1, so it must be the largest one; i.e.
the one with =,y > 1. But now let v > 1 be arbitrary; by positivity, there are only finitely
many 7 < v, so there must be some minimal element. O

Remark. A natural question is to ask this question for a general number field. For example,

if K is cubic, then O may or may not have a smallest unit ¢ > 1; see Theorem 14.9 for the
general case.

6 DISCRIMINANTS AND INTEGRAL BASES

Definition. Let K be anumber field, and let o1, ..., 0, : K — Cbe embeddings extending

Q C C. Given ay,...,a, € K, we define the discriminant of o, . . ., v, to be
2
oi(ar) ... oi(ay)
disc(ay, ..., an) = det
on(ar) ... onlan)

If K = Q(«), for notational simplicity, we say disc(a) = disc(1, a, ..., o™ 1).

Remark. The value of disc(av, . . ., o) is independent of the ordering of the «;: swapping
rows or columns only changes sign in the determinant.

13
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Example. If K = Q(v/d), then

disc(1, Vd) = det (\f ‘1})2 4d

6.1 Proposition. Let K be a number field of degree n. Then

Tr(g(aloq) e Tr(g(alan)
disc(a, ..., an) = det : :
Tr(g(anal) . Tr(g(ocnan)
Proof. Let M = (04(cj));j. Then

disc(ay, ..., o) = det(M)? = det(M*M)

where

n

=3 MyMjy =Y op(ei)or(ey) =Y on(eiay) = Tr(eviey) O
k=1 k=1

k=1

Example. Again, take K = Q(v/d). Then

disc(1, Vd) = det (T?(“%) T;Eg)> = det <2 0> = 4d

which is the same as the previous example.

6.2 Corollary. We have disc(av, ..., ap) € Q, and if a; € Ok, then disc(ay, ..., o) € Z.

Proof. Tr(oyaj) € Q and if the o; € Ok, then Tr(w«;) € Z. O

6.1 CHANGE OF BASIS

Let’s understand how discriminants change under change of basis. Suppose a1, ..., a, isa
basis for K/ Q, and let 31, ..., 3, € K are arbitrary (possibly not a basis). Since o;(5) € K,
there exists cy; such that 0;(8x) = >>i_; cxjoi(a;). Then

o1(B1) - on(B1) cir o0 e\ [o1(an) oo on(an)
Ul(ﬁn) T O-n(ﬁn) Cnl " Cnn Ul(an) ce Un(an)
Let C' = (c¢;5) denote the above transition matrix; then,
disc(B1,. .., Bn) = det(C)? disc(an, . . . , o)

14
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Now, if K/ Q is a finite extension, then we know there exists § € K such that K = Q(#).
Thus, {1,0,...,0" 1} is a basis for K/ Q. In particular,

0'1(1) 0'1(9) O’1(9n_1)
disc(1,6,...,0" 1) = det : : :
Un(l) Un(@) Un(anl)
o1(1) o1(0) - o (012
= det : : :
on(1) on(0) -+ on(@)" !
=] ‘(01(9) —0;(0))?

since it is the square of the determinant of a Vandermonde matrix. In particular, this value
is non-zero since the o;(#) are distinct. Now the following proposition follows from this
discussion:

6.3 Proposition. Let ay,...,a, € K wheren = [K : Q|. Then disc(aq,...,a,) # 0 if
and only if a1, . .., o, is a basis for K/ Q.

Proof. Let C denote the transition matrix for {ay, ..., a,} in terms of the (67). Then
disc(ay, ..., an) = det(C)%disc(1,6,...,0"")

so that disc(a, . .., o) = 0if and only if det(C') = 0 if and only if a, ..., o, are linearly
dependent. O

6.4 Theorem. Let K = Q(0), [K : Q] = n. Then
disc(6) := disc(1,6,...,6" ") = (~1) O NE(£(0))

where f(x) € Q[z] is the minimal polynomial of 6 over Q.

Proof. Let 01,...,0, be the conjugates of 6. Then f(z) = []i_,(z — 6;), so f'(z) =
Z?:l Hi;éj (x — 6;). Thus

k=1 k=1
k=11i#k i<k
= (DG T — 60)? = disc(1,6,....6" ") 0
i<k

15
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6.2 CycLOTOMIC EXTENSIONS II: DISCRIMINANTS
6.5 Theorem. Let ,, = 2™/ and set d = disc (17 Cos e ,gﬂ"’*l). Then d - nP™), and
if p is an odd prime, d = (—1)(5)]9?—2,

Proof. Let ®,,(x) be the minimal polynomial of (,,, and write 2" — 1 = ®,,(z)g(x) where
g(z) € Z[z]. Then nz" ! = @/ (z)g(x) + ®p(x)g'(x), so n¢"t = ®'(¢,)g(¢n). Thus

N (n€iY) = N (#(¢)) - N (9(¢a)

Since ¢, € Oé(cn), N(¢,) = £1. Thus

1™ = (1) "IN (@) - N(9(Cn))

so +disc(¢u)N(g(¢n)) = n®™. Since g € Z[z], 9(¢n) € Ogc,y and N(g(¢n)) € Z. Thus
disc((,) + n®™, as required.

Now, if p is an odd prime, 22 — 1 = &, (z)(x — 1), so pzP~! = &/ (x)(z — 1) + $p(x).
Thus p¢t ™' = ®,(¢,) (¢, — 1). Note that N(¢2™") = N(¢,)P~! = 1 and since p — 1 is even.
We can also compute

p—1
N(G-1) =) [ -¢) =2,(1) =p
i=1
so that

chil = (I);)(Cp)(gp —1)=pt = N(Q;(Cp))p
= (—=1)E)pr=2 = disc(¢,)

as required. O

Remark. In general, we have

()
[T, PP/ @D

disc (1, Cas - . ¢<n>*1) (1)t

ron
which we state here without proof.

6.3 INTEGRAL BASES

Definition. Let K be a number field, [K : Q] = n. Wesay A = {a1,...,a,} is an integral
basis for K if Ok = spany(A). When it exists, a power basis for Ok is an integral basis of
the form {1,a,--- ,a" '};ie. O = Z|al].

Remark. Clearly we must have «o; € Og. As well, a1, ..., o, is a basis for K/ Q: given
0 € K, there exists r € Z™ such that rf € Ok, so rf € spany(A) and 0 € spang(A). Since
[K : Q] =n, ai,...,q, is a basis. In particular, this means that A is in fact a Z —basis for
Og (justifying the terminology).

6.6 Theorem. If K is a number field, then K has an integral basis.

16
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Proof. Write K = Q(6) where 6§ € Ok. Consider the set of all bases {31, .., 3,} for
K/Q such that 3; € Og. Such a basis certainly exists; given any basis, we can clear
denominators such that they are in Of. Let A have | disc(A)| minimal (the discriminant is
an integer, so such an A exists); let’s show that A is in fact an integral basis.

Suppose not. Then there exists v € Og where v = a1a1 + - - - + apay, and a; ¢ Z. Let
a; =a+rwitha € Z,0 < r < 1; consider the basis {}, ..., a},} where o/, = «; fori > 1,
and o} = v — aa;. Then

ap—a az az --+ ap
0 1 0 --- 0
disc(a), ab,. .., al) = det 0 0 T - 0 disc(ov,...,an)
0 0 0 ... 1
= r?disc(a, ..., o)
Since 0 < r < 1, |disc(, ..., al)| < |disc(aq, ..., ay)|, contradicting minimality. O

6.7 Proposition. If K is a number field, then all integral bases have the same discriminant.

Proof. Let{ai,...,an} and {B1,..., B, } be two integral bases; then

n

oj = Z cijBi

i=1
for aj € Ok and ¢;; € Z. Let C = (¢;5). Since {a1,...,a,} is also an integral basis,
(C’_l)ij € Z as well. Thus C € GL,(Z) so det(C)? = 1 and

disc(au, ..., ap) = det(C)? disc(B1, . . ., Bn)

indeed have the same discriminant. O

Definition. If K is a number field, we say its discriminant disc(K) is the discriminant of
any integral basis.

Example (Quadratic Extensions). Consider Q(v/d). If d # 1 (mod 4), then {1,/d} is an
integral basis; if d = 1 (mod 4), then {1, 1+2\/g} is an integral basis. Thus

- {3421 8

6.8 Proposition. Let K be a number field, {cu, ..., ay} a basis for K/ Q with oy € Ok. If

d = disc(ai, ..., an), then for all « € Ok, there exists m; € Z such that
S may .
o = L d m?

Example. Consider Q(v/d), where d = 1 (mod 4). Then {1,/d} is a Q —basis, Vd € O,
and disc(1, \/g) = 4d. Since d is squarefree, if 4d + m?, then d + m;. Thus, the proposition
states that any v € Ok can be expressed in the form %’”2‘/& for some m1, ms € Z. Note
that the converse is not necessarily true: not all such expressions are in Ok (indeed, we
need m; = my (mod 2)).
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Proof. Let o € Ok be arbitrary so that o = a1a1 + - - - + a,o, for some a; € Q. Let
01,...,0n : K < Cextend Q C C. Foreach j = 1,...,n, we have ¢j(a) = a10j(aq) +
-+ 4 anoj(ay) so that

oi(aq) ... oi(ayp) ap o1(a)
on(ar) ... onlan) an, on(a)
Define
oi(ar) - o1(a) ... oi(ay)
;= det
on(ar) ... opla) ... op(ay)

where the j column is replaced, and § = det(c;(a;)). Since o; € O, 7;(a;) € O for
any j, so 7;,6 € Ok. Note that d := disc(K) = §%. By Cramer’s rule, a; = %. Take
mj = daj € Q; but then daj = (5’Yj € Ok, so m; € QNOk =7.

For the second part, we have

RSN )

2
m_ 9 Vi 2_d’)/]_ 9
T ==a(3) = =

somj/d € Z as well, O

6.4 REAL AND COMPLEX EMBEDDINGS

Let K be a number field and let o1, ..., 0, : K — C be the embeddings extending Q C C.
Let 1 denote the number of embeddings where K — R; then, the other embeddings come
in pairs: if 0 : K — C, theno : K — C s a (distinct) embedding.

We say that r is the number of real embeddings, and 27 is the number of complex
embeddings; in this case, n = 1 + 2r.

Example. Let d be squarefree. Then Q(\/Zi) ford > 0 hasr; = 2, r9 = 0, while Q(\/&) for
d<0Ohasr; =0,ry = 1.

6.9 Proposition. Let [K : Q] = n; then, the sign of disc(K) is (—1)"2.
Proof. Let v, ..., oy, be an integral basis for K/ Q. Consider

o1(ar) ... oi(ay) o1(aq) ... o1(an)

|
Il
(o}
D
=+

0 = det
on(a1) ... op(an) on(ar) ... Tnlan)
where disc(K) = §2. If 0; is real, then 5; = 0;. If (0}, 0;) are complex conjugate pairs, then

in 0 we swap column i with column j. Thus § = (—1)"24, so § is purely imaginary if 5 is
odd, and real if r; is even. This proves the claim. O

6.5 CYCLOTOMIC EXTENSIONS III: ALGEBRAIC INTEGERS IN Q({pr)
6.10 Theorem. If p is prime, r € Z, then Og(¢,r) = ZlGpr)-
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Proof. For notation ¢ = (,» and we take Q(¢) = Q(1 — ().
Lets = ¢(p"),s0{1,1—(,...,(1—¢)* "'} is a Q —basis for Q(¢). Let’s show that it is
an integral basis. By Proposition 6.8, we know if o € Ok, there exist m; € Z such that

a= M where
d =disc(l - () = H (1=¢) —(1—¢))?
i<j
ije(Z /p")*
= H (¢ — ¢7)? = disc(¢) = 4pP2
i<j
i,je€(Z /p")*
Ll (1=Q) 4+l (1-¢)* "

Let’s first treat the case 8 = . Let i be minimal so that p { [;. Set

p

(1 — ~)i—1 _ ~\s—1
, = k0=9) +p+ls(1 O con

Since (1 — ) + (1 —2/) in Z[xz], (1 — ¢) + (1 — ¢7) in O so that
(1-¢+JJ0-¢)=2p(1)=p
plj

over Og. Thus p = (1 — ¢)*) for some A € Ok. Since \,7,1 — ¢ € Ok, (1 —¢)**\y € Ok.
However,

(1= ixy = Al

1—¢)s ! +)\li+1(1_C)s+
b b

where the tail terms are all algebraic integers, so

L (1 _ ~\s—1

b E1=Q)
1=¢

Then (1 — ()6 = [; and, taking norms, N (1 — ()N (#) = N(I;) so that pN(#) =17 and p | ;

and no such [; exists. But now since d = +pP~?, we may repeat the above argument for

each factor of p, and we are done. O

0 : EOK

Remark. This proof demonstrates a general tool for verifying that a given basis of algebraic
integers is indeed integral. One need simply check each prime p such that p* + d; if there
are no algebraic integers of the form a = M where |m;| < p for every such p,
then 3 is indeed an integral basis.

If there is some « of this form, then update {1, ..., 5, } with the new algebraic integer
«; the new discriminant is d/p?, and we may repeat the above process. This process will
terminate after a finite number of steps (though it may take a while), giving a general
procedure to compute integral bases for arbitrary number fields.

7 COMPOSITA AND RESULTANTS

7.1 COMPOSITA

Definition. If K, L are number fields, then the compositum of K and L is the smallest field
containing K U L. We denote itby KL = LK.
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Our goal in this section is to relate O, Or, and Ok,

7.1 Lemma. Suppose [K : Q] =m, [L: Q] = n.
(i) [KL: Q] < mn.
(i) [KL : Q] = mn if and only if for any embeddings o : K — C, 7 : L — C embeddings,
there exists a unique embedding € : KL — C such that €| = o0, €|;, = T.

Proof. (i) Wehave [KL:Q]=[KL:K]-[K:Q]<[L:Q]-[K:Q]=mn.

(ii) Consider €| : K — Cand €|;, : L — C; since the products af for « € K and
B € L generate KL, € is determined uniquely by €|k and €|r.. Since [KL : Q] = mn,
then there are mn embeddings ¢ : KL — C, so this must be all of them, and the
equivalence follows. O

7.2 Theorem. Suppose [KL : Q] = [K : Q] - [L : Q] and let d = ged(disc(K), disc(L)).
Then OKL C é(’)KOL.

Proof. Write [K : Q] = nand [L : Q] = m. Let{ay,..., o, } be anintegral basis for K/ Q
and {f1, ..., B} an integral basis for L/ Q. Then K L = spang{c;f3; : (i,]) € [n] x [m]}.
Since [K L : Q] = mn, the a;3; are a Q —basis of algebraic integers. Then o € K'L can be

represented as
- if3jai
a=) > =
i=1 j=1
with a;j,7 € Z and ged(ai1, . .., anm, 7) = 1. If @ € Ok, we want to show that r | disc(K)
and r | disc(L) so that r|d and a € 20Oy,
By symmetry, let’s show that r | disc(K). Given oy,...,0, : K — C, by Lemma 7.1
there exists o} : KL — C so that o}|x = 0; and o}|;, = idr. Then

oi(a) = Zﬂﬁz‘ff(az‘) Ti = Z ai; %
i=1 = "
since x; € L. Equivalently,
o1(aq) ... o1(ay) x1 ol (@)
Un(al) Un(an) In U;z(a)
Let
or(ar) - oy(ar) -+ oi(an)
Yi = : :
on(a1) ... oh(an) - on(an)

where the i column is replaced. Then by Cramer’s rule, z; = % where ;,§ € O and
62 = disc(K). Thus disc(K)x; = v; € Ok is an algebraic integer, but also disc(K) € Z so
disc(K)xz; € L. Thus disc(K)x; € Op; but then, since

dise(K)a = 3 <diSC(f{)aij) 8
j=1
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and the 3; form an integral basis for O, we have % € 7Z. Since

ged(aity .oy Qmn, ) =1,
this forces r | disc(K). O
7.2 CYCLOTOMIC EXTENSIONS IV: ALGEBRAIC INTEGERS IN Q(¢y)

7.3 Theorem. Ogc,) = Z[Gn)-

Proof. Let’s do this by induction on the number of prime factors of n; we already did
the base case n = p” in Theorem 6.10. For k& > 2 let

n:pilpzk m:pi . pzkll K:@(Cm) LZQ(Cka)

First, let’s see that KL = Q((,). Note that ¢, € KL since m and p;* are coprime; thus,
there exists z,y € Z so that m + yp* = 1. Then C%C;ek = e2™/", 50 Q((,) € K L. As well,
k

¢(n) = p(m)¢ (pi*) = [K : Q] - [L: Q] = [KL: Q] > [Q(¢a) : Q] = ¢(n)

50 Q(¢y) = KL and [KL: Q] = [K : Q][L : Q). Thus, Q(¢,) = KL and [KL : Q] = [K
QJ[L : Q] and by Theorem 7.2, we have

1
Z[Cn) € Oqye,) € do@(cm)o@(c = S ZIGn] Z[Ger] = S Z[G)

where d = ged(disc K, disc L). Recall by Theorem 6.5, we have disc (Q(¢,)) < n?™. Thus
disc(K) = m?™) and disc(L) + (pzk)d’(pkk) so that d = 1 and Og¢,,) = Z[Cx)- O
7.3 RESULTANTS

Definition. Let f(x), g(x) € Clz] with f(z) = apz™ + -+ + a1z + ap, g(z) = bpz™ + - -+ +
bix + bg. The resultant of f and g is

anp, Ap—1 e al agp 0 e 0
0 Gnp, an—1 aj ap
' 0
0 e 0 A, Ap—1 e al agp
R(f,g)=det | byy bm-1 -+ b 0 0O --- 0
0 b . by bo o --- 0
0 0 bm by bo
: : . . .00
0 0 i 0 by oo by bo

Remark. R(f,g)is homoeneous of degree m in the a; and degree n in the b;.

We want to show that if f, g € Q[z], then R(f, g) = 0if and only if f and g have a common
factor in Q[z]. In particular, we have the following proposition:
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7.4 Proposition. Let f, g € Clz]. The following are equivalent:
(i) f and g have a common root in C
(ii) There exists h, k € C[z] such that hf = kg and deg(h) < m — 1, deg(k) <n — 1.
(iii) R(f,g9) =0

Proof. (i = ii) If f,g have a common root o € C, then (z — «) | fand (z — ) | g.
Then f = (z — a)k, g = (v — a)hand hf = (v — a)kh = kg.

(s = 1) If hf =kgwithdegh <m —1,degk <n — 1, then by Pigeonhole principle,
the roots of k cannot contain all the roots of f, so one root must be a root of g.

(77 < 1it) We can now turn our question into one of linear algebra. Given f, g, we
want to compute h, k such that hf = kg where degh = degg — 1, and degk = deg f — 1.
Let

h=cmz™ 4+ ez +c

k=dp_12" '+ +d
Treate c;, d; as indeterminants so that the statement i f = kg encodes n + m equations by
comparing coefficients of the same degree. For example, the 2" ~2 equation a,,¢;n—2 +

Ap—1Cm—1 = bymdn_2+bpm_1d,—1. In particular, (co, ..., cm-1;—do, ..., —dy—1) is a solution
if and only if it is in the kernel of the matrix

Gn 0 e 0 bm o 0 --- 0
Ap—1 Qnp, bm—l bm 0 s 0
Ap—1 0 bm
A= al (07%% b(] bl 0
aop ar v ap—1 0 by b1 o by
0 ag 0 0 bO
: L m : N 31
0 o0 ao 0 0 -+ 0 b

and this matrix has non-trivial kernel if and only if 0 = det(A4) = det(4") = R(f,g). O

Let 21, ..., x, denote the roots of f and y1, ...,y denote roots of g. Then aq,...,a, are a,
times an elementary symmetric function in the z;, b1, . .., by,,—1 are by, times an elementary
symmetric function in the y;. Thus R(f,g) € Clz1,...,2n,y1,...,Yn) =: P is a symmetric

polynomial times a]'b;,,. By Proposition 7.4, if z; = y;, then R(f, g) = 0. In other words,
every (z; — y;) | R(f,g) (as polynomials). Since each (z; — y;) is an irreducible coprime

factor of P, [ [, ;(w; — y;) + R(f, g). Set S == ag'by, [, ; (i — ;).
In particular, note that g(z) = by, [[J2, (z — y;) so that aj’ [ i, g(2;) = S and

n

5= ap Lot 7.
1=1

Similarly, f(z) = an [[}-,(x — ;) = (=1)"a, [[;—, (x; — x) so that

= (=1)™"b}, Hf vi) (7.2)
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(7.1) tells us that .S is homogeneous of degree n in the b;’s, and (7.2) says S is homogenous
of degree m in the a;. Since R(f, g) has the same property and S + R(f,g), R = ¢S for
some ¢ € C. However, S has constant term a;'b%,, which is the same as R(f, g); thus, ¢ = 1.

n “m/’

In particular, we’ve shown the following proposition:

7.5 Proposition. Let f, g € Clx] with deg f = n, degg = m, and f have roots x1,...,z,
and g have roots yi, . .., ym (perhaps with repetitions). Then

R(f.g) = ap'by, H

This gives us an easy way to compute certain types of discriminants:

7.6 Corollary. Let o be algebraic over Q and f the minimal polynomial of ov. Then disc(a) =
(DGR, ).

Proof. Let’s apply Proposition 7.5 in the case where g = f’. Let f(x) = 2™ + a,—12" 1 +
tag=(r—o1) (v — o) Letoy,...,0n : Q(a) = Cextend Q C C. Then applying
(7.1), we have

R(f.f) =[] /(i) = [ oi(r' (@) = NG (' ()
and the result follows by Theorem 6.4. 0

As a fun application of this result, let’s prove the following proposition. Note that the result
was not strictly necessary to do this, but we get to use it to do one of the computations.

7.7 Proposition. Let 0 be a root of f(z) = 23 + 2% — 22 + 8, and K = Q(0). Then O has
no power basis.

Proof. Let’s calculate Ok. First, we have

11 -2 8 0
01 1 -2 8

disc(8) = —R(f,f)=det |3 2 -2 0 0 | =-4.503
03 2 -2 0
00 3 2 -2

Thus disc(K) = —4 - 503 or disc(K) = —503 since, under change of basis, the factor must
change by a square of an integer. We know from a homework assignment (or by direct
computation) that O # Z[6] since (6% —60)/2 € Ok and disc(K) = —503. In particular, one

0>-0 = 020\ ;
has that disc(1, 6, =5~) = —503 by change of basis. Since 503 is squarefree, {1, 0, T} is
an integral basis of (’) K-

Now, let A € Og. We'll show that 2 | disc()) so that disc()\) # —503 and {1, \, \?} is
not an integral basis. We can write A = a + b0 + c % for a,b, c € Z. In particular, after
some computation, one has A\? = A; + A0 + A0 where

Ay = a® — 26 — 8be
Ay = —2¢% + 2ab + 2bc — b?
Az = 20* 4+ 2ac+ 2
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Then by change of basis,
1 0 0\’
disc(\) = =503 -det [ @ b ¢ | =—503-(bA3 — cAy)?
AL Ay As

= —503 - (2b% — bc? + b2+ 263)?

where 2% — bc? + b?c + 2¢2 = be(b — ¢) =0 (mod 2).
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8 DEDEKIND DOMAINS
Definition. R is Noetherian if every ideal of R is finitely generated; thatis, I = (r1,...,7y,).

8.1 Proposition. The following are equivalent:
(i) Every ascending chain of ideals in R stabilizes.
(ii) Every non-empty set S of ideals of R has a maximal element in S.
(iii) R is Noetherian.

Proof. (i = ii) Let S be a non-empty set of ideals with no maximal element. Since S
is non-empty, get Iy € S. Then for any I, € S, I}, is not maximal and get I} 1 2 Ij. This is
an infinite chain of ideal which does not stabilize.

(i1 = i) LetI; C I C --- be an ascending chain of ideals, and let S = {I} : k € N}.
By assumption, S has a maximal element, Iy; but then for any n > N, I,, = I and the
chain stabilizes.

(i = iti) Let I be anideal of R not finitely generated. Then I # (0), so get a; € I. For
any finite ay, ..., a; € I, since I is not finitely generated, there exists ar1 € I'\ (a1,...,ax).
But then {(ai,...,a;) : i € N} does not stabilize, a contradiction.

(iti = i) LetI; C I C --- be an ascending chain of ideals, and set I = (J;2, I,,. By
assumption, I = (z1,...,xy). Since each z; € I; for some j, get k so that z1,...,z, € Ii;
but then I, = I, for all n > k and the chain stabilizes. O

8.2 Theorem (Hilbert). If R is Noetherian, then R[x] is Noetherian.

Proof. See PMATH 446 notes. O

Remark. The most basic example of a Noetherian domain is a PID. It is also easy to see that
if R is Noetherian, R/I is also Noetherian. This means that a lot of rings are Noetherian.

Definition. If R C S subrings with R, S integral domains, we say s € S is integral over R
if there exists f(z) € R[z], f monic, such that f(s) = 0. We say R is integrally closed in S if
s € Sis integral over R if and only if s € R.

Example. 1. Let K be a number field so that Z C K. Then o € K is integral over Z if
and only if a € Ok.
2. If R = Z, Frac(R) = Q and a € Q is integral over R if and only if & € Z, so Z is
integrally closed in Q.
3. If R = Z[\/5], then Frac(R) = Q(1/5). Note that (1 + /5)/2 is integral over Z[v/5] (in
fact, it is not even integral over Z), so Z[v/5] is not integrally closed in Q(V5).

Definition. A Dedekind domain is an integral domain R satisfying 3 properties:
1. Ris Noetherian.
2. Every prime ideal is maximal.
3. Risintegrally closed in its field of fractions.
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8.3 Proposition. Let K be a number field, 0 # I C Ok an ideal. Then there exists a €
Z\{0} such that a € 1.

Proof. Say o € I, « # 0. Let oy, . . . , o, be conjugates of & = o so thata := Ng(a)(a) =
ajg -+ - ap € Z\{0}. As in the proof of Proposition 5.4, ag - - - ay, € Ok so thata € I. O
Remark. 1f 0 # I C Ok, this proposition show that I N Z C Z is a non-zero ideal.
Definition. Given I C Ok an ideal, then {a1,..., oy} is called an integral basis of I if

a; € I and every element of I has a unique representation as an integer linear combination
of the «;.

8.4 Theorem. Every non-zero ideal I C Oy has an integral basis. More specifically, if

{wi,...,wn} is an integral basis for Ok, then there exists a;; € 7, a; € 77" such that
{ai,...,an} is an integral basis for I and
ail PN
03] . . w1
| a21 az2 :
o, : : .0 W
Anl Anp2 ... QAapn

Proof. From Proposition 8.3 there exists a € I N 77 in particular, for any w € Ok,
aw € I. We shall use this fact throughout the proof. We thus inductively define a;; as
follows:

e Letaj; € Z' be minimal such that aj,w; € I; set ag := ajiwi.

* Letas € Zand az € Z* minimal such that as := asjw; + azews € I. Again, such

an «y exists since a(w; + ws) € I.

* In general, let o; := ajiw1 + a;_1ywi—1 + - + aw; € I withay; € Z" minimal.
Let A = (a;;) which satisfies the requirements; it remains to show that {a1, ..., a,} isin
fact an integral basis. Since {wy,...,w,} is a basis for K/ Q and det(A) # 0, {cv1,...,an}
is as well.

Now, let 8 € I be arbitrary. Since {ws,...,w,} is an integral basis for O, get b; € Z
such that 8 = bjwy + - - - + bywy. Write b, = appg + r with 0 < r < a,, and q,r € Z. Then

biwr+ -+ by qwn_1 +rw, =0 —qa, €1
so by minimaliy of a,,, we must have r = 0. Thus
B =biwr + -+ bp_1wp—1 + qannwy ApnWn = Qi + 7

where v € spang{wi,...,wp_1}. Thus byjwi + -+ + bp—1wp—1 + gy =6 — qa, € 1.
The proof follows by repeating the same argument with 8 — ga,. O

Example. Consider I = (7) C Z[v/2]. An integral basis for (7) is {7,7v/2} since 7,7v2 € I
and every element of I is of the form 7(a + b\/2) for some a, b € Z.

8.5 Theorem. If K is a number field, then Oy is a Dedekind domain.

Proof. We verify the three requirements:
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1. Ok is Noetherian. Suppose I C Og. If I = (0) we're done; otherwise, choose an
integral basis {a1,...,ap} for Tand I = (o, ..., ap).

2. Every non-zero prime ideal is maximal. Let 0 # P C Ok be prime. It suffices to show
that | Ok /P| < oo since finite integral domains are fields".

Let {w1,...,wy} be an integral basis for O. Then by Proposition 8.3, there exists
a € ZT NP so that aw; € P. Thus there are at most a™ possible elements in Ok /P.

3. Ok is integrally closed in K. Suppose v € K is integral over Ok, so that 4" +
Q1YL+ + a1y + ap = 0. Note that v € Z[ag, a1, . . ., apn_1,7] = A; it suffices
to show that A is finitely generated as an additive group by Theorem 4.3. Since A is
generated over Z by all o™ - -- a1 'v™, let’s show that only finitely many such
products are necessary. Since a; € Ok, we can take m; < [K : Q]; and, since 7"
is expressible as a product over the a; from its minimal polynomial, we can take

Thus Ok is a Dedekind domain. O

9 PRIME FACTORIZATION OF IDEALS

9.1 UNIQUE FACTORIZATION

9.1 Lemma. Let Q) be a prime ideal in a ring R such that Q 2 Jy --- J,. Then Q O J; for
some i.

Proof. Suppose Ji,...,Jr—1 ¢ Q. Thus get j; € J; fori < r with j; ¢ Q. If a € J,
arbitrary, then j; - - - j,_1a € ¢ so by primality, « €  and J, C . O

9.2 Lemma. If R is a Dedekind domain, then every non-zero ideal contains a product of prime
ideals.

Proof. Let S be the set of non-zero ideals that don’t contain a product of primes;
suppose S # (. Since R is Noetherian, by Proposition 8.1, there exists M € S maximal.
Since M is not prime, get r,s € R\ M with rs € M. But then M; := M + (r) and
My := M + (s) properly contain M and are not in .S, so M; and M, both contains products
of primes. Furthermore, MM, C M so M contains a product of prime ideals, forcing
S = 0. O

9.3 Lemma. Let R be a Dedekind domain, I C R, and K = Frac(R). Then there exists
v € K\ R such that vI C R.

Proof. This is obvious if I = (0), so we may assume I # (0) and let 0 # a € I.
Since I C R, a is not a unit, so % € K\ R. By Lemma 9.2, (a) 2 P, --- P, where P; are
prime ideals; we may take r to be minimal. Let M be a maximal ideal containing I, so
M D12 (a) 2D P --- P, and since M is maximal, M is prime.

“Let R be an integral domain and consider o : R — R by a(x) = zr. This is injective since R is an integral
domain and, since R is finite, it is surjective as well. Thus there exists s € R with rs = 1.
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Without loss of generality, Pi C M by Lemma 9.1; since R is Dedekind, M = P;. If
r=1,setb=1;andifr > 1,letbe Py--- P.. Sety = 3 so that

blgb

1

a(a):R O

1
I PC-P---PC
a

T4 Ta
9.4 Proposition. Suppose R is a Dedekind domain and (0) # I C R is an ideal. Then for
any 0 # « € I, there exists an ideal J C R such that 1.J = («) is principal.

Proof. Set J = {8 € R: B3I C (a)}'. Certainly I.J C (a) by definition, so we need to
show that («) C I.J.

Let B = é[ J. We know B C R is an ideal, so we want to show that B = R. Suppose
not. Then by Lemma 9.3, get v € Frac(R) \ R such that yB C R. Sincea € I, J C B
and vJ C vB C R. Then, fyéIJ = B C R which can be rephrased as (yJ)I C («); thus,
vJ € J by definition of J.

Now since J has an integral basis, it is a finitely generated additive group. But then
since v € K \ R, we cannot have J O 7.J 2 7J? D --.. Thus in fact B = R and the result
follows. O

Definition. If A, B are ideals in R, we say that A divides B and write A | B if there exists
an ideal C such that AC = B.

9.5 Corollary. Let A, B, C be ideals in a Dedekind domain, with C # 0. Then
(i) AD Bifandonlyif A| B.
(ii) If AC = BC, then A = B.

Proof. (i) If A|B, then get C such that B = AC' C A. Conversely, suppose A D B.
This is clear if A = (0); else, let 0 # a € A. Then by Proposition 9.4, get .J such
that JA = (a). Then (o) = JA D JB,so R O 1JB. Let C = 1JB so that
AC =1AJB=B.

(ii) By Proposition 9.4, get I such that C/ = («). Then (o)A = ACI = BCI = (a)B, so
A=B. g

9.6 Theorem. In a Dedekind domain, every proper non-zero ideal factors uniquely into a
product of prime ideals.

Proof. Let S be the set of non-zero proper ideals that cannot be written as a product
of primes. If S # (), let M € S be a maximal. Since M is not prime, so M is not maximal:
thus, let P 2 M be maximal. Since M C P, P|M so there is an ideal C such that M = PC;
since M # p, C # R. C cannot be a product of prime ideals, or M is a product of prime
ideals, so C' € S. But then by maximality of M, M = Cand M = PC = PM,so P =R, a
contradiction.

It remains to show unique factorization. Given I # 0, R,say I = P --- P, = Q1 - - Q.
Then I C Py, so without loss of generality, P, O @1 by Lemma 9.1. Since prime ideals
are maximal, this forces P = )1 so we can cancel to get P --- P, = Q2 - - - Qs and we are
done by induction. O

"From commutative algebra, this is the ideal quotient, denoted ((«) : I).
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Example. Consider the ring Z[v/—5], which does not have unique factorization: 6 =
2-4 = (1++v-5)(1 —+/-=5). In particular, this means that (2) is not a prime ideal:
14++v-5,1—+/-5¢ (2),but6 € (2). We do, however, still have unique factorization:

(2) = (2,1 +vV=5)(2,1 — v/-5)
(6) = (2,1 +v=5)(2,1 —v/=5)(3,1 +V5)(3,1 — vV=5)

9.7 Theorem. R is a PID if and only if R is a UFD and a Dedekind domain.

Proof. (=) Since every PID is a UFD; it suffices to show that R is also Dedekind. This
is left as an assignment exercise.

(<) Let Rbe a UFD and a Dedekind domain. By unique factorization, it suffices to
show that every non-zero prime ideal P is principal. Let 0 # o € P; since P is proper, « is
not a unit. Since R is a UFD, write o = p{* - - - p;* with k > 0. Since P is prime, without
loss of generality, p; € P. Then (p1) C P but (p;) is prime and thus maximal (since R is
Dedekind), so P = (p1) is principal. O

9.8 Corollary. If K is a number field, then O has unique factorization into primes if and
only if Ok is a PID.

Proof. This follows immediately since Ok is Dedekind. O

Example. Consider K = Q(v/—d), for d > 0. For d = 1,2, K is in fact a Euclidean domain;
more generally, we may ask when Ok is a PID. It was conjectured (correctly) by Gauss
that this is true when d € {1,2,3,7,11,19,43,67, 163}.

9.2 RAMIFICATION

Suppose P C Ok is a prime ideal and let 0 # a € P NZ". Write a = p{* --- p¢", so by
primality, some p := p; € P. Then (p) C P,so P | (p); thus, PQ; --- Qs = (p) for some
prime ideals ;. In particular, every prime ideal of O is a factor of (p) for some p € Z.

Furthermore, P cannot be a factor of (p) and (¢) for distinct primes p, ¢ € Z: otherwise,
p,q € Pso 1€ p. Thus p € Z" is the unique prime number such that (p) C P; in this case,
we say that P lies over p.

Definition. Let K be a number field, p € Z" a prime. We say p ramifies in K if there exists
some prime ideal P C Ok such that P?| (p) in Ok.

Remark. By unique factorization into prime ideals, we can write (p) = P;* --- P¢". Then p
ramifies in K if e; > 1 for some i. We say that e; is the ramification index for the prime P;.

We can interpret the idea of ramification in the sense of algebraic geometry. First, let’s
consider a well-known example: consider the map f : C — C be given by z + 2". Then
most points z € C have n distinct preimages - in fact, all of them except z = 0.

In algebraic geometry, since O/ Z is an integral extension of rings, we consider
7 : Spec(O) — Spec(Z) given by p — p N Z. This is a surjective homeomorphism. In
general, if R C S is integral and R is Noetherian, then for any prime P C R, the set of
primes Q C S containing P are precisely those given by 7—!(P). In the number field case,
if K/ L is a finite field extension so that O C Op; then Q C Oy, lies over P C Ok precisely
when @ occurs in the prime factorization of POy, If we take K = Q, then O = Z and we
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consider prime ideals (p) C Z. As we will see shortly, for most points, 7~1((p)) consists
of distinct prime factors; the question of checking if p is ramified is searching for points
where this is not true.

9.9 Theorem. Let D = disc(K) and p € Z". Then p is ramified if and only if p | D.
Proof. (=) Get P such that P? | (p); let (p) = P?Q. Note that PQ # P?Q since P is
proper; thus, let « € PQ \ P2Q. In particular, o ¢ Ok but a? € P?Q? C (p) so % € Ok.

Thus if 8 € Ok is arbitrary, then % € Og. Note that Tr((af)?) = pTr (%), SO
p+ Tr((af)P) and

Tr ((af)P) = (Z Ji(aﬂ)) =Y ai(aB)’ +py = Tr((af)?) + py
=1

=1

for some v € Ok. Thus p | Tr(a)P, so p | Tr(ap).
Let {w1,...,wy} be an integral basis for K so that & = ajw; + - - - + a,w, for a; € Z.
Since & ¢ Ok, without loss of generality, p f a1. Note that p | Tr(ow;) for any i and

n
Tr(aw;) = Tr((ajwr + - - - + apwn)w;) = Z a; Tr(w;w;)
j=1

Tr(wiwy) -+ Tr(wiwy)
D = disc(K) = det . :
Tr(wpwi) -+ Tr(wpwn)

so that by standard matrix manipulation preserving the determinant,

a; Tr(wiwr) -+ ag Tr(wiwy)
Tr(wowi) -+ Tr(wowny)
a1 D = det . ' i
Tr(wpwi)  --- Tr(wnwn)
o Tr(wiwy) --- Y00 Tr(wiw,)
Tr(wows ) e Tr(wawn,)
= det . '
Tr(wpwi) e Tr(wpwn)

and p | a1 D. Since pta;, p | D.
(<) This implication is beyond the scope of this course. O

Example. Consider Z[/3] = Ok. Since disc(K) = 12, we see that (3) = (v/3)? indeed
ramifies.

10 NORMS OF IDEALS

Definition. Let (0) # I C Og. Then we define norm of I to be | Ok /I|, and write Ng([)
or N(I) or || I|| when the context is clear.
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Remark. Equivalently, N(I) = [Ok : I] since I C O is an additive subgroup.

10.1 Theorem. Let K be a number field, I C Ok and let {c, ..., oy} be an integral basis

for I. Then

| disc(aq, ..., an) 1/2

N{) = disc(K)

Proof. Let’s first show that this quantity does not depend on the choice of integral
basis. Suppose {a1,...,a,} and {51, ..., B, } are choices of integral bases for I. Then if P
is a change of basis, P € GL,(Z), so det(P) = %1.

It thus suffices to do this with the integral basis as in Theorem 8.4. Fix {w1,...,w,} an
integral basis for O, and let

ail 0 e 0
. . aq w1
A — az; a2 t- : : 4 :
0 o wn,
anl1 AaAp2 ... Qapn
so that
disc(aq, ..., an) = det(A)? disc(wy, . . . ,wp)
Thus,
disc(aq,...,an) 9
disc(K) = (@1 ann)

Thus we need to show that N(I) = []""_ a;;. Let’s show that every element of O /I has
a unique representation as rjwy + - - - + rpw, where 0 < r; < a;.
Firstlet v € Ok be arbitrary and write y = > bjw;.
e Write b, = ¢pan, + 7, Where 0 < r, < an, and set v, = v — gpn.
* Let ¢,—1 denote the coefficient of w,_1 in v, and write ¢,—1 = gn—1an—1,n—1 + Tn—1,
and set Tn—1 = Yn — gn—-10n—1.
Repeating the above process, we note that

rwi 4 rwn =7 — (@1 + -+ gam)

and since > ; giov; € I, v has a representation in the desired form.
Furthermore, such a representation is unique: suppose

riwy + - rpwn = S1wi 4 -+ Spn (mOd I)

where 7, s; < a;;. Then since {a, ..., o, } is an integral basis for I, we have

t1a11 0 e 0

w1
n n .

. | taaor  toags .
(ri —si)wi =y tioy = ) )
i=1 i=1 : : 0 Wn
tnanl tnanQ cee tnann

But then comparing coefficients starting at the last row, since |r; — s;| < aj;, we have
tp, = -+ =1t1 = 0so that r; = s; for all . O
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10.2 Corollary. Let K be a number field, I = (o). Then N(I) = |N(c)|.

Proof. Let {w1,...,wy} be a basis for O so that {aw;,...,aw,} is a basis for I. Let
o1,...,0p be the embeddings of K — C. Then

oi(awr) ... o1(awy) o1(a) o1(wi) ... o1(wy)

on(awy) ... op(owy) on(@) on(wi) ... op(wn)

so that disc(awi, . ..,aw,) = N(a)?disc(wy,...,w,). Then N(I) = |N(a)| by Theorem
10.1. ]

Remark. In the sense of the previous two propositions, we see that N (I) is a generalization
of norms of elements.

10.3 Theorem (Fermat). Let K be a number field, P C Ok a prime ideal, o € Ok, and
Pt (). Then oN®)~1 =1 (mod P).

Proof. Since Ok /P isafield, so (Ok/P)* is a group with size N(P) — 1. Then P { («)
if and only if o ¢ p and the result follows by Lagrange’s theorem. O

10.4 Proposition. If I C Ok is an ideal, then N(I) € I.

Proof. Consider the element 1 + I € Ok/I. Since |Ok/I| = N(I), by Lagrange,
N(A+1)=N(I)+1=0,s0N(I) el O

10.5 Corollary. If K is a number field and a € 7, then there are only finitely many ideals
I C Ok with N(I) = a.

Proof. If I C Ok is anideal and N(I) = a, thena € I. Thus (a) C I so I | (a); since we
have unique factorization of ideals, there are only finitely many such I. O

Example. Which I C Z[i] have norm 5? Note that 5 = (1 + 2¢)(1 — 21) is a factorization
into primes, since if N(I) = 5, then I = (1 + 2i)%(1 — 2i)" for a,b € {0, 1}. Thus one can
verify N(I) = 5ifand only if I = (1 4 2¢) or I = (1 — 2i).

10.1 THE IDEAL NORM IS MULTIPLICATIVE

Definition. If B,C C Ok are ideals, we say D C Ok isthe ged of B,C'if D | B, D | C and,
whenever E|B and E|C, we have E' | D. We also say L =C Ok isthelemof B,C'if B | L,
C'| L, and L is minimal with this property.

Remark. One can see that the gcd and lem both exist and are unique by factorization of
ideals into primes. Alternatively, in light of Corollary 9.5, ged(Z, J) = I + J is the smallest
ideal containing both I and J, and lem(Z, J) = I N J is the smallest ideal contained in I
and J.

10.6 Lemma. Suppose B,C' C Oy are non-zero ideals. Then there exists « € B such that
ged (QB), C’) =1
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Remark. This makes sense since if « € B, then (o) C B and B | («).

Proof. 1If C' = Ok, choose any a € B. Otherwise, write C = [[;_, P{* as a product of
prime ideals. If r = 1, then C' = P°. Let &« € B \ BP be arbitrary, so that

i (9.7) <

Suppose for contradiction m > 1; then, P + % so (a) = B% = BPE C BP so that
o € BP, a contradiction.
Now suppose r > 1; then by the r = 1 case for any m € {1,...,7}, set

'
. (6%
B, :=B—" am € B, st ged (;:),Pm) =1 Oé:;ai

In particular, since B O B;, a; € B for any ¢ so that « € B. Furthermore, for i # m,
o; € B; C BP,,.

Let’s show that o ¢ BP,, for any m. If « € BP,,, then since o; € BP,, for i # m, we
have oy, € BP,,. Thus BP,, + (o) and By, + (o) by assumption so that P, + % and
% - %. Thus BP; - - - P, (a,;,). But then since %’%’PT =P, Pn—+ %, contradicting
the choice of a,.

Now suppose gcd (%, C) # 1. Then there exists m such that P, + %, so BP,, | (a)

and « € BP,,, a contradiction. Thus the result follows. O

10.7 Lemma. Suppose B,C C Oy are non-zero ideals. If o = 0 (mod BC) and

wa(9.0) -1

then 8 =0 (mod C).

Proof. Since af € BC, BC + («)(B) so that C + %(6). Since ged (%‘), C’> =1, we
have C'| (8)so 5 € C. O

10.8 Theorem. If B,C C Ok are non-zero ideals, then N(BC) = N(B)N(C).

Proof. By Lemma 10.6, get a € B such that ged (%, C) = 1. Let B1,...,Bn(B) € Ok

and 1, ...,vn(c) € Ok represent the distinct classes in Ox/Band Ok /C respectively.
Let’s show that 3; + ay; represent the distinct classes in O /BC, which would give the
result N(BC) = N(B)N(C).

Let’s first see that 3; + a-y; are distinct mod BC' and suppose

Bi+av; =B +ay (mod BC) <= f; — By =a(y—v) (mod BC)

Thus since BC' C B, the congruence also holds mod B. Then sincea € B, 3; — 8, =0
(mod B) and i = k. Asaresult, 0 = oy, — ;) (mod BC), so by Lemma 10.7,y; —v; =0
(mod C)and j =I.

Next, we need to show if w € Ok, then there exists i,j such that w = 8; + a;
(mod BC). Let i be such that w = ; (mod B). Then w — §; € B = ged((«), BC) =
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(a) + BC so that w — 5; = aa + b for some a € Ok and b € BC. Let j be such that a = ;
(mod C). Then

w=Bi+ay+afla—y;)+b
witha € B,a —; € C. Then a(a — ;) € BC and b € BC, sow = f; + ay; (mod BC).00

Remark. Note that N(I) = 1 if and only if I = Og. If [K : Q] = n and P is a prime
ideal, we already showed P | (p) for some prime p € Z. Factor (p) = PJ and since the
norm is multiplicative, N((p)) = N(P)N(J) so N(P) = p/ for some 1 < f < n. We write
f(Plp) := f. If N(I) is prime, then [ is a prime ideal (though the converse is not true!)

11 CLASS GROUP

Fix Ok and let I, J C Ok be ideals. Define an equivalence relation ~ on the set of ideals
of Ok by I ~ J if there exists «, 5 € Ok such that («)] = (5).J. One can verify that this is
indeed an equivalence relation.

Definition. The class group of K is C1(Of ) is the set of ideals modulo the above equivalence
relation, where the group operation is multiplication of ideals. We define the class number
hi :=|Cl(Ok)|.

11.1 Theorem. If K is a number field, then there exists a constant C'i such that for all
0 # A C Og ideal, there exists a € A such that |N(«)| < CxN(A).

Proof. Let {wi,...,w,} be an integral basis for Ok and let ¢ := | N(A)'/™]. Consider
all elements of Ok of the form cywy + - - - + ¢pw, where 0 < ¢; < t. There are (¢t + 1)" such
elements where (¢ + 1)” > N(A); thus, by the pidgeonhole principle, there exists some
p1 # P2 so that 1 = B2 (mod A). Set = 51 — B1 € A; then, a = tywy + - -+ + tpwy, with
|ti] <t. Then

IN ()| = Htla] (w1) + -+ thoj(wn)

(] - Joj(wn)] 4 - - 4 [tn] - o(wn)])

<t [[oj(wn) + - +loj(wn)]) < N(A)Ck
j=1

where Cx = [[}_, (Z?Zl lo; (wl)|) depends only on K. O

Remark. This bound is not very good; we will later show that much better bounds are
indeed possible.

11.2 Theorem. If K is a number field, then the class number hx < oo.

Proof. By Corollary 10.5, it suffices to show that that every ideal class contains an ideal
with norm at most C.
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Let 0 # I C Og; then, get 0 # A such that /A is principal. By Theorem 11.1, there
exists 0 # « € A such that [N((«))] < CxN(A). Since a € A, it follows that («) C A, so
() = AB for some B. Thus, in the class group C1(Of), wehave A = [~ and B = A},
so B = I in Cl(Ok). Since AB = («a), N(A)N(B) < CxkN(A),so N(B) < Ck. In other
words, B and I are in the same class and N(B) < Ckg. O

11.1 COMPUTING AN IDEAL CLASS GROUP

Last time, we showed every ideal class has a representation of norm at most Ck; this
yields a general procedure for computing the class group, assuming we have a bound M
of C K-

1. Take a bound M for Ck; for example, we may take M = /| disc(K)|.

2. From the proof of Theorem 11.2, it suffices to consider ideals with norm at most
M. Since I = [ P is a factorization, the primes P with N(P) < M will generate
Cl(Ok).

3. Since N(P) € P by Proposition 10.4, P lies over a prime p with p < M. Thus P C (p),
so every such prime will arise as a factor of (p) with p < Ck.

Example. Consider C1(Q(v/—23)), so Cx = /23 < 5. Thus we need ideals with norm a
most 4, so it suffices to consider (2), (3). From a homework assignment, we know that

1+ﬁ>< 1—\/—73>

2
’ 2

2,

( g
- (1) 22

Q/

is a factorization into primes, so that all the ideals of norm at most 4 are products of
the above primes. We will write I ~ J if I = J in CI(K). Note that PP’ ~ (2) so that
P' = P71, similarly, Q" = Q. Furthermore, one can verify that

PQ = (6,21_\/_723,3<1_\/_723> , <1_‘/_723>2>

2 2 2 =(6)

so P = Q! and Q ~ P'. An analoguous computation shows P'Q)’ ~ (1) so Q' ~ P. We

now have
V=2 — V=2
N 3+ 3 —8—N 3 3
2 2
and these two ideals are distinct. Since p is not principal b/c there is no principal ideal of
norm 2. Similarly, p’ is not principal. Since we know there are at last two distinct principal

ideals of norm 8, we must have p, p’ not principal. Thus p3, p’® are not principal, so p® ~ 1
and p has order 3 in Cl(K).
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12 QUADRATIC RECIPROCITY

Suppose we wish to solve the equation 2 + bz + ¢ in F,,. After completing the square, this
reduces to the question of solving 72 = a (mod p). Is there a nice way to determine when
a is a square mod p?

Definition. We define the Legendre symbol by

<a> )1 ais asquarein[F),
p) | =1 :otherwise

Let H, be the set of squares in (Z,)*. On a homework assignment, we showed that
[(Zyp)* : Hp] = 2; in particular, (Z,)* /H, = Z,. In particular, if a, b are not squares, then
ab is a square; if a is not square and b is square, then ab is not square. This observation is

Said another way, the map ¢ : (Z,)* — Zy with a — (%) is a homomorphism with
ker ¢ = H,,.

More generally, since (Z,)* is cyclic, let & € (Z,)* be a generator. Then the map
0(Z,)* — Zy—1 given by of — k is a group isomorphism. To summarize, the following
diagram commutes

X

(Zp)* =225 H,

b

2
Zp— EinC UG Zp

Thus 2Z,—1 = ker(¢)) where ¢ : Z,_1 — Zy is the map a — a - (p — 1)/2; this map lifts to a
map ¢* : H, — {—1,1}. In particular, taking a = —1, we have that

(—1)_ 1 p#3 (mod4)
p/) |-1 p=3 (mod4)
Let’s record this as a proposition:

12.1 Proposition. Let p be prime.

(-1 )1 p#3 (mod4)
W <p> B {—1 p=3 (mod 4)

0 (3)-6)0
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Let’s view (Z,)* = Gal(Q({y)/ Q). Let p* = (—l)pT_lp, H,, denote the squares in (Z,)*,
and K, = Q(y/p*). Then Q((,)» = K, and H, = Gal(Q({,)/K,) by the fundamental
theorem of Galois theory Theorem 3.2. In particular,

(q) =1+ q€ H, + o,fixesK, < Ok/P =F, (12.1)

p
Given a € (Z,)*, let 0, denote the Galois group element o, : ¢, — (. Let @ denote
any ideal of Z[(,] lying over ¢, so o4 acts on Z[(]/Q by

=1 p—1 ' =1 \1
(E06) S - (520
i=0 i=0 i=0

since Z[(p]/Q has characteristic ¢. Thus for all & € Z[(,]/Q, 04(c) = a?. We say that o4 is
the Frobenius map associated to ¢, and write o, = Frob, € Gal(Q(¢,)/ Q). The reasoning
behind this name is that Z[(,)/Q / Z/(p) = Fp, so Z[(p]/Q is a an extension of finite fields,
and the map o, induces the Frobenius map on this extension.

In particular, since K,/ Q is also Galois, o, = Frob, in Gal(K,/ Q) as well. One can
show that Frob, is the unique map up to conjugacy since the Galois group acts transitively
on the primes lying over p.

Now let P C Ok,; note that 0, = id |gay(k,, @) if and only if Ox/P = F,. From a
homework assignment, this happens if and only if (¢) C K, is not prime. Thus combining
with (12.1), we have that

(1)1 — ymmamn ) = (£)

Thus we have proven

12.2 Theorem (Quadratic Reciprocity). Let p, q be distinct primes. Then

q p* . p* p=1.g-1 (D
= | = — | oreguivalentl — ) =(-1)7z = (=
<P> ( q ) I 4 ( q ) ( ) <Q>

Example. A good way to illustrate the computational power of quadratic reciprocity is

through an example:
17\ 113\  [11\ (17
() = () = () - (51
(6  [2 3
~(1) =) (1)
(3)--(5)
=—(=)=-(=—)=1
3 3
Remark. Let G = Gal(Q((p)/ Q) = (Zp)*. If q is prime, we say o € G is Frob,, if, given @
lying over ¢, o(a) = a? (mod @). Which elements of G are of the form Frob, for some ¢?
The perhaps surprising answer is that for every q, this happens infinitely often. In fact,
this is a way of rephrasing Dirichlet’s theorem for primes in arithmetic progressions.

This fact generalizes to all Galois groups, and is called the Chebotarev density theorem.
One consequence: if K is a number field, then {p € Z : p splits completely in Ok }.
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13 FERMAT’S LAST THEOREM

13.1 Theorem (Fermat’s Last). If p > 3 is prime and p { x,y, z for x,y, z, € Z\{0}, then
P 4+ yP # 2P

Definition. We say that p is regular if p { hq((,)-

The goal of this section is to prove Fermat’s last theorem for regular primes. The key
observation is that if p is a regular prime, if 7 C OQ(CP) is ideal with I? is principal, then I
is principal as well.

13.2 Theorem (Hilbert Class Field). Let K be a number field; then there exists a number
field L such that L/ K is normal and Gal(L/K) = Cl(Ok). Such an L is called the Hilbert
class field.

In particular, this has the property that for every ideal I C Ok, IOy, is principal in Oy..
Definition. We say p is a regular prime if p { hoc,)-

13.3 Lemma. Let { = (. Then in Z[(],
(i) the elements 1 — (,1 —¢2,...,1 — (P! are associates.
(ii)) 1+ (is a unit
(iii) There exists u € Z[¢]* so that p = u(1 — ¢)P~! so that (1 — ) is the only prime ideal

dividing (p).
Proof. (i) Consider 1= = 1+ ¢+ + (77! € Z[¢]. As well, 1= = 1;<£f € Z[(]
where jk =1 (mod p). Thus 1 —(,...,1 — (P are associates.
(ii) Wehavel—{—(— — ,sol+§15aumt
C
(iii) Recall that
p—1
Lzttt =]]x- )
j=1
SO
p—1
=[[a-¢)=0-¢0 H -ort
j=1
where u = [[2; 11 _%J € Z[¢]* from (i). O
13.4 Lemma. If u € Z[(]*, then % is a root of unity.
Proof. Let o € Gal(Q(¢)/ Q). Then ¢(¢) = ¢* for some a, so o(¢) = (% = (). Thus

for any such o,

HOIRMOUOR

so all the conjugates of = have complex norm 1. One can show that if « is an algebraic
integer and all its conjugates have norm 1, then « is a root of unity. O
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13.5 Theorem (Kummer). If p > 3 is a reqular prime and p t z,y, z for z,y, z,€ Z\{0},
then aP 4 yP # 2P.

Proof. Recall from a homework that the roots of unity in Z[(,] are =¢7. In Z[(], 2P =
2P + P = [[Pog(x + (y).

Let’s show that the ideals (x + (7y) are relatively prime. To the contrary, suppose p is a
common prime factor of (z + ¢7) and (z + ¢?'y). In particular, p is a prime factor of

(z+CTy) = (z+ ¢Ty) = (Tl = 7)) = (1 = Q)

and (y(1 — ¢)) + (yp) from (iii) in Lemma 13.3. Thus, p + (yp); but also, p + (zP), a
contradiction since (2%), (yp) are coprime.

Since the (z + y¢?) are coprime and H?;é (z + y¢?) = (zP) is a p™ power, we must
have each (z +y¢7) = I7. Since p t hg() and I} is trivial in C1(Q(¢)), we have that I; is a
principal.

Fix j = 1, and we have (z+(y) = ()P so that for some ¢t € Z[¢] and u € Z[(]*, z+(y =
utP. Writet = bg + b1 +-- -+ bp,QCp_Q; then modulo (p), we have t? = by + b1 + -+ + bp_2
(mod p). Butthen? = by + -+ +b,_2("!, s0% =by+ -+ + bp_2 (mod p) and t* = "
(mod p). From Lemma 13.4, we have that £ = +(7 for some j. Let’s treat the case +-¢/ = (7,
so that

z+y¢ = ut? = Jut? = Jut’ = Iz + Cy)

and
z+yC -yt —x¢/ =0 (mod p) (13.1)

But now,

ZICY/ (p) = Zlz) [ (p,aP~' 4+ 2 + 1)

Z
Bpla]/(ap~ ' 4 4 x4 1) = Fpla]/(z — 1)P!

so, modulo p, 1,¢,¢2,..., (P2 form abasis. If j ¢ {0,1,2,p— 1}, then (x) contradicts linear
independence. (Incomplete?) O

14 LATTICES AND MINKOWSKI’'S THEOREM

Definition. A lattice is an abelian subgroup A of R" such that A = Z".

Example. If [K : Q] = n, then O is a lattice in K = Q" C R". O is a lattice since it has
an integral basis.

Example. Consider C = R?, and let 7 be in the upper half plane. Then A = Z$ Z 7, and
C/A =T is the torus. In a sense that can be made precise, 7 is an elliptic curve, and every
elliptic curve arises like this.

Choose a basis {1, . .., a,} for A; this basis is also an R —basis for R". If {a,...,a,}isa
basis for A and {af, ..., a},} is a basis for A, then we have a change of basis matrix
o ay
. — P
ay, an
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Since P € GL,(Z), det P = £1. Thus, we can define the volume of A to be
d(A) = |det(aq, ..., an)]
which is independent of the choice of matrix by the above observation.

14.1 Theorem (Blichfeldt). Suppose A C R" isa lattice, m € Z and S C R™ with Lebesgue
measure (1(S). Suppose pu(S) > md(A) S is compact if equality holds. Then there exist distinct
T1y.e., Tm41 € S such that Ty —Tj € A.

Proof. Let av1,. ..,y beabasis for A. Let P = {37 | 6;0; | 0 < 0; < 1}, so thatu(P) =
d(A). Foreach A € A, let R(\) ={v € P| A+ v € S}. Then

> (RO = p(S) > mu(P)

AEA

If S is not compact, then there exists vy € P which occurs in at least m + 1 of the R(\)’s.
If instead S is compact, for any €, > 0, get v,, € P(1 + ¢,) which occurs in at least m + 1
of R(\)’s. This sequence has a convergent subsequence with limit 1y which has the same
property.

Let A1,..., A4 distinct such that if v € R()\;), then z; = A\; +vp € S. Thenz; — x; =
Ai — )\j € A. O

14.2 Theorem (Minkowski). Let A C R" be a lattice, m € Z*, S C R" convex and
symmetric about the origin. Suppose ;1(.S) > m2™d(A) with S compact if equality holds. Then
there exist m pairs (A1, —A1), ..., (Am, —Am) with A; € A\ {0}, A\j € S.

Proof. Either 1(S/2) > md(A) or pu(S/2) = md(A) and S/2 is compact. Thus by
Theorem 14.1, there exist 1, ..., Zm4+1 € S such that z;/2 — /2 € A. Order these x; such
that z1 > x9 > - -+ > 41 where we say z; > x; if the first non-zero coordinate of x; — x;
is positive. Take \; = x;/2 — 2,,41/2. By choice of ordering, the +); are distinct. Since S
is symmetric, —z,,,+1/2 € S. Since S is convex, \; = x;/2 4+ (—zm+1)/2 € S. O

Remark. The bound is sharp: consider S = {(z1,...,2,) € R" : |21| < m, |z;| < 1}. Then
p(S) = m2" = m2"d(Z") and S contains exactly m lattice points.

14.1 EMBEDDING Ok IN R"

Suppose [K : Q] = n so that K = Q(¢). Let 0y,...,0, < C be the embeddings, so
r1 is the number of real embeddings {01, ...0,, } and r; pairs of complex embeddings
{00415 Fr1 415 - -+ s Orytrgs Oy 41y 1 With these embeddings, we can define o : K — R" by

am (o1(a),...,00 (a),Reop11(a), Imoy, 11(a),. .., Re oy 1 (@), Im oy 17y ()
Equivalently, we say o : K — R™ x C™ given by

ar (o1(@), ..., 00 (@), 0r11(a), ..., 0r 4y ()

and these are equivalent by identifying R*"2 22 C" as vector spaces. We call this embed-
ding the Minkowski embedding.
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14.3 Lemma. Let A # 0 be an ideal of Ok. Then o(A) is a lattice A C R" and d(A) =

272 /| disc(K)|N(A).

Proof. Letaq, ..., o, be an integral basis for A. Let D be the determinant of the matrix
whose ith row is
oi(a1) ... on(a1) Reopyi(ar) -+ Imoy iy ()
DO — : . .
o1(an) ... op(an) Reopyi(an) -+ Imoy i, (an)

From Theorem 10.1, we know det(o;(a;)) = +/|disc(K)| - N(A). Using the fact that

Reo = 752 and Im o = %57 combined with elementary row operations, we have that

Do = (}Zi)m det(cj(c;)). In particular, since Dy # 0, A is a lattice and d(A) = Dy. O

14.4 Theorem. If A is a non-zero ideal in Ok, then there exists 0 # o« € A such that

IN(a)| < (2) /Tdisc(L
Proof. Givent € RY, let
Sy = {(xl,...,xn) eR":|z;| < t,i=1,...,m,
$$1+2j+1 +$21+2j+2 <t%j=0,...,r2— 1}-

Sy is clearly convex and symmetric, and x(S;) = 2" 7"2t". Define

= ((2)" Vi)

so that .
2"t = 2" — /| disc(K)|N(A)
r

o

We now apply Theorem 14.2 with m = 1 and Lemma 14.3 to get 0 # a € A such that
o(a) € Si. Then

1 T2
|N(a)| = HO’(O&Z') ’ HO-iJer (a)0i+r2 (a) < 75T1+2T2 ="
=1 =1
since o(a) € S;. Thus, |[N(a)| <" = (2) /| disc(K)[ - N(A). 0

The following corollary is then immediate.
14.5 Corollary. Cx < (2)" /| disc(K)].

14.2 FOUR SQUARES THEOREM

14.6 Theorem. Let p be an odd prime. Then the following are equivalent:

(i) (—71) =1
(ii) p=1 (mod 4)

(iii) there exists x,y € Z such that p = x> + y°.
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Here’s a proof of this theorem using the algebraic tools we have developed so far.

Proof. (i < i) This is Proposition 12.1.

(7¢ = di7) Since (%) = 1, (p) splits in Z[i] so that (p) = PQ in Z[i], where P, (Q are
primes. Then p? = N(p) = N(P)N(Q) and N(P) = p. Since Z[i] is a PID, P = (a + bi) so
that p = N(P) = a® + b°.

(t3¢ = 1) The squares modulo 4 are 0 and 1, and since p is odd, we see that p = 1
(mod 4). O

We can also see the hard implication (i = #i¢) using Minkowski’s Theorem:

Proof. (ii = iii) Getl € Z such that I> = —1 (mod p). Let A C R? be the lattice
with Z —basis (1,1) and (0,p), so that d(A) = p. Let S be a disc with radius r; then
w(S) = mr? > 22%p. Setr = 24/p/m.

By Minkowski Theorem 14.2, S contains a non-zero lattice point m(1,1) + n(0,p) =
(m,ml + np) € S; in particular, 0 < m? + (ml + np)? < r? < 2p. Then,

m?+ (ml+np)?=m?+ (ml)?=m?(1+1®) =0 (mod p)
som? + (ml + np)? = p. O

Remark. 1f a;,b; € Z,then (a3 +b?3)(a3+b3) = 3 +c3. To see this, a := a+a3 = N (a1 +iaz)
and b := b2 + b2 = N(by + iby). Then ab = N(2?) = ¢ + c3 where z = (a1 + iaz)(by + ibz).
In particular, if n = [ p; where p; = 1 (mod 4), then n = 2% + y*. In fact, you can prove
n = 22 + y? if and only if the prime factors p = 3 (mod 4) occur to even exponents.

14.7 Proposition (Euler’s Four Squares Identity). We have
4 4
() (3] -2
i=1 i=1 i=1
where
C1 = a1b1 — a2b2 — a3b3 — a4b4
co = a1bg + asby + agbs — asbs

c3 = a1bs — azby + azbi + asbs

¢4 = a1bg + asbs — azbs + asby

Proof. You can compute this directly or recall that the norm on quaternions is multi-
plicative and proceed as in the preceding remark. O

14.8 Theorem (Four Squares). If n € 7, then there exists z,y, z,w € Z such that n =
x2+y2+22+w2.

In light of the four squares identity Proposition 14.7, it suffices to show that primes are
sums of four squares.

Claim 1. If p is prime, then there exists x,y € Z such that 2> + y* = —1 (mod p).
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Proof. If p = 1 (mod 4), then (%) = 1 and we may take y = 0. Otherwise, we

suppose that (%) = —1. Equivalently, we want to solve y*> + 1 = —z? (mod p).

Note that
ptl

2
((p — 1)/2 squares, plus 0)) and y? + 1 # 0 since (‘71) = —1. Thus y? + 1 takes (p + 1)/2

non-zero values; since there are only (p — 1)/2 non-zero squares, so y* + 1 must be non-
square for some y = yo. Then —(y + 1) is a square modulo p; that is, there exists x such
that 22 = —(y3 + 1) (mod p), as required.

{y*+1|yeFp} =

We can now prove the theorem.

Proof. Given p prime, choose a, b € Z such that a? + > = —1 (mod p). Consider the
lattice A C R* with basis

{(17 07 a, b)7 (07 17 b7 —CL), (0707p70)7 (0707O7p)}

such that d(A) = p?. Let S be a ball of radius 7, and u(S) = 72r*/2. Let r? = 4p/7v/2, so
u(S) = p?. By Minkowski Theorem 14.2, S contains a non-zero lattice point (z,y, z, )
with 0 < 22 4 32 + 22 + w? < r? < 2p. Note that (z,y, z,w) = avy + Bva +yv3 + dvs. Then
r=qa,y=p0,2z=ax+bs+ py, w=ba—af + pd. Modulo p, we see that

? +y? + 22wt =27 + P+ (ax + by)? + (b — ay)?
= 2% + y° + a®2? + b2y + b2 + aPy?
=(1+a*+0)2* + (1 +a®+03)y* =0

since a® + > = —1 (mod p). Thus the result follows. O

14.3 DIRICHLET UNIT THEOREM

Our final application of Minkowski’s theorem is a generalization of the classification of
units in a quadratic number field Theorem 5.7 to any number field.

14.9 Theorem (Dirichlet Unit). If K is a number field with r real embeddings and 2r;
complex embeddings, then Oy = Uy x Z""2~1 where Uy is the set of roots of unity in K.

Let : K — V :=R" x C™ be given by
am (o1(a),...,00 (@), 0r41(a), ..., 0r 4o (@)

where 01, ..., 0, are the real emebddings and o, 11, ...,0,, 4+, are the complex embed-
dings. Let N : V' — R be given by

1 r1+r2

2

N<x17‘"5$T172T1+17"'a21“1+7'2) :Hxl H |ZZ|
=1 i=r1+1

N is chosen so that N(0(«)) = Néf (o). Furthermore, V is a ring with coordinate-wise
operations; in particular, it has units V* = (R*)™ x (C*)"2. Set

Gi={veV* |N@u)| =1}
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so that G is a subgroup of V' *. G is also closed as a topological space since it is the inverse
image of 1 under the continuous map v — |N(v)|. Define

U= 0(0%) = 0(0k) NG

In particular, (O ) C V is a lattice (identifying C = R?), and U C G is a discrete group.
In order to understand O};, we want to understand the group U. A natural way to do this
is to transform the multiplicative structure on U to an additive structure via the “log map”

L:V* — R given b(z;; z;) — (log |z;];2log |2])

This is a surjective continuous group homomorphism; as a straightforward exercise, one
can show that L(G) = R™ %271, We have the following diagram summarizing these
constructions:

G/U -5 L(G)/L(U)

d T

G L L(G) — = Rntr2l
| |

U L(U)

In order to understand U C G, by the first isomorphism theorem, it suffices to understand
ker L|;; Claim III and L(U) Claim II. In fact, we claim that L(U) = R We will
prove that L(U) C L(G) is a lattice. Assuming this, it suffices to show that L(G)/L(U) is
compact; and since L is surjective, it is in fact enough to show that G /U is compact Claim
L

ClaimI. G/U is compact in the quotient topology of V* /U .

Proof. Let v € V* be arbitrary; then, multiplication by v is a linear map with matrix
representation M; in particular, det(M) = |[N(v)|. If R C V is any region, then p(vR) =
A(R) - |N(v)];if v € G, then \(R) = A(vR).

Let C C G be any compact, symmetric, convex region with p(C) > 2". Forall g € G,
u(g™tC) = XNC) > 2"A\(0(Ok)). As well, one can verify that g~'C is also symmetric,
compact, and convex. Thus by Theorem 14.2, there exists 0 # a € Ok such that §(«) €
g~ 1C. In particular,

[Nik/q(a)] = [N@(a))] € [N(g~'O)]

Since C' is compact, |[N(C)| C R is also compact and thus contains finitely many
integers. If ay,...,a,, € Ok represent all possible |[N(«a;)| € |[N(C)|, then |[N(a)| =
|N(c;)| for some i, so a € ;0. But then for any g € G, there exists i such that g~!C' N
G(aZOIX() 7é @, SO

gU N 9(04_1)0 # )

Thus G/U has representatives covered by G N J", 6(a;)~*C which is a finite union of
compact sets. Since G/U is closed, we are done.

ClaimII. L(U) C L(G) is a lattice, and L(U) = R™2~1,
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Proof. Want to show that L(U) is a full lattice in R™ "2~ this happens if and only if the
quotient is compact. Recall that L(G) = R™ 271 let B = {(y;) : |yi| < b} be an arbitrary
hypercube. Let’s show that L(U) N B is finite. If L(6(«)) € B, then |o(a)| < €® for some o
real, and |0 ()| < e®/? for some o complex. Then

[Tt - o(e)) e zi1

o

has bounded coefficients. There are only finitely many such polynomials, so there are only
finitely many o and L(U) C L(G) is a discrete subgruop.

Thus L(U) = Z" for some r < r; + rp — 1. Since G/U — L(G)/L(U) is a surjection,
L(G)/L(U) = (SY)" x Rtr2—1-7 g compact, sor =r; + 173 — 1.

Claim III. ker L‘U = UK

Proof. Clearly ker(L) = {£1}" x (S*)"2 is a compact set and (U ) C U Nker(L). Since
U C V* is discrete, U Nker(L) C ker L is compact and, in particular, a finite group. Thus
by Lagrange’s theorem, each « € U Nker(L) has finite order, so in fact U Nker(L) C 6(Uk),
and equality holds. O

Example. To illustrate the definitions explicitly, consider the following case. Take K =
Q(\/i) sothatf: K — V = R?is given by a+by/2 — (a+b\/§, a—b\/§). Then N : R?2 5 R
is given by (z,y) — zy, so G = {(z,y) : xy = £1} is the set of hyperbolas. Note that G is
closed but not compact. In this case, U = 6(£(1 + v/2)%), and U C G is discrete.

Here, we can see that G'/U is compact.

Example. If K = Q(\/;i), thenry = 2,70 =0, pup = {£1} = Z /2 and Of = Zy xZ asin
Theorem 5.7. If K = Q(v/2,v/3), thenry =0, 71 =4, O} = {£1} x Z3.
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