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I. Field Theory in C

1 FIELDS OVER Q

1.1 ALGEBRAIC NUMBERS

Definition. An algebraic integer is a root of a monic polynomial in Z[x]. An algebraic number
is the root of any non-zero polynomial in Z[x]. A number field is a finite extension of Q. If
K,L are fields and K ⊆ L, we say that L is an extension field of K and K is a subfield of L.
We write [L : K] = dimK L, the dimension of L over K.

Example. Equivalently, algebraic numbers are the roots of polynomials in Q[x].
√
−5 is a

root of x2 + 5 ∈ Z[x] is an algebraic integer, and [Q(
√
−5) : Q] = 2. A basis for Q(

√
−5)

over Q is given by {1,
√
−5}.

Definition. If K is a field, then f ∈ K[x] is irreducible if whenever f = gh, g, h ∈ K[x],
then g or h is constant.

1.1 Proposition. Let K ⊆ C is a subfield and suppose f ∈ K[x] is irreducible. Then, f has
distinct roots in C.

Proof. Suppose not and write f(x) = an(x − α)2g(x) in C[x]. Then f ′(x) = 2an(x −
α)g(x) + an(x− α)2g(x), and f ′(α) = 0. Let p be the minimal polynomial of α. Then p|f
so p = f up to a constant. As well, f = p|f ′, a contradiction. □

1.2 FIELD EXTENSIONS

Definition. If K ⊆ L are fields, then we write L/K and say that L is a extension of K. If
K ⊆ C is a field θ ∈ C, then the field K adjoin θ, denoted K(θ), is defined to be the smallest
subfield of C containing K and θ.

Example. Set L := {a + b
√
−5 : a, b ∈ Q}; why is it that Q(

√
−5) = L? Certainly L is a

field: the inverse of a+ b
√
−5 is given by a−b

√
−5

a2+5b2
, which always since a2 + 5b2 is not zero

whenever α ̸= 0. To see equality, let M be any field containing Q and
√
−5. Then if a, b are

both rational, then a ∈M and b
√
−5 ∈M so a+ b

√
−5 ∈M . Thus L is the smallest field

containing Q and
√
−5.

Example. Consider ζ = e2πi/3. Then one can verify that Q(ζ) = {a+ bζ + cζ2 : a, b, c ∈ Q}.

Definition. Let K ⊆ C be a subfield. Then we say θ ∈ C is algebraic over K if there exists a
polynomial f ∈ K[x] such that f(θ) = 0. We say p ∈ K[x] is the minimal polynomial of θ if
it is monic, has θ as a root, and if it has minimal degree. The degree of θ over K is deg p(x).

Example.
√
−5 has minimal polynomial x2 + 5, and ζ has minimal polynomial x2 + x+ 1.

1.2 Proposition (Properties of the Minimal Polynomial). Let K ⊆ C be a subfield, θ ∈
C algebraic over K. Then there exists a unique minimal polynomial p(x) of θ over K. In
particular, the following hold:
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I. FIELD THEORY IN C

1. If f(θ) = 0, p|f .
2. p is irreducible in K[x]

Proof. If p, q ∈ K[x] are both minimal polynomials, then r = p − q has lower degree
and r(θ) = 0. If r is non-zero, let it have leading coefficient c so that r(x)/c is monic. But
then deg(r/c) < deg p and r(θ)/c = 0, contradicting minimality of p.

1. By the division algorithm, write f = pq+ r. If r ̸= 0, then deg r < deg p and r(θ) = 0,
a contradiction by the same reasoning above.

2. If p is reducible, write p = fg where f, g are not constant. Since F [x] is a UFD,
0 = p(θ) = f(θ)g(θ) so θ is a root of f or g, contradicting minimality.

Thus the result holds. □

Remark. Since p is irreducible, p has n = deg p distinct roots in C.

Definition. Suppose θ has minimal polynomial p(x). The roots θ1, . . . , θn ∈ C of p are
called the conjugates of θ.

1.3 Proposition. Let K ⊆ C, θ ∈ C algebraic over K, and let n = deg p be the degree of the
minimal polynomial. Then every element α ∈ K(θ) has a unique representation in the form

α = a0 + a1θ + · · ·+ an−1θ
n−1

where ai ∈ K.

Proof. First note that

K(θ) =

{
f(θ)

g(θ)
: f, g ∈ K[x], g(θ) ̸= 0

}
Set α = f(θ)/g(θ) ∈ K(θ). Let’s first see that p and g are coprime. Suppose not; then there
exists non-constant h ∈ K[x] such that h|p and h|g. Since p is irreducible, h = cp for some
c ∈ K×. Then since h|g, p|g as well and g(θ) = 0, a contradiction.

Since K[x] is a PID and p, g are coprime, there exist polynomials s, t ∈ K[x] so that
sp+ tg = 1. Evaluating at g, we must have t(θ)g(θ) = 1 and

α =
f(θ)

g(θ)
= f(θ)t(θ)

so α is a polynomial in θ. By the division algorithm, ft = pq + r where deg r ≤ n− 1 and
α = r(θ) is a polynomial expression in θ with degree n− 1.

It remains to see uniqueness. Suppose α = r1(θ) = r2(θ) where r1, r2 ∈ K[x] and
deg ri < n. If r1(x)− r2(x) ̸= 0, then deg(r1 − r2) < n. But then r1 − r2 has θ as a root and
deg(r1 − r2) < n, contradicting minimality of p. □

Remark. This says that {1, θ, . . . , θn−1} is a basis for K(θ) over K. In general, when θ is
algebraic over K, K(θ) = K[θ].

1.4 Corollary. Suppose M/L/K. Then [M : K] = [M : L][L : K].

Proof. Exercise. □
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ALGEBRAIC NUMBER THEORY

2 FINITE EXTENSIONS AND EMBEDDINGS

Definition. An injective ring homomorphism ϕ : R→ S is called an embedding. We write
R ↪→ S is the inclusion map.

2.1 Theorem. Let K ⊆ C is a subfield, L/K is a finite extension field. If σ : K ↪→ C is an
embedding, then σ extends to an embedding L ↪→ C in exactly [L : K] ways.

Proof. First, let’s prove the theorem for extensions of the form K(α)/K. Let p(x) =
a0 + · · · + amx

m ∈ K[x] be the minimal polynomial of α over K. Since σ is injective,
K ∼= σ(K) ⊆ C. Let g(x) = σ(a0) + · · · + σ(am−1)x

m−1 + xm, which is irreducible over
σ(K). To see this, if (c0+ c1x+ · · ·+ cux

u)(d0+ d1x+ · · ·+ dvx
v) is any factorization (with

ci, di ∈ σ(K)), then (σ−1(c0) + σ−1(c1)x + · · · + xu)(σ−1(d0) + σ−1(d1)x + · · · + xv) is a
factorization of p(x), so it must be trivial. Now, let β1, . . . , βm ∈ C be the distinct roots of
g(x), and let β := βi be arbitrary. Given an element γ = b0 + b1α+ b2α

2 + · · ·+ bm−1α
m−1

in K(α), let
λβ(γ) = σ(b0) + σ(b1)β + · · ·+ σ(bm−1)β

m−1

One can verify that this is a ring homomorphism which respects σ. Furthermore, there
no other embeddings λ since 0 = λ(0) = λ(p(α)) = g(λ(α)). Thus, λ(α) is a root of g, so
λ(α) = βi for some i. Since λ is a homomorphism, if λ1(α) = λ2(α), then λ1 = λ2, so there
are at most [K(α) : K] embeddings.

Now, the proof follows by induction. If [L : K] = 1, we are done; if [L : K] > 1, get
α ∈ L \ K. From above, σ extends to [K(α) : K] embeddings λ : K(α) → C, and by
induction, any such embedding extends to [L : K(α)] embeddings λ : L→ C. Thus there
are [L : K(α)][K(α) : K] = [L : K] embeddings extending σ, as desired. □

Remark. Our most common use case will be when σ is the identity map on K.

Example. Consider the embedding of Q ↪→ C. If Q(
√
d)/Q, then the two embeddings are

given by
√
d 7→

√
d or

√
d 7→ −

√
d. Note that ±

√
d are conjugates: both are roots of the

minimal polynomial x2 − d.

Example. Suppose K = Q, and L = Q( 3
√
2). Since x3 − 2 is the minimal polynoial of 3

√
2,

its conjugates are 3
√
2, 3

√
2ω, 3

√
2ω2 where ω = e2πi/3. All embedings extend Q ⊆ C are

given by 3
√
2 7→ 3

√
2ωk for k = 0, 1, 2.

2.2 Theorem (Primitive Element). Let K ⊆ L ⊆ C with [L : K] < ∞. Then there θ ∈ L
such that L = K(θ).

Proof. Since [L : K] < ∞, we have L = K(α1, α2, . . . , αm) for some m. By induction
on m, it suffices to handle the case L = K(α, β).

Let {α1, . . . , αn} be the conjugates of α and {β1, . . . , βm} are conjugates of β (over K).
Let c ∈ K× be such that α+ cβ ̸= αi + cβj for any (i, j) ̸= (1, 1) (K is an infinite field, so
such a c certainly exists), and set θ := α+ cβ. Certainly K(θ) ⊆ K(α, β); for the reverse
inclusion, it suffices to show that β ∈ K(θ). Let f(x) be the minimal polynomial of α over
K, and g(x) the minimal polynomial of β over K. Note that β is a root of both f(θ − cx)
and g(x); and by choice of c, there are no others in common.

Let h(x) be the minimal polynomial of β over K(θ). Since β is a root of both f(θ − cx)
and g(x) ∈ K[x] ⊆ K(θ)[x], we must have h|f(θ − cx) and h|g(x), so deg h = 1 and
β ∈ K(θ). □
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I. FIELD THEORY IN C

2.1 NORMAL EXTENSIONS

Definition. Let K ⊆ L ⊆ C, [L : K] <∞. We say L is a normal extension of K if it is closed
under taking conjugates over K.

Example. For example, Q(
√
d)/Q is a normal extension. If α ∈ L, then α = a+ b

√
d. The

conjugate of α is a − b
√
d, which is also an element of L. On the other hand, a classic

non-example is L = Q( 3
√
2)/Q. Then 3

√
2 ∈ L but ω 3

√
2 /∈ L, since ω 3

√
2 /∈ R.

2.3 Proposition. Let K ⊆ L ⊆ C, [L : K] < ∞. Then L/K is normal if and only if for all
σ : L ↪→ C such that σ|K = idK , σ is an automorphism of L.

Proof. Note that σ is an automorphism of L if and only if σ(L) = L.
If L/K is normal, let α ∈ L be such that L = K(α). Then σ : L ↪→ C is specified fully

by σ(α) = αi, where αi is a conjugate of α. But then σ : K(α) → K(αi) is an isomorphism,
and since L/K is normal, K(α) = K(αi) and σ is an automorphism of L.

Conversely, let’s show that L/K is normal. Let α ∈ L, let αi be the conjugates of α
over K: we need to show that αi ∈ L. Let σ(α) = αi extend idK , and by hypothesis, σ is
an automorphism so αi ∈ K(α) = L. □

Remark. Recall that there are [L : K] embeddings that fix K; in other words, σ : L ↪→ C
such that σ|K = idK . The corollary says that L/K is normal if and only if all of these
embeddings are automorphisms. Thus L/K is normal if and only if exactly [L : K]
automorphisms of L fixing K.

2.4 Corollary. Let K ⊆ C, αi ∈ C algebraic over K. Then L = K(α1, . . . , αn) is normal
over K if all the conjugates of αi are in L.

Proof. Let σ : L ↪→ C be an embedding extending idK . If θ ∈ L, then θ = f(α1, . . . , αn)
for f(x) ∈ K[x1, x2, . . . , xn]. Then σ(θ) = f(σ(α1), . . . , σ(αn)) where σ(αi) is some conju-
gate of αi, an element of L by hypothesis. Thus σ(θ) ∈ L so θ ∈ L as well. □

2.5 Corollary. K ⊆ L ⊆ C, [L : K] < ∞. Then there exists a finite extension M/L such
that M/K is normal.

Proof. Get α ∈ L so that L = K(α). Let α1, . . . , αn be the conjugates of α over K. Set
M = K(α1, . . . , αn), and by the previous corollary, M/K is normal. □

Example. Let L = Q( 3
√
2), K = Q. L/K is not normal, but M = Q( 3

√
2, 3

√
2ω, 3

√
2ω2)/Q is

normal.

3 GALOIS THEORY OVER Q

Definition. Let L/K be any finite extension. The Galois group of L/K is defined

Gal(L/K) =
{
σ ∈ Aut(L)

∣∣ σ|K = idK
}

Now if H ≤ Gal(L/K), LH = {α ∈ L : σ(α) = α∀σ ∈ H} is called the fixed field of H .
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ALGEBRAIC NUMBER THEORY

Remark. Recall that |Gal(L/K)| ≤ [L : K], with equality if and only if L/K is normal. As
well, one can verify that LH is indeed a field, so L/LH is an extension. In particular, this
extension has certain properties:

3.1 Theorem. Given K ⊆ L ⊆ C, L/K a finite normal extension. Let G = Gal(L/K). Then
• LG = K
• If H ≤ G and LH = K, then H = G

Proof. We first see that K = LG. Let σ : L ↪→ C be an embedding fixing K. Since L is
normal, σ ∈ Gal(L/K), so by definition of LG, σ fixes LG. But then [L : LG][LG : K] ≤ [L :
LG], so [LG : K] ≤ 1 and LG = K.

Suppose now that LH = K. Set L = K(α) and consider the polynomial

f(x) =
∏
σ∈H

(x− σ(α)) = x|H| − e1x
|H|−1 + · · ·+ e|H|(−1)|H|

where the ei are elementary symmetric functions in the σ(α). If τ ∈ H , then

τ(e1) =
∑
σ∈H

τσ(α) =
∑
σ∈H

σ(α) = e1

since τ ∈ H permutes the σ(α) and e1 is a symmetric polynomial in σ(α). The same
argument holds for any ei, so ei ∈ LH = K for all i; thus, f(x) ∈ K[x]. Since id ∈ H ,
f(α) = 0; and deg f = |H|. Since the minimal polynomial of α over K has degree ≤ |H|,

[L : K] = [K(α) : K] ≤ |H| ≤ |G| = [L : K]

so H = G. □

Remark. Suppose L/K is normal, and L ⊇ F ⊇ K where F is a field. Then L/F is also
normal since conjugates of α ∈ L over F are a subset of conjugates of α over K.

3.2 Theorem (Fundamental Theorem of Galois Theory). Let K ⊆ L ⊆ C, L/K normal,
with L/F/K.

(i) LGal(L/F ) = F
(ii) If H ≤ G = Gal(L/K), then Gal(L/LH) = H .

(iii) F/K is normal if and only if Gal(L/F ) ⊴ Gal(L/K). In this case,

Gal(F/K) ∼= Gal(L/K)
/
Gal(L/F )

Proof. (i) Since L/K is normal, L/F is normal and Theorem 3.1 states that F =
LGal(L/F ).

(ii) Let H ′ = Gal(L/LH). By definition, H fixes LH , so H ≤ H ′ = Gal(L/LH). Since
L/LH is normal and H ≤ Gal(L/LH) has LH as its fixed field, by the previous
theorem, H = Gal(L/LH) = H ′.

(iii) Let H = Gal(L/F ). If σ ∈ Gal(L/K), then σ : F −→ σ(F ) is an isomorphism and
σGal(L/F )σ−1 = Gal(L/σ(F )). Thus,

Gal(L/F ) ⊴ Gal(L/K) ⇐⇒ Gal(L/σ(F )) = σGal(L/F )σ−1 = Gal(L/F )

⇐⇒ σ(F ) = F for all σ
⇐⇒ F/K is normal

5



I. FIELD THEORY IN C

since a field is normal if and only if it is fixed by all its automorphisms.

When this holds, we can compute Gal(F/K). Since σ(F ) = F , we have a well-
defined map Gal(L/K) → Gal(F/K) given by σ 7→ σ|F . The kernel is {σ ∈
Gal(L/K) : σ|F = idF } = Gal(L/F ). Then by first isomorphism theorem,

Gal(F/K) ∼= Gal(L/K)
/
Gal(L/F )

as required. □
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II. The Ring of Algebraic Integers

4 NUMBER FIELDS

We now focus our attention on extensions, in particular finite extensions, of Q in C. A
major example throughout this section are the cyclotomic extensions of Q; many of the
theorems we will prove will provide tools to better understand extensions Q(ζn)/Q. Recall
that α is an algebraic integer if it has a minimal polynomial in Z[x].
Definition. K is a number field if K is a finite extension of Q. The set of algebraic numbers
over Q is denoted Q. The set of algebraic integers is denoted OQ. We write OK ⊆ K =
OQ ∩K to denote the subset of algebraic integers of K.
We can prove Gauss’ Lemma under the observation that Zp[x] is an integral domain.

4.1 Lemma (Gauss). If f, g ∈ Z[x] are primitive (their coefficients have no non-trivial com-
mon factor), then fg is also primitive.

Proof. Suppose f, g ∈ Z[x] are primitive. If fg is not primitive, then some prime p
divides all coefficients of fg. Consider modulo p, so fg = 0. Then f = 0 or g = 0, so p
divides all coefficients of f or g and f, g are not primitive. □

4.2 Proposition. Let α be an algebraic integer. Then the minimal polynomial of α over Q is
in Z[x].

Proof. Let α be an algebraic integer, so there exists h ∈ Z[x] monic such that h(α) = 0.
Let f ∈ Q[x] be the minimal polynomial of α over Q. Then h = fg in Q[x]. Since h, f
are monic, g is also monic. Let a, b ∈ Z so that af, bg ∈ Z[x] and af, bg are primitive
polynomials. Then by Gauss’s Lemma Lemma 4.1, abh = (af)(bg) ∈ Z[x] is primitive, so
ab = ±1, so a, b = ±1 and f, g ∈ Z[x] to begin with. □

A simple observation following from this fact is that OQ = Z.
Example (Quadratic Extensions). Let d be a squarefree integer. Then

OQ(
√
d) =

{
Z[d] : d ≡ 2, 3 (mod 4){

a+b
√
d

2 : a ≡ b (mod 2)
}

: d ≡ 1 (mod 4)

Let α = r + s
√
d, r, s ∈ Q. If s = 0, then α = r ∈ Q, so α ∈ OQ(

√
d). Now consider s ̸= 0.

The minimal polynomial of α over Q is(
x− (r + s

√
d)
)(

x− (r − s
√
d)
)
= x2 − 2rx+ (r2 − ds2)

By α ∈ OQ(
√
d) if and only if 2r ∈ Z, r2 − ds2 ∈ Z.

First, if r ∈ Z, so ds2 ∈ Z and since d is squarefree, s ∈ Z.

7



II. THE RING OF ALGEBRAIC INTEGERS

The other case is r = a
2 , where a is an odd integer. Then ds2 = integer + a2/4, so

s = b/2 where b is an odd integer. Since r2 − ds2 ∈ Z, we need 4 | (a2 − db2). Modulo 4,
a2 ≡ db2, and since a, b are odd, a2 = b2 ≡ 1 (mod 4) and d ≡ 1 (mod 4).
Remark. Notice in the preceding examples, we got

OQ = Z OQ(
√
d) =

{
Z[
√
d]

Z
[
1+

√
d

2

]
which are all rings!

4.3 Theorem. Let α ∈ C. Then the following are equivalent:
(i) α is an algebraic integer

(ii) Z[α] is finitely generated as an additive group
(iii) α is an element of some subring of C having finitely generated additive group.
(iv) αA ⊆ A for some finitely generated additive subgroup A ⊆ C.

Proof. (i⇒ ii) We know Z[α] = {a0 + a1α+ · · ·+ an−1α
n−1 : ai ∈ Z} where n is the

degree of α over Q. Then it is generated over Z by {1, α, α2, . . . , αn−1}.
(ii⇒ iii) α ∈ Z[α] and Z[α] is a subring of C with finitely generated additive group.
(iii⇒ iv) Let A ⊆ C denote the subring with α ∈ A; then αA ⊆ A.
(iv ⇒ i) Let {a1, . . . , an} generate A as an additive group with αA ⊆ A. In particular,

αai ∈ A, so there exists {mij : j = 1, . . . , n} ⊂ Z such that αai =
∑n

j=1mijaj . Let
M = (mij) in Z, so that

(αIn −M)

a1...
an

 = 0

Thus, α is a root of det(xIn −M) ∈ Z[x]. □

Remark. The proof of (iv ⇒ i) gives a general method for computing polynomials which
have a specific algebraic integer as a root.

4.4 Corollary. OQ is a ring. In particular, OK is a ring for any number field K.

Proof. Say α has degree n and β has degree m over Q. Then Z[α, β] ⊆ C is a subring
with a finitely generated additive group because it is generated by αiβj where 0 ≤ i < n,
0 ≤ j < m. Since αβ, α + β ∈ Z[α, β] we are done by (iii) in Theorem 4.3. Finally,
OK = K ∩ OQ is an intersection of rings and thus also a ring. □

4.5 Proposition. Let α be an algebraic number. Then there exists r ∈ Z+ such that rα is an
algebraic integer.

This essentially says that if α ∈ K and K is a number field, then there exists r ∈ Z+ such
that rα ∈ OK .

Proof. Since α is an algebraic number, α satisfies a polynomial in Q[x]. Clear denomi-
nators to get h ∈ Z[x] so h(α) = 0. Write h(x) = anx

n + an−1x
n−1 + · · ·+ a0. Then

an−1
n h(x) = annx

n + an−1
n an−1x

n−1 + · · ·+ an−1
n a0

= (anx)
n + an−1(anx)

n−1 + · · ·+ an−1
n a0

8
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Let g(x) = xn + an−1x
n−1 + · · ·+ an−1

n a0, so g(anα) = 0 and anα is an algebraic integer. If
an is negative, take −anα instead. □

4.1 CYCLOTOMIC EXTENSIONS I: INTRODUCTION

Definition. We say ζn is a primitive nth root of unity if ζnn = 1 and ζkn ̸= 1 for any k < n. We
call the extension Q(ζn) a cyclotomic field.

Example. The 4th roots of unity are 1, i,−1,−i, so i and −i are the primitive 4th roots of
unity.

The cyclotomic fields play a fundamental role in number theory. For example, in class
field theory, we have the following theorem:

4.6 Theorem (Kronecker-Weber). If K/Q is a finite normal extension and Gal(K/Q) is
abelian, then K ⊆ Q(ζn) for some n.

We will not prove this theorem in full generality, but we will see partial results on assign-
ments.

4.7 Theorem. ζn is an algebraic integer with minimal polynomial

Φn(x) :=
∏

j∈(Zn)×

(x− ζjn)

Proof. Note that ζn is a root of xn − 1, so ζn is an algebraic integer. As in Proposition
4.2, let f(x) ∈ Z[x] be the minimal polynomial of ζn over Q so that f(x)÷ (xn − 1) over
Z[x]. Recall that

xn − 1 =
∏
j∈Zn

(x− ζjn)

If j /∈ (Zn)
×, then ζjn satisfies x

n
gcd(n,j) − 1 but ζn does not, so ζ and ζjn are not conjugates.

Thus the only possible conjugates for ζn are the ζjn where j ∈ (Zn)
×; it suffices to show that

these are precisely the conjugates. In particular, let’s show that if θ = ζtn and p is prime
with p ∤ n, then θp is conjugate to θ. With this, the result follows: if j is coprime to n, write
j = pe11 · · · pemm with pi ∤ n and repeatedly apply the above result to ζn for each pi, ei times.

Thus let’s prove the claim. Write xn − 1 = f(x)g(x) with f, g ∈ Z[x]; since θp is a
root of xn − 1, either it is a root of f(x) - in which case we’re done - or it is a root of g(x).
Suppose g(θp) = 0, so θ is a root of g(xp) ∈ Z[x] so f(x) ÷ g(xp) over Z[x]. Modulo p,
f(x)÷ g(xp) = g(x)p in Zp[x]. Since Zp[x] is a UFD, let s(x) be an irreducible factor of f(x)
so that s|f and thus s|g. But then xn − 1 = fg, so s2 ÷ (xn − 1) and s÷ nxn−1. Since n is
coprime to p, this implies s = cx for some c ∈ Zp. But then cx÷ xn − 1, a contradiction.□

Remark. 1. For p prime, we have

Φp(x) =

p−1∏
j=1

(x− ζjp) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ 1

2. Q(ζn)/Q is a normal extension since conjugates of ζn are ζjn ∈ Q(ζn). As well,
[Q(ζn) : Q] = |(Zn)

×| = ϕ(n).

9
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4.8 Proposition. Gal(Q(ζn)/Q) ∼= (Zn)
×.

Proof. Set G = Gal(Q(ζn)/Q), which consists of automorphisms σ : Q(ζn) → Q(ζn)

fixing Q. For such a σ, we must have σ(ζn) = ζjn for some gcd(j, n) = 1. Thus to every
σ ∈ G, we can associate the index j ∈ (Zn)

× so that σj(ζn) = ζjn. This gives us a map
G→ (Zn)

× by σj 7→ j. This map is a homomorphism:

σkσj(ζn) = σk(ζ
j
n) = σk(ζn)

j = ζjkn = σjk(ζn)

and bijectivity is left as a straightforward exercise. □

5 TRACES, NORMS, AND UNITS

Definition. Suppose K is a number field with [K : Q] = n, and let σ1, . . . , σn : K ↪→ C be
the usual embeddings extending Q ⊆ C. Given α ∈ K, we say its trace is

TrKQ = TrKQ (α) =
n∑

i=1

σi(α)

and its norm

NK
Q (α) =

n∏
i=1

σi(α)

5.1 Proposition. Let r ∈ Q, α, β ∈ K as above. Then
(i) TrKQ (rα) = rTrkQ(α)

(ii) TrKQ (α+ β) = TrKQ (α) + TrKQ (β)

(iii) NK
Q (αβ) = NK

Q (α)NK
Q (β)

(iv) NK
Q (rα) = rnNK

Q (α)

Proof. Exercise. □

Example. Consider
√
2 ∈ Q(

√
2,
√
3) = K. The minimal polynomial of

√
2 is x2 − 2. The 4

embeddings K ↪→ C are given by
√
2,
√
3 7→ ±

√
2,±

√
3, so

NK
Q (

√
2) =

√
2
√
2(−

√
2)(−

√
2) = 4.

5.2 Theorem. If [K : Q] = n, α ∈ K, then

1

[K : Q]
TrKQ (α) =

1

[Q(α) : Q]
Tr

Q(α)
Q (α)

and
NK

Q (α)
1

[K:Q] = N
Q(α)
Q (α)

1
[Q(α):Q]

Proof. Each of the [Q(α) : Q] embeddings Q ↪→ Q(α) extend to [K : Q(α)] embeddings
Q ↪→ K. So, letting σi be the embeddings Q(α) ↪→ C, let σij be the [K : Q(α)] extensions.
Then

TrKQ (α) =

[K:Q(α)]∑
j=1

n∑
i=1

σij(α) =

[K:Q(α)]∑
j=1

(
n∑

i=1

σi(α)

)
= [K : Q(α)] Tr

Q(α)
Q σi(α)

and the proof is identical for NK
Q (α). □

10



ALGEBRAIC NUMBER THEORY

Remark. Given α an algberaic integer, the value Tr(α) does not necessarily make sense
since you need to choose the number field K containing α. However, the previous
proposition Theorem 5.2 says that this distinction is not too important: if we divide by
1/[K : Q], the trace does not depend on K containing α.

5.3 Corollary. If α ∈ K, K is a number field, then TrKQ (α), NK
Q (α) ∈ Q. In particular, if

α ∈ OK , then TrKQ (α), NK
Q (α) ∈ Z.

Proof. Let α have minimal polynomial xn + an−1x
n−1 + · · · + a0. Note that TrQ(α)

Q is

the −an−1 coefficient and NQ(α)
Q is the ±a0 coefficient of the minimal polynomial. These

are both rationals, and if α is an algebraic integer, then they are both integers. Then by
Theorem 5.2, TrKQ and NK

Q are integer multples / powers, and are thus still rational or
integer. □

Since OK is a ring, it is natural to ask what the units are.

5.4 Proposition. Let K be a number field and α ∈ OK . Then α ∈ O×
K if and only if

NK
Q (α) = ±1.

Proof. If α ∈ O×
K , then αβ = 1 for some β ∈ OK . Then 1 = NK

Q (1) = NK
Q (αβ) =

NK
Q (α)NK

Q (β) is a product of integers, so they must be ±1.

Otherwise, suppose α ∈ OK and NK
Q (α) = 1, so that NQ(α)

Q (α) = ±1. Then if σi are
the embeddings Q(α) ↪→ C fixing Q, σ1 = id,

±1 =

n∏
i=1

σi(α) = α

n∏
i=2

σi(α)

Note that each σi(α) ∈ OQ, but since Q(α) may not be normal, σi(α) may not be in Q(α).
However

∏n
i=2 σi(α) = ±α−1 ∈ Q(α) is an algebraic integeer and thus in OK , so α is a

unit. □

Example. In K = Q(i), O×
K = Z[i]× and N(a+ bi) = a2 + b2. Thus the units are given by

{±1,±i} More generally, if ζ is a root of unity and ζ ∈ K, then ζ ∈ O×
K . This follows since

N
Q(ζ)
Q (ζ) = 1 and we can apply Theorem 5.2.

5.1 UNITS IN QUADRATIC EXTENSIONS

5.5 Proposition. Let d be a square-free negative integer. Then O×
Q(

√
d)

= {±1} unless
• d = −1, in which case the units are {±1, ±i}.
• d = −3, in which case the units are

{
±1, ±1±

√
−3

2

}
.

Proof. First suppose α ∈ O×
Q(

√
d)

, where d is square-free. If d ̸≡ 1 (mod 4), then

α = a + b
√
d, so α ∈ Z[

√
d]× if and only if N(α) = a2 − db2 = ±1. So a + b

√
d is a unit

if and only if (a, b) is a solution to the diophantine equation x2 − dy2 = ±1. Similarly,
a+b

√
d

2 ∈ OQ(
√
d) for d ≡ 1 (mod 4) is a unit if and only if a2 − db2 = ±4. Now suppose

additionally that d < 1.

11
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Case 1: d ̸≡ 1 (mod 4). If d < −1, then the only solution to x2 − dy2 = ±1 is (±1, 0). If
d = −1, then solutions to x2 + y2 = ±1 are (±1, 0) and (0,±1).

Case 2: d ≡ 1 (mod 4). We want solutions to x2 − dy2 = ±4. If d < −3, then the only
solutions are (±2, 0), which correspond to {±1} ∈ OK . If d = −3, then the solutions are
(±1, 0) and (0,±1). □

Remark. When d < 0, the graph of x2 − dy2 = {±1,±4} is an ellipse so there are only a
finite number of integer pair solutions. On the other hand, consider d = 2, so the graph
is a hyperbola with asymptotes ±

√
2. If we want integer solutions, we want solutions

b/a that are close to
√
2, so we’re looking for (good) rational approximations to

√
2. In a

precise sense, one can define the “best” rational approximation to
√
2. One intuition about

“best” is to bound the denominator and be close to
√
2. Given α, its continued fraction

approximation of α is

α = a0 +
1

a1 +
1

a2+···

The first few convergents to the continued fraction expansion of
√
2 are 1, 3/2, 7/5.

Consider ϵ = 1 +
√
2 ∈ Z[

√
2]×, so N(ϵ) = −1. As well, ϵn is also a unit for any n. For

example, ϵ2 = 3 + 2
√
2, ϵ3 = 7 + 5

√
2. It turns out that ϵn = pn + qn

√
2, where pn/qn is the

nth convergent of the continued fraction expansion of
√
2.

5.6 Theorem (Dirichlet Approximation). Let α ∈ R \Q, let Q > 1, Q ∈ Z. Then there
exists p, q ∈ Z such that 1 ≤ q ≤ Q and |qα− p| < 1

Q . In particular, there are infinitely many
pairs (p, q) ∈ Z2 for which |α− p/q| < 1/q2.

Proof. The “in particular” statement follows from the first statement because |α−p/q| <
1
Qq ≤ 1

q2
. Since Q can be chosen arbitrarily, there are infinitely many such solutions.

Let’s now prove the main statement. For any x ∈ R, let {x} = x − ⌊x⌋ denote the
integer part of x. Consider the Q intervals{(

0,
1

Q

)
,

(
1

Q
,
2

Q

)
, . . . ,

(
Q− 1

Q
, 1

)}
and consider the Q+ 1 numbers {{α}, {2α}, . . . , {(Q+ 1)α}}. Since α is irrational, each
of these numbers lies in one of the above intervals. By the pidgeonhole principle, get
1 ≤ m < n ≤ Q such that |{nα} − {mα}| < 1/Q so that

∣∣nα− ⌊nα⌋ −mα+ ⌊mα⌋
∣∣ = ∣∣(n−m)α− (⌊nα⌋ − ⌊mα⌋)

∣∣ < 1

Q

Take q = n−m, p = ⌊nα⌋ − ⌊mα⌋, and we are done. □

5.7 Theorem (Dirichlet Unit, Quadratic Extensions). If d > 1 be squarefree and set K =
Q(

√
d). Then, there exists a smallest unit ϵ > 1 such that

O×
K = {±ϵn : n ∈ Z} ∼= Z2×Z

Proof. We treat the case where d ̸≡ 1 (mod 4); the proof when d ≡ 1 (mod 4) follows
identically.
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Let θ = p+ q
√
d, p, q ∈ Z, q > 0. Then,

|N(θ)| = |p+ q
√
d||p− q

√
d| =

∣∣∣∣pq +
√
d

∣∣∣∣ ∣∣∣∣pq −
√
d

∣∣∣∣ q2
By Dirichlet approximation Theorem 5.6, there are infinitely many pairs (p, q) ∈ Z2 such
that |p/q−

√
d| < 1/q2. For such (p, q),

∣∣∣pq +√
d
∣∣∣ < 2

√
d+ 1. Since 2

√
d+ 1 is independent

of the value of (p, q), by the pidgeonhole principle, there exists m ∈ Z+ such that there
are infinintely many θ = p+ q

√
d with |N(θ)| = m. Enumerate these by θi = pi + qi

√
d for

i ∈ N.
Let’s show that O×

K is an infinite set. We might take θi/θ1 for infinitely many θi (which
certainly has norm 1), but θi/θ1 might not be an algebraic integer. We can, however, amend
this as follows. By the pidgeonhole principle, there exists some θ0 := θj such there are
infinitely many θi with pi ≡ p0 (mod m) and qi ≡ q0 (mod m). Let θ′0 be the conjugate of
θ0, so that

θi
θ0

= 1 +
θi − θ0
θ0

= 1 +
θi − θ0
θ0θ′0

θ′0

= 1 +
(pi − p0) + (qi − q0)

√
d

m
θ′0 ∈ OK

Thus, we have infinitely many β ∈ O×
K .

Now, let S = {γ ∈ O×
K : γ > 0}, so |S| = ∞; let’s show that S has a minimal element.

Assuming this, let ϵ ∈ S be minimal and set λ ∈ O×
K : taking −λ if necessary, we may

assume λ > 0. Then there exists n ∈ Z so that ϵn ≤ λ < ϵn+1. Then 1 ≤ λϵn < ϵ, and since
ϵ > 1 is minimal, we must have λ/ϵn = 1; i.e. λ = ϵn.

Note the following: if 1 < γ = x+ y
√
d is a unit, then x, y ≥ 1. To see this, consider the

four values γ,−γ, γ−1,−γ−1, which are ±x±y
√
d

2 . Since x and x−1 cannot both be greater
than 1, exactly one of the four values are greater than 1, so it must be the largest one; i.e.
the one with x, y ≥ 1. But now let γ > 1 be arbitrary; by positivity, there are only finitely
many γ0 < γ, so there must be some minimal element. □

Remark. A natural question is to ask this question for a general number field. For example,
if K is cubic, then O×

K may or may not have a smallest unit ϵ > 1; see Theorem 14.9 for the
general case.

6 DISCRIMINANTS AND INTEGRAL BASES

Definition. LetK be a number field, and let σ1, . . . , σn : K ↪→ C be embeddings extending
Q ⊆ C. Given α1, . . . , αn ∈ K, we define the discriminant of α1, . . . , αn to be

disc(α1, . . . , αn) = det

σ1(α1) . . . σ1(αn)
...

. . .
...

σn(α1) . . . σn(αn)


2

If K = Q(α), for notational simplicity, we say disc(α) = disc(1, α, . . . , αn−1).

Remark. The value of disc(α1, . . . , αn) is independent of the ordering of the αi: swapping
rows or columns only changes sign in the determinant.

13
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Example. If K = Q(
√
d), then

disc(1,
√
d) = det

(
1 1√
d −

√
d

)2

= 4d

6.1 Proposition. Let K be a number field of degree n. Then

disc(α1, . . . , αn) = det

TrKQ (α1α1) . . . TrKQ (α1αn)
...

. . .
...

TrKQ (αnα1) . . . TrKQ (αnαn)


Proof. Let M = (σi(αj))ij . Then

disc(α1, . . . , αn) = det(M)2 = det(M tM)

where

(
M tM

)
ij
=

n∑
k=1

MikMjk =
n∑

k=1

σk(αi)σk(αj) =
n∑

k=1

σk(αiαj) = Tr(αiαj) □

Example. Again, take K = Q(
√
d). Then

disc(1,
√
d) = det

(
Tr(1) Tr(

√
d)

Tr(
√
d) Tr(d)

)
= det

(
2 0
0 2d

)
= 4d

which is the same as the previous example.

6.2 Corollary. We have disc(α1, . . . , αn) ∈ Q, and if αi ∈ OK , then disc(α1, . . . , αn) ∈ Z.

Proof. Tr(αiαj) ∈ Q and if the αi ∈ OK , then Tr(αiαj) ∈ Z. □

6.1 CHANGE OF BASIS

Let’s understand how discriminants change under change of basis. Suppose α1, . . . , αn is a
basis forK/Q, and let β1, . . . , βn ∈ K are arbitrary (possibly not a basis). Since σi(βk) ∈ K,
there exists ckj such that σi(βk) =

∑n
j=1 ckjσi(αj). Then

σ1(β1) · · · σn(β1)
...

...
σ1(βn) · · · σn(βn)

 =

c11 · · · c1n
...

...
cn1 · · · cnn


σ1(α1) · · · σn(α1)

...
...

σ1(αn) · · · σn(αn)


Let C = (cij) denote the above transition matrix; then,

disc(β1, . . . , βn) = det(C)2 disc(α1, . . . , αn)

14
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Now, if K/Q is a finite extension, then we know there exists θ ∈ K such that K = Q(θ).
Thus, {1, θ, . . . , θn−1} is a basis for K/Q. In particular,

disc(1, θ, . . . , θn−1) = det

σ1(1) σ1(θ) · · · σ1(θ
n−1)

...
...

...
σn(1) σn(θ) · · · σn(θ

n−1)


2

= det

σ1(1) σ1(θ) · · · σ1(θ)
n−1

...
...

...
σn(1) σn(θ) · · · σn(θ)

n−1


2

=
∏
i<j

(σi(θ)− σj(θ))
2

since it is the square of the determinant of a Vandermonde matrix. In particular, this value
is non-zero since the σi(θ) are distinct. Now the following proposition follows from this
discussion:

6.3 Proposition. Let α1, . . . , αn ∈ K where n = [K : Q]. Then disc(α1, . . . , αn) ̸= 0 if
and only if α1, . . . , αn is a basis for K/Q.

Proof. Let C denote the transition matrix for {α1, . . . , αn} in terms of the (θj). Then

disc(α1, . . . , αn) = det(C)2 disc(1, θ, . . . , θn−1)

so that disc(α1, . . . , αn) = 0 if and only if det(C) = 0 if and only if α1, . . . , αn are linearly
dependent. □

6.4 Theorem. Let K = Q(θ), [K : Q] = n. Then

disc(θ) := disc(1, θ, . . . , θn−1) = (−1)(
n
2)NK

Q (f ′(θ))

where f(x) ∈ Q[x] is the minimal polynomial of θ over Q.

Proof. Let θ1, . . . , θn be the conjugates of θ. Then f(x) =
∏n

i=1(x − θi), so f ′(x) =∑n
j=1

∏
i ̸=j(x− θi). Thus

NK
Q (f ′(θ)) =

n∏
k=1

σn(f
′(θ)) =

n∏
k=1

f ′(θk)

=

n∏
k=1

∏
i ̸=k

(θk − θi) =
∏
i<k

(θk − θi)(θi − θk)

= (−1)(
n
2)
∏
i<k

(θi − θk)
2 = disc(1, θ, . . . , θn−1) □
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6.2 CYCLOTOMIC EXTENSIONS II: DISCRIMINANTS

6.5 Theorem. Let ζn = e2πi/n and set d = disc
(
1, ζn, . . . , ζ

ϕ(n)−1
n

)
. Then d÷ nphi(n), and

if p is an odd prime, d = (−1)(
p
2)pp−2.

Proof. Let Φn(x) be the minimal polynomial of ζn, and write xn−1 = Φn(x)g(x) where
g(x) ∈ Z[x]. Then nxn−1 = Φ′

n(x)g(x) + Φn(x)g
′(x), so nζn−1

n = Φ′(ζn)g(ζn). Thus

N
(
nζn−1

n

)
= N

(
Φ′(ζn)

)
·N (g(ζn))

Since ζn ∈ O×
Q(ζn)

, N(ζn) = ±1. Thus

±nϕ(n) = (−1)(
ϕ(n)
2 )N

(
Φ′
n(ζn)

)
·N(g(ζn))

so ±disc(ζn)N(g(ζn)) = nϕ(n). Since g ∈ Z[x], g(ζn) ∈ OQ(ζn) and N(g(ζn)) ∈ Z. Thus
disc(ζn)÷ nϕ(n), as required.

Now, if p is an odd prime, xp − 1 = Φp(x)(x − 1), so pxp−1 = Φ′
p(x)(x − 1) + Φp(x).

Thus pζp−1
p = Φp(ζp)(ζp − 1). Note that N(ζp−1

p ) = N(ζp)
p−1 = 1 and since p− 1 is even.

We can also compute

N(ζp − 1) = (−1)p−1
p−1∏
i=1

(1− ζip) = Φp(1) = p

so that

pζp−1
p = Φ′

p(ζp)(ζp − 1) ⇒ pp−1 = N(Φ′
p(ζp))p

⇒ (−1)(
p
2)pp−2 = disc(ζp)

as required. □

Remark. In general, we have

disc
(
1, ζn, . . . , ζ

ϕ(n)−1
n

)
= (−1)ϕ(n)/2

nϕ(n)∏
p|n p

ϕ(n)/(p−1)

which we state here without proof.

6.3 INTEGRAL BASES

Definition. Let K be a number field, [K : Q] = n. We say A = {α1, . . . , αn} is an integral
basis for K if OK = spanZ(A). When it exists, a power basis for OK is an integral basis of
the form {1, α, · · · , αn−1}; i.e. OK = Z[α].

Remark. Clearly we must have αi ∈ OK . As well, α1, . . . , αn is a basis for K/Q: given
θ ∈ K, there exists r ∈ Z+ such that rθ ∈ OK , so rθ ∈ spanZ(A) and θ ∈ spanQ(A). Since
[K : Q] = n, α1, . . . , αn is a basis. In particular, this means that A is in fact a Z−basis for
OK (justifying the terminology).

6.6 Theorem. If K is a number field, then K has an integral basis.
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Proof. Write K = Q(θ) where θ ∈ OK . Consider the set of all bases {β1, . . . , βn} for
K/Q such that βi ∈ OK . Such a basis certainly exists; given any basis, we can clear
denominators such that they are in OK . Let A have | disc(A)| minimal (the discriminant is
an integer, so such an A exists); let’s show that A is in fact an integral basis.

Suppose not. Then there exists γ ∈ OK where γ = a1α1 + · · ·+ anαn and a1 /∈ Z. Let
a1 = a+ r with a ∈ Z, 0 < r < 1; consider the basis {α′

1, . . . , α
′
n} where α′

i = αi for i > 1,
and α′

1 = γ − aα1. Then

disc(α′
1, α

′
2, . . . , α

′
n) = det


a1 − a a2 a3 · · · an

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


2

disc(α1, . . . , αn)

= r2 disc(α1, . . . , αn)

Since 0 < r < 1, | disc(α′
1, . . . , α

′
n)| < |disc(α1, . . . , αn)|, contradicting minimality. □

6.7 Proposition. If K is a number field, then all integral bases have the same discriminant.

Proof. Let {α1, . . . , αn} and {β1, . . . , βn} be two integral bases; then

αj =

n∑
i=1

cijβi

for αj ∈ OK and cij ∈ Z. Let C = (cij). Since {α1, . . . , αn} is also an integral basis,(
C−1

)
ij
∈ Z as well. Thus C ∈ GLn(Z) so det(C)2 = 1 and

disc(α1, . . . , αn) = det(C)2 disc(β1, . . . , βn)

indeed have the same discriminant. □

Definition. If K is a number field, we say its discriminant disc(K) is the discriminant of
any integral basis.

Example (Quadratic Extensions). Consider Q(
√
d). If d ̸≡ 1 (mod 4), then {1,

√
d} is an

integral basis; if d ≡ 1 (mod 4), then
{
1, 1+

√
d

2

}
is an integral basis. Thus

disc(Q(
√
d)) =

{
4d d ̸≡ 1 (mod 4)

d d ≡ 1 (mod 4)

6.8 Proposition. Let K be a number field, {α1, . . . , αn} a basis for K/Q with αi ∈ OK . If
d = disc(α1, . . . , αn), then for all α ∈ OK , there exists mi ∈ Z such that

α =

∑n
i=1miαi

d
d÷m2

i

Example. Consider Q(
√
d), where d ≡ 1 (mod 4). Then {1,

√
d} is a Q−basis,

√
d ∈ OK ,

and disc(1,
√
d) = 4d. Since d is squarefree, if 4d÷m2

i , then d÷mi. Thus, the proposition
states that any γ ∈ OK can be expressed in the form m1+m2

√
d

2 for some m1,m2 ∈ Z. Note
that the converse is not necessarily true: not all such expressions are in OK (indeed, we
need m1 ≡ m2 (mod 2)).
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Proof. Let α ∈ OK be arbitrary so that α = a1α1 + · · · + anαn for some ai ∈ Q. Let
σ1, . . . , σn : K ↪→ C extend Q ⊆ C. For each j = 1, . . . , n, we have σj(α) = a1σj(α1) +
· · ·+ anσj(αn) so that σ1(α1) . . . σ1(αn)

...
...

σn(α1) . . . σn(αn)


a1...
an

 =

σ1(α)...
σn(α)


Define

γj := det

σ1(α1) · · · σ1(α) . . . σ1(αn)
...

...
...

σn(α1) . . . σn(α) . . . σn(αn)


where the jth column is replaced, and δ = det(σj(αi)). Since αi ∈ OK , σj(αi) ∈ OK for
any j, so γj , δ ∈ OK . Note that d := disc(K) = δ2. By Cramer’s rule, aj =

γj
δ . Take

mj := daj ∈ Q; but then daj = δγj ∈ OK , so mj ∈ Q∩OK = Z.
For the second part, we have

m2
j

d
= da2j = d

(γj
δ

)2
=
dγ2j
δ2

= γ2j ∈ OK

so m2
j/d ∈ Z as well. □

6.4 REAL AND COMPLEX EMBEDDINGS

Let K be a number field and let σ1, . . . , σn : K ↪→ C be the embeddings extending Q ⊆ C.
Let r1 denote the number of embeddings where K ↪→ R; then, the other embeddings come
in pairs: if σ : K ↪→ C, then σ : K ↪→ C is a (distinct) embedding.

We say that r1 is the number of real embeddings, and 2r2 is the number of complex
embeddings; in this case, n = r1 + 2r2.
Example. Let d be squarefree. Then Q(

√
d) for d > 0 has r1 = 2, r2 = 0, while Q(

√
d) for

d < 0 has r1 = 0, r2 = 1.

6.9 Proposition. Let [K : Q] = n; then, the sign of disc(K) is (−1)r2 .

Proof. Let α1, . . . , αn be an integral basis for K/Q. Consider

δ = det

σ1(α1) . . . σ1(αn)
...

...
σn(α1) . . . σn(αn)

 δ = det

σ1(α1) . . . σ1(αn)
...

...
σn(α1) . . . σn(αn)


where disc(K) = δ2. If σi is real, then σi = σi. If (σi, σj) are complex conjugate pairs, then
in δ we swap column i with column j. Thus δ = (−1)r2δ, so δ is purely imaginary if r2 is
odd, and real if r2 is even. This proves the claim. □

6.5 CYCLOTOMIC EXTENSIONS III: ALGEBRAIC INTEGERS IN Q(ζpr)

6.10 Theorem. If p is prime, r ∈ Z+, then OQ(ζpr ) = Z[ζpr ].

18
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Proof. For notation ζ = ζpr and we take Q(ζ) = Q(1− ζ).
Let s = ϕ(pr), so {1, 1− ζ, . . . , (1− ζ)s−1} is a Q−basis for Q(ζ). Let’s show that it is

an integral basis. By Proposition 6.8, we know if α ∈ OK , there exist mi ∈ Z such that

α =
∑n

i=1 mj(1−ζ)j

d where

d = disc(1− ζ) =
∏
i<j

i,j∈(Z /pr)×

((1− ζi)− (1− ζj))2

=
∏
i<j

i,j∈(Z /pr)×

(ζi − ζj)2 = disc(ζ) = ±pp−2

Let’s first treat the case β = l1+l2(1−ζ)+···+ls(1−ζ)s−1

p . Let i be minimal so that p ∤ li. Set

γ =
li(1− ζ)i−1 + · · ·+ ls(1− ζ)s−1

p
∈ OK

Since (1− x)÷ (1− xj) in Z[x], (1− ζ)÷ (1− ζj) in OK so that

(1− ζ)s ÷
∏
p∤j

(1− ζj) = Φpr(1) = p

over OK . Thus p = (1− ζ)sλ for some λ ∈ OK . Since λ, γ, 1− ζ ∈ OK , (1− ζ)s−iλγ ∈ OK .
However,

(1− ζ)s−iλγ = λ
li(1− ζ)s−1

p
+ λ

li+1(1− ζ)s

p
+ · · ·

where the tail terms are all algebraic integers, so

θ :=
li

1− ζ
= λ

li(1− ζ)s−1

p
∈ OK

Then (1− ζ)θ = li and, taking norms, N(1− ζ)N(θ) = N(li) so that pN(θ) = lsi and p | li
and no such li exists. But now since d = ±pp−2, we may repeat the above argument for
each factor of p, and we are done. □

Remark. This proof demonstrates a general tool for verifying that a given basis of algebraic
integers is indeed integral. One need simply check each prime p such that p2 ÷ d; if there
are no algebraic integers of the form α = m1β1+···+mnβn

p where |mi| < p for every such p,
then β is indeed an integral basis.

If there is some α of this form, then update {β1, . . . , βn} with the new algebraic integer
α; the new discriminant is d/p2, and we may repeat the above process. This process will
terminate after a finite number of steps (though it may take a while), giving a general
procedure to compute integral bases for arbitrary number fields.

7 COMPOSITA AND RESULTANTS

7.1 COMPOSITA

Definition. If K,L are number fields, then the compositum of K and L is the smallest field
containing K ∪ L. We denote it by KL = LK.
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Our goal in this section is to relate OK , OL, and OKL.

7.1 Lemma. Suppose [K : Q] = m, [L : Q] = n.
(i) [KL : Q] ≤ mn.

(ii) [KL : Q] = mn if and only if for any embeddings σ : K ↪→ C, τ : L ↪→ C embeddings,
there exists a unique embedding ϵ : KL ↪→ C such that ϵ|K = σ, ϵ|L = τ .

Proof. (i) We have [KL : Q] = [KL : K] · [K : Q] ≤ [L : Q] · [K : Q] = mn.
(ii) Consider ϵ|K : K ↪→ C and ϵ|L : L ↪→ C; since the products αβ for α ∈ K and

β ∈ L generate KL, ϵ is determined uniquely by ϵ|K and ϵ|L. Since [KL : Q] = mn,
then there are mn embeddings ϵ : KL ↪→ C, so this must be all of them, and the
equivalence follows. □

7.2 Theorem. Suppose [KL : Q] = [K : Q] · [L : Q] and let d = gcd(disc(K),disc(L)).
Then OKL ⊆ 1

dOKOL.

Proof. Write [K : Q] = n and [L : Q] = m. Let {α1, . . . , αn} be an integral basis forK/Q
and {β1, . . . , βm} an integral basis for L/Q. Then KL = spanQ{αiβj : (i, j) ∈ [n] × [m]}.
Since [KL : Q] = mn, the αiβj are a Q−basis of algebraic integers. Then α ∈ KL can be
represented as

α =
m∑
i=1

n∑
j=1

αiβjaij
r

with aij , r ∈ Z and gcd(a11, . . . , anm, r) = 1. If α ∈ OKL we want to show that r | disc(K)
and r | disc(L) so that r|d and α ∈ 1

dOKOL.
By symmetry, let’s show that r | disc(K). Given σ1, . . . , σn : K ↪→ C, by Lemma 7.1

there exists σ′i : KL ↪→ C so that σ′i|K = σi and σ′i|L = idL. Then

σ′i(α) =
m∑
i=1

xiσ(αi) xi =
n∑

j=1

aijβj
r

since xi ∈ L. Equivalently,σ1(α1) . . . σ1(αn)
...

. . .
...

σn(α1) . . . σn(αn)


x1...
xn

 =

σ
′
1(α)

...
σ′n(α)


Let

γi =

σ1(α1) · · · σ′1(α1) · · · σ1(αn)
...

...
...

σn(α1) . . . σ′n(αn) · · · σn(αn)


where the ith column is replaced. Then by Cramer’s rule, xi = γi

δ where γi, δ ∈ OK and
δ2 = disc(K). Thus disc(K)xi = δγi ∈ OK is an algebraic integer, but also disc(K) ∈ Z so
disc(K)xi ∈ L. Thus disc(K)xi ∈ OL; but then, since

disc(K)xi =

m∑
j=1

(
disc(K)aij

r

)
βj
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and the βj form an integral basis for OL, we have disc(K)aij
r ∈ Z. Since

gcd(a11, . . . , amn, r) = 1,

this forces r | disc(K). □

7.2 CYCLOTOMIC EXTENSIONS IV: ALGEBRAIC INTEGERS IN Q(ζn)

7.3 Theorem. OQ(ζn) = Z[ζn].

Proof. Let’s do this by induction on the number of prime factors of n; we already did
the base case n = pr in Theorem 6.10. For k ≥ 2 let

n = pe11 · · · pekk m : = pe11 · · · pek−1

k−1 K = Q (ζm) L = Q
(
ζpekk

)
First, let’s see that KL = Q(ζn). Note that ζn ∈ KL since m and pekk are coprime; thus,
there exists x, y ∈ Z so that xm+ ypekk = 1. Then ζymζxpekk

= e2πi/n, so Q(ζn) ⊆ KL. As well,

ϕ(n) = ϕ(m)ϕ
(
pekk
)
= [K : Q] · [L : Q] ≥ [KL : Q] ≥ [Q(ζn) : Q] = ϕ(n)

so Q(ζn) = KL and [KL : Q] = [K : Q][L : Q]. Thus, Q(ζn) = KL and [KL : Q] = [K :
Q][L : Q] and by Theorem 7.2, we have

Z[ζn] ⊆ OQ(ζn) ⊆
1

d
OQ(ζm)OQ(ζ

p
ek
k

) =
1

d
Z[ζm]Z[ζpekk ] =

1

d
Z[ζn]

where d = gcd(discK,discL). Recall by Theorem 6.5, we have disc (Q(ζn))÷ nϕ(n). Thus
disc(K)÷mϕ(m) and disc(L)÷ (pekk )ϕ(p

ek
k ) so that d = 1 and OQ(ζn) = Z[ζn]. □

7.3 RESULTANTS

Definition. Let f(x), g(x) ∈ C[x] with f(x) = anx
n + · · ·+ a1x+ a0, g(x) = bmx

m + · · ·+
b1x+ b0. The resultant of f and g is

R(f, g) = det



an an−1 · · · a1 a0 0 · · · 0

0 an an−1 · · · a1 a0
. . .

...
...

. . . . . . . . . . . . . . . . . . 0
0 · · · 0 an an−1 · · · a1 a0
bm bm−1 · · · b0 0 0 · · · 0
0 bm · · · b1 b0 0 · · · 0

0 0 bm · · · b1 b0
. . .

...
...

...
. . . . . . . . . . . . . . . 0

0 0 · · · 0 bm · · · b1 b0


Remark. R(f, g) is homoeneous of degree m in the ai and degree n in the bj .

We want to show that if f, g ∈ Q[x], then R(f, g) = 0 if and only if f and g have a common
factor in Q[x]. In particular, we have the following proposition:
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7.4 Proposition. Let f, g ∈ C[x]. The following are equivalent:
(i) f and g have a common root in C

(ii) There exists h, k ∈ C[x] such that hf = kg and deg(h) ≤ m− 1, deg(k) ≤ n− 1.
(iii) R(f, g) = 0

Proof. (i ⇒ ii) If f, g have a common root α ∈ C, then (x − α) | f and (x − α) | g.
Then f = (x− α)k, g = (x− α)h and hf = (x− α)kh = kg.

(ii⇒ i) If hf = kg with deg h ≤ m− 1, deg k ≤ n− 1, then by Pigeonhole principle,
the roots of k cannot contain all the roots of f , so one root must be a root of g.

(ii ⇔ iii) We can now turn our question into one of linear algebra. Given f, g, we
want to compute h, k such that hf = kg where deg h = deg g − 1, and deg k = deg f − 1.
Let

h = cm−1x
m−1 + · · ·+ c1x+ c0

k = dn−1x
n−1 + · · ·+ d0

Treate ci, dj as indeterminants so that the statement hf = kg encodes n+m equations by
comparing coefficients of the same degree. For example, the xn+m−2 equation ancm−2 +
an−1cm−1 = bmdn−2+ bm−1dn−1. In particular, (c0, . . . , cm−1;−d0, . . . ,−dn−1) is a solution
if and only if it is in the kernel of the matrix

A =



an 0 · · · 0 bm 0 0 · · · 0

an−1 an
. . .

... bm−1 bm 0 · · · 0
... an−1

. . . 0
...

... bm
. . .

...

a1
...

. . . an b0 b1
...

. . . 0

a0 a1
. . . an−1 0 b0 b1

. . . bm

0 a0
. . .

... 0 0 b0
. . .

...
...

. . . . . . a1
...

...
. . . . . . b1

0 · · · 0 a0 0 0 · · · 0 b0


and this matrix has non-trivial kernel if and only if 0 = det(A) = det(At) = R(f, g). □

Let x1, . . . , xn denote the roots of f and y1, . . . , ym denote roots of g. Then a1, . . . , an are an
times an elementary symmetric function in the xi, b1, . . . , bm−1 are bm times an elementary
symmetric function in the yi. Thus R(f, g) ∈ C[x1, . . . , xn, y1, . . . , ym] =: P is a symmetric
polynomial times amn bnm. By Proposition 7.4, if xi = yj , then R(f, g) = 0. In other words,
every (xi − yj) | R(f, g) (as polynomials). Since each (xi − yj) is an irreducible coprime
factor of P ,

∏
i,j(xi − yj)÷R(f, g). Set S := amn b

n
m

∏
i,j(xi − yj).

In particular, note that g(x) = bm
∏m

j=1(x− yj) so that amn
∏n

i=1 g(xi) = S and

S = amn

n∏
i=1

g(xi) (7.1)

Similarly, f(x) = an
∏n

i=1(x− xi) = (−1)nan
∏n

i=1(xi − x) so that

S = (−1)mnbnm

n∏
i=1

f(yi) (7.2)
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(7.1) tells us that S is homogeneous of degree n in the bj ’s, and (7.2) says S is homogenous
of degree m in the ai. Since R(f, g) has the same property and S ÷ R(f, g), R = cS for
some c ∈ C. However, S has constant term amn b

n
m, which is the same as R(f, g); thus, c = 1.

In particular, we’ve shown the following proposition:

7.5 Proposition. Let f, g ∈ C[x] with deg f = n, deg g = m, and f have roots x1, . . . , xn
and g have roots y1, . . . , ym (perhaps with repetitions). Then

R(f, g) = amn b
n
m

∏
i,j

(xi − yj)

This gives us an easy way to compute certain types of discriminants:

7.6 Corollary. Let α be algebraic over Q and f the minimal polynomial of α. Then disc(α) =

(−1)(
n
2)R(f, f ′).

Proof. Let’s apply Proposition 7.5 in the case where g = f ′. Let f(x) = xn+an−1x
n−1+

· · ·+ a0 = (x− α1) · · · (x− αn). Let σ1, . . . , σn : Q(α) ↪→ C extend Q ⊆ C. Then applying
(7.1), we have

R(f, f ′) =

n∏
i=1

f ′(αi) =
n∏

i=1

σi(f
′(α)) = N

Q(α)
Q (f ′(α))

and the result follows by Theorem 6.4. □

As a fun application of this result, let’s prove the following proposition. Note that the result
was not strictly necessary to do this, but we get to use it to do one of the computations.

7.7 Proposition. Let θ be a root of f(x) = x3 + x2 − 2x+ 8, and K = Q(θ). Then OK has
no power basis.

Proof. Let’s calculate OK . First, we have

disc(θ) = −R(f, f ′) = det


1 1 −2 8 0
0 1 1 −2 8
3 2 −2 0 0
0 3 2 −2 0
0 0 3 2 −2


2

= −4 · 503

Thus disc(K) = −4 · 503 or disc(K) = −503 since, under change of basis, the factor must
change by a square of an integer. We know from a homework assignment (or by direct
computation) that OK ̸= Z[θ] since (θ2−θ)/2 ∈ OK and disc(K) = −503. In particular, one
has that disc(1, θ, θ

2−θ
2 ) = −503 by change of basis. Since 503 is squarefree,

{
1, θ, θ

2−θ
2

}
is

an integral basis of OK .
Now, let λ ∈ OK . We’ll show that 2 | disc(λ) so that disc(λ) ̸= −503 and {1, λ, λ2} is

not an integral basis. We can write λ = a+ bθ + c θ
2−θ
2 for a, b, c ∈ Z. In particular, after

some computation, one has λ2 = A1 +A2θ +A3
θ2−θ
2 , where

A1 = a2 − 2c2 − 8bc

A2 = −2c2 + 2ab+ 2bc− b2

A3 = 2b2 + 2ac+ c2
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Then by change of basis,

disc(λ) = −503 · det

 1 0 0
a b c
A1 A2 A3

2

= −503 · (bA3 − cA2)
2

= −503 · (2b3 − bc2 + b2c+ 2c3)2

where 2b3 − bc2 + b2c+ 2c3 ≡ bc(b− c) ≡ 0 (mod 2). □

24



III. Prime Ideals in Number Rings

8 DEDEKIND DOMAINS

Definition. R is Noetherian if every ideal of R is finitely generated; that is, I = (r1, . . . , rn).

8.1 Proposition. The following are equivalent:
(i) Every ascending chain of ideals in R stabilizes.

(ii) Every non-empty set S of ideals of R has a maximal element in S.
(iii) R is Noetherian.

Proof. (i⇒ ii) Let S be a non-empty set of ideals with no maximal element. Since S
is non-empty, get I1 ∈ S. Then for any Ik ∈ S, Ik is not maximal and get Ik+1 ⊋ Ik. This is
an infinite chain of ideal which does not stabilize.

(ii ⇒ i) Let I1 ⊆ I2 ⊆ · · · be an ascending chain of ideals, and let S = {Ik : k ∈ N}.
By assumption, S has a maximal element, IN ; but then for any n ≥ N , In = IN and the
chain stabilizes.

(i⇒ iii) Let I be an ideal of R not finitely generated. Then I ̸= (0), so get a1 ∈ I . For
any finite a1, . . . , ak ∈ I , since I is not finitely generated, there exists ak+1 ∈ I \(a1, . . . , ak).
But then {(a1, . . . , ai) : i ∈ N} does not stabilize, a contradiction.

(iii ⇒ i) Let I1 ⊆ I2 ⊆ · · · be an ascending chain of ideals, and set I =
⋃∞

i=1 In. By
assumption, I = (x1, . . . , xn). Since each xi ∈ Ij for some j, get k so that x1, . . . , xn ∈ Ik;
but then Ik = In for all n ≥ k and the chain stabilizes. □

8.2 Theorem (Hilbert). If R is Noetherian, then R[x] is Noetherian.

Proof. See PMATH 446 notes. □

Remark. The most basic example of a Noetherian domain is a PID. It is also easy to see that
if R is Noetherian, R/I is also Noetherian. This means that a lot of rings are Noetherian.

Definition. If R ⊆ S subrings with R,S integral domains, we say s ∈ S is integral over R
if there exists f(x) ∈ R[x], f monic, such that f(s) = 0. We say R is integrally closed in S if
s ∈ S is integral over R if and only if s ∈ R.

Example. 1. Let K be a number field so that Z ⊆ K. Then α ∈ K is integral over Z if
and only if α ∈ OK .

2. If R = Z, Frac(R) = Q and α ∈ Q is integral over R if and only if α ∈ Z, so Z is
integrally closed in Q.

3. If R = Z[
√
5], then Frac(R) = Q(

√
5). Note that (1 +

√
5)/2 is integral over Z[

√
5] (in

fact, it is not even integral over Z), so Z[
√
5] is not integrally closed in Q(

√
5).

Definition. A Dedekind domain is an integral domain R satisfying 3 properties:
1. R is Noetherian.
2. Every prime ideal is maximal.
3. R is integrally closed in its field of fractions.
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8.3 Proposition. Let K be a number field, 0 ̸= I ⊆ OK an ideal. Then there exists a ∈
Z \{0} such that a ∈ I .

Proof. Say α ∈ I , α ̸= 0. Let α1, . . . , αn be conjugates of α = α1 so that a := N
Q(α)
Q (α) =

α1 · · ·αn ∈ Z \{0}. As in the proof of Proposition 5.4, α2 · · ·αn ∈ OK so that a ∈ I . □

Remark. If 0 ̸= I ⊆ OK , this proposition show that I ∩ Z ⊆ Z is a non-zero ideal.

Definition. Given I ⊆ OK an ideal, then {α1, . . . , αn} is called an integral basis of I if
αi ∈ I and every element of I has a unique representation as an integer linear combination
of the αi.

8.4 Theorem. Every non-zero ideal I ⊆ OK has an integral basis. More specifically, if
{ω1, . . . , ωn} is an integral basis for OK , then there exists aij ∈ Z, aii ∈ Z+ such that
{α1, . . . , αn} is an integral basis for I and

α1
...
αn

 =


a11 0 . . . 0

a21 a22
. . .

...
...

...
. . . 0

an1 an2 . . . ann


ω1

...
ωn



Proof. From Proposition 8.3 there exists a ∈ I ∩ Z+; in particular, for any ω ∈ OK ,
aω ∈ I . We shall use this fact throughout the proof. We thus inductively define aij as
follows:

• Let a11 ∈ Z+ be minimal such that a11ω1 ∈ I ; set α1 := a11ω1.
• Let a21 ∈ Z and a22 ∈ Z+ minimal such that α2 := a21ω1 + a22ω2 ∈ I . Again, such

an α2 exists since a(ω1 + ω2) ∈ I .
• In general, let αi := ai1ω1 + ai(i−1)ωi−1 + · · ·+ aiiωi ∈ I with aii ∈ Z+ minimal.

Let A = (aij) which satisfies the requirements; it remains to show that {α1, . . . , αn} is in
fact an integral basis. Since {ω1, . . . , ωn} is a basis for K/Q and det(A) ̸= 0, {α1, . . . , αn}
is as well.

Now, let β ∈ I be arbitrary. Since {ω1, . . . , ωn} is an integral basis for OK , get bi ∈ Z
such that β = b1ω1 + · · ·+ bnωn. Write bn = annq + r with 0 ≤ r < ann and q, r ∈ Z. Then

b1ω1 + · · ·+ bn−1ωn−1 + rωn = β − qαn ∈ I

so by minimaliy of ann, we must have r = 0. Thus

β = b1ω1 + · · ·+ bn−1ωn−1 + qannωn annωn = αn + γ

where γ ∈ spanZ{ω1, . . . , ωn−1}. Thus b1ω1 + · · ·+ bn−1ωn−1 + qγ = β − qαn ∈ I .
The proof follows by repeating the same argument with β − qαn. □

Example. Consider I = (7) ⊆ Z[
√
2]. An integral basis for (7) is {7, 7

√
2} since 7, 7

√
2 ∈ I

and every element of I is of the form 7(a+ b
√
2) for some a, b ∈ Z.

8.5 Theorem. If K is a number field, then OK is a Dedekind domain.

Proof. We verify the three requirements:
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1. OK is Noetherian. Suppose I ⊆ OK . If I = (0) we’re done; otherwise, choose an
integral basis {α1, . . . , αn} for I and I = (α1, . . . , αn).

2. Every non-zero prime ideal is maximal. Let 0 ̸= P ⊆ OK be prime. It suffices to show
that |OK/P | <∞ since finite integral domains are fields*.

Let {ω1, . . . , ωn} be an integral basis for OK . Then by Proposition 8.3, there exists
a ∈ Z+ ∩P so that aωi ∈ P . Thus there are at most an possible elements in OK/P .

3. OK is integrally closed in K. Suppose γ ∈ K is integral over OK , so that γn +
αn−1γ

n−1 + · · ·+ α1γ + α0 = 0. Note that γ ∈ Z[α0, α1, . . . , αn−1, γ] = A; it suffices
to show that A is finitely generated as an additive group by Theorem 4.3. Since A is
generated over Z by all αm0

0 · · ·αmn−1

n−1 γmn , let’s show that only finitely many such
products are necessary. Since αi ∈ OK , we can take mi < [K : Q]; and, since γn

is expressible as a product over the αi from its minimal polynomial, we can take
m < n.

Thus OK is a Dedekind domain. □

9 PRIME FACTORIZATION OF IDEALS

9.1 UNIQUE FACTORIZATION

9.1 Lemma. Let Q be a prime ideal in a ring R such that Q ⊇ J1 · · · Jr. Then Q ⊇ Ji for
some i.

Proof. Suppose J1, . . . , Jr−1 ̸⊂ Q. Thus get ji ∈ Ji for i < r with ji /∈ Q. If α ∈ Jr
arbitrary, then j1 · · · jr−1α ∈ q so by primality, α ∈ Q and Jr ⊆ α. □

9.2 Lemma. If R is a Dedekind domain, then every non-zero ideal contains a product of prime
ideals.

Proof. Let S be the set of non-zero ideals that don’t contain a product of primes;
suppose S ̸= ∅. Since R is Noetherian, by Proposition 8.1, there exists M ∈ S maximal.
Since M is not prime, get r, s ∈ R \ M with rs ∈ M . But then M1 := M + (r) and
M2 :=M +(s) properly contain M and are not in S, so M1 and M2 both contains products
of primes. Furthermore, M1M2 ⊆ M so M contains a product of prime ideals, forcing
S = ∅. □

9.3 Lemma. Let R be a Dedekind domain, I ⊊ R, and K = Frac(R). Then there exists
γ ∈ K \R such that γI ⊆ R.

Proof. This is obvious if I = (0), so we may assume I ̸= (0) and let 0 ̸= a ∈ I .
Since I ⊊ R, a is not a unit, so 1

a ∈ K \ R. By Lemma 9.2, (a) ⊇ P1 · · ·Pr where Pi are
prime ideals; we may take r to be minimal. Let M be a maximal ideal containing I , so
M ⊇ I ⊇ (a) ⊇ P1 · · ·Pr, and since M is maximal, M is prime.

*Let R be an integral domain and consider α : R → R by α(x) = xr. This is injective since R is an integral
domain and, since R is finite, it is surjective as well. Thus there exists s ∈ R with rs = 1.
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Without loss of generality, P1 ⊆ M by Lemma 9.1; since R is Dedekind, M = P1. If
r = 1, set b = 1; and if r > 1, let b ∈ P2 · · ·Pr. Set γ = b

a so that

γI =
b

a
I ⊆ b

a
P1 ⊆

1

a
P1 · · ·Pr ⊆

1

a
(a) = R □

9.4 Proposition. Suppose R is a Dedekind domain and (0) ̸= I ⊆ R is an ideal. Then for
any 0 ̸= α ∈ I , there exists an ideal J ⊆ R such that IJ = (α) is principal.

Proof. Set J = {β ∈ R : βI ⊆ (α)}†. Certainly IJ ⊆ (α) by definition, so we need to
show that (α) ⊆ IJ .

Let B = 1
αIJ . We know B ⊆ R is an ideal, so we want to show that B = R. Suppose

not. Then by Lemma 9.3, get γ ∈ Frac(R) \ R such that γB ⊆ R. Since α ∈ I , J ⊆ B
and γJ ⊆ γB ⊆ R. Then, γ 1

αIJ = γB ⊆ R which can be rephrased as (γJ)I ⊆ (α); thus,
γJ ⊆ J by definition of J .

Now since J has an integral basis, it is a finitely generated additive group. But then
since γ ∈ K \R, we cannot have J ⊇ γJ ⊇ γJ2 ⊇ · · · . Thus in fact B = R and the result
follows. □

Definition. If A,B are ideals in R, we say that A divides B and write A | B if there exists
an ideal C such that AC = B.

9.5 Corollary. Let A,B,C be ideals in a Dedekind domain, with C ̸= 0. Then
(i) A ⊇ B if and only if A | B.

(ii) If AC = BC, then A = B.

Proof. (i) If A|B, then get C such that B = AC ⊆ A. Conversely, suppose A ⊇ B.
This is clear if A = (0); else, let 0 ̸= α ∈ A. Then by Proposition 9.4, get J such
that JA = (α). Then (α) = JA ⊇ JB, so R ⊇ 1

αJB. Let C = 1
αJB so that

AC = 1
αAJB = B.

(ii) By Proposition 9.4, get I such that CI = (α). Then (α)A = ACI = BCI = (α)B, so
A = B. □

9.6 Theorem. In a Dedekind domain, every proper non-zero ideal factors uniquely into a
product of prime ideals.

Proof. Let S be the set of non-zero proper ideals that cannot be written as a product
of primes. If S ̸= ∅, let M ∈ S be a maximal. Since M is not prime, so M is not maximal:
thus, let P ⊋M be maximal. Since M ⊆ P , P |M so there is an ideal C such that M = PC;
since M ̸= ρ, C ̸= R. C cannot be a product of prime ideals, or M is a product of prime
ideals, so C ∈ S. But then by maximality of M , M = C and M = PC = PM , so P = R, a
contradiction.

It remains to show unique factorization. Given I ̸= 0, R, say I = P1 · · ·Pr = Q1 · · ·Qs.
Then I ⊆ P1, so without loss of generality, P1 ⊇ Q1 by Lemma 9.1. Since prime ideals
are maximal, this forces P1 = Q1 so we can cancel to get P2 · · ·Pr = Q2 · · ·Qs and we are
done by induction. □

†From commutative algebra, this is the ideal quotient, denoted ((α) : I).
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Example. Consider the ring Z[
√
−5], which does not have unique factorization: 6 =

2 · 4 = (1 +
√
−5)(1 −

√
−5). In particular, this means that (2) is not a prime ideal:

1 +
√
−5, 1−

√
−5 /∈ (2), but 6 ∈ (2). We do, however, still have unique factorization:

(2) = (2, 1 +
√
−5)(2, 1−

√
−5)

(6) = (2, 1 +
√
−5)(2, 1−

√
−5)(3, 1 +

√
5)(3, 1−

√
−5)

9.7 Theorem. R is a PID if and only if R is a UFD and a Dedekind domain.

Proof. (=⇒) Since every PID is a UFD; it suffices to show that R is also Dedekind. This
is left as an assignment exercise.

(⇐=) Let R be a UFD and a Dedekind domain. By unique factorization, it suffices to
show that every non-zero prime ideal P is principal. Let 0 ̸= α ∈ P ; since P is proper, α is
not a unit. Since R is a UFD, write α = pa11 · · · pakk with k > 0. Since P is prime, without
loss of generality, p1 ∈ P . Then (p1) ⊆ P but (p1) is prime and thus maximal (since R is
Dedekind), so P = (p1) is principal. □

9.8 Corollary. If K is a number field, then OK has unique factorization into primes if and
only if OK is a PID.

Proof. This follows immediately since OK is Dedekind. □

Example. Consider K = Q(
√
−d), for d > 0. For d = 1, 2, K is in fact a Euclidean domain;

more generally, we may ask when OK is a PID. It was conjectured (correctly) by Gauss
that this is true when d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

9.2 RAMIFICATION

Suppose P ⊆ OK is a prime ideal and let 0 ̸= a ∈ P ∩ Z+. Write a = pe11 · · · perr , so by
primality, some p := pi ∈ P . Then (p) ⊆ P , so P | (p); thus, PQ1 · · ·Qs = (p) for some
prime ideals Qi. In particular, every prime ideal of OK is a factor of (p) for some p ∈ Z.

Furthermore, P cannot be a factor of (p) and (q) for distinct primes p, q ∈ Z: otherwise,
p, q ∈ P so 1 ∈ ρ. Thus p ∈ Z+ is the unique prime number such that (p) ⊆ P ; in this case,
we say that P lies over p.
Definition. Let K be a number field, p ∈ Z+ a prime. We say p ramifies in K if there exists
some prime ideal P ⊆ OK such that P 2 | (p) in OK .
Remark. By unique factorization into prime ideals, we can write (p) = P e1

1 · · ·P er
r . Then p

ramifies in K if ei > 1 for some i. We say that ei is the ramification index for the prime Pi.

We can interpret the idea of ramification in the sense of algebraic geometry. First, let’s
consider a well-known example: consider the map f : C → C be given by x 7→ xn. Then
most points z ∈ C have n distinct preimages - in fact, all of them except z = 0.

In algebraic geometry, since OK/Z is an integral extension of rings, we consider
π : Spec(OK) → Spec(Z) given by ρ 7→ ρ ∩ Z. This is a surjective homeomorphism. In
general, if R ⊆ S is integral and R is Noetherian, then for any prime P ⊆ R, the set of
primes Q ⊆ S containing P are precisely those given by π−1(P ). In the number field case,
ifK/L is a finite field extension so that OK ⊆ OL; thenQ ⊆ OL lies over P ⊆ OK precisely
when Q occurs in the prime factorization of POL. If we take K = Q, then OK = Z and we

29



III. PRIME IDEALS IN NUMBER RINGS

consider prime ideals (p) ⊆ Z. As we will see shortly, for most points, π−1((p)) consists
of distinct prime factors; the question of checking if p is ramified is searching for points
where this is not true.

9.9 Theorem. Let D = disc(K) and p ∈ Z+. Then p is ramified if and only if p | D.

Proof. (=⇒) Get P such that P 2 | (p); let (p) = P 2Q. Note that PQ ̸= P 2Q since P is
proper; thus, let α ∈ PQ \ P 2Q. In particular, α

p /∈ OK but α2 ∈ P 2Q2 ⊆ (p) so α2

p ∈ OK .

Thus if β ∈ OK is arbitrary, then (αβ)p

p ∈ OK . Note that Tr((αβ)p) = pTr
(
(αβ)p

p

)
, so

p÷ Tr((αβ)p) and

Tr ((αβ)p) =

(
n∑

i=1

σi(αβ)

)p

=
n∑

i=1

σi(αβ)
p + pγ = Tr((αβ)p) + pγ

for some γ ∈ OK . Thus p | Tr(αβ)p, so p | Tr(αβ).
Let {ω1, . . . , ωn} be an integral basis for K so that α = a1ω1 + · · · + anωn for ai ∈ Z.

Since α
p /∈ OK , without loss of generality, p ∤ a1. Note that p | Tr(αωi) for any i and

Tr(αωi) = Tr((a1ω1 + · · ·+ anωn)ωi) =

n∑
j=1

aj Tr(ωjωi)

Now,

D = disc(K) = det

Tr(ω1ω1) · · · Tr(ω1ωn)
...

. . .
...

Tr(ωnω1) · · · Tr(ωnωn)


so that by standard matrix manipulation preserving the determinant,

a1D = det


a1Tr(ω1ω1) · · · a1Tr(ω1ωn)
Tr(ω2ω1) · · · Tr(ω2ωn)

...
. . .

...
Tr(ωnω1) · · · Tr(ωnωn)



= det


∑n

i=1 aiTr(ωiω1) · · ·
∑n

i=1Tr(ωiωn)
Tr(ω2ω1) · · · Tr(ω2ωn)

...
. . .

...
Tr(ωnω1) · · · Tr(ωnωn)


and p | a1D. Since p ∤ ai, p | D.

(⇐=) This implication is beyond the scope of this course. □

Example. Consider Z[
√
3] = OK . Since disc(K) = 12, we see that (3) = (

√
3)2 indeed

ramifies.

10 NORMS OF IDEALS

Definition. Let (0) ̸= I ⊆ OK . Then we define norm of I to be |OK/I |, and write NK
Q (I)

or N(I) or ∥I∥ when the context is clear.
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Remark. Equivalently, N(I) = [OK : I] since I ⊆ OK is an additive subgroup.

10.1 Theorem. Let K be a number field, I ⊆ OK and let {α1, . . . , αn} be an integral basis
for I . Then

N(I) =

∣∣∣∣disc(α1, . . . , αn)

disc(K)

∣∣∣∣1/2
Proof. Let’s first show that this quantity does not depend on the choice of integral

basis. Suppose {α1, . . . , αn} and {β1, . . . , βn} are choices of integral bases for I . Then if P
is a change of basis, P ∈ GLn(Z), so det(P ) = ±1.

It thus suffices to do this with the integral basis as in Theorem 8.4. Fix {ω1, . . . , ωn} an
integral basis for OK , and let

A =


a11 0 . . . 0

a21 a22
. . .

...
...

...
. . . 0

an1 an2 . . . ann


α1

...
αn

 = A

ω1
...
ωn


so that

disc(α1, . . . , αn) = det(A)2 disc(ω1, . . . , ωn)

Thus,
disc(α1, . . . , αn)

disc(K)
= (a11 · · · ann)2

Thus we need to show that N(I) =
∏n

i=1 aii. Let’s show that every element of OK/I has
a unique representation as r1ω1 + · · ·+ rnωn where 0 ≤ ri < aii.

First let γ ∈ OK be arbitrary and write γ =
∑n

i=1 biωi.
• Write bn = qnann + rn, where 0 ≤ rn < ann and set γn = γ − qnαn.
• Let cn−1 denote the coefficient of ωn−1 in γn, and write cn−1 = qn−1an−1,n−1 + rn−1,

and set γn−1 = γn − qn−1αn−1.
Repeating the above process, we note that

r1ω1 + · · ·+ rnωn = γ − (q1α1 + · · ·+ qnαn)

and since
∑n

i=1 qiαi ∈ I , γ has a representation in the desired form.
Furthermore, such a representation is unique: suppose

r1ω1 + · · ·+ rnωn ≡ s1ω1 + · · ·+ snωn (mod I)

where ri, si < aii. Then since {α1, . . . , αn} is an integral basis for I , we have

n∑
i=1

(ri − si)ωi =

n∑
i=1

tiαi =


t1a11 0 . . . 0

t2a21 t2a22
. . .

...
...

...
. . . 0

tnan1 tnan2 . . . tnann

 ·

ω1
...
ωn


But then comparing coefficients starting at the last row, since |ri − si| < aii, we have
tn = · · · = t1 = 0 so that ri = si for all i. □
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10.2 Corollary. Let K be a number field, I = (α). Then N(I) = |N(α)|.

Proof. Let {ω1, . . . , ωn} be a basis for OK so that {αω1, . . . , αωn} is a basis for I . Let
σ1, . . . , σn be the embeddings of K ↪→ C. Thenσ1(αω1) . . . σ1(αωn)

...
. . .

...
σn(αω1) . . . σn(αωn)

 =

σ1(α) . . .
σn(α)


σ1(ω1) . . . σ1(ωn)

...
. . .

...
σn(ω1) . . . σn(ωn)


so that disc(αω1, . . . , αωn) = N(α)2 disc(ω1, . . . , ωn). Then N(I) = |N(α)| by Theorem
10.1. □

Remark. In the sense of the previous two propositions, we see that N(I) is a generalization
of norms of elements.

10.3 Theorem (Fermat). Let K be a number field, P ⊆ OK a prime ideal, α ∈ OK , and
P ∤ (α). Then αN(p)−1 ≡ 1 (mod P ).

Proof. Since OK/P is a field, so (OK/P )× is a group with size N(P )− 1. Then P ∤ (α)
if and only if α /∈ ρ and the result follows by Lagrange’s theorem. □

10.4 Proposition. If I ⊆ OK is an ideal, then N(I) ∈ I .

Proof. Consider the element 1 + I ∈ OK/I . Since |OK/I | = N(I), by Lagrange,
N(I)(1 + I) = N(I) + I = 0, so N(I) ∈ I . □

10.5 Corollary. If K is a number field and a ∈ Z+, then there are only finitely many ideals
I ⊆ OK with N(I) = a.

Proof. If I ⊆ OK is an ideal and N(I) = a, then a ∈ I . Thus (a) ⊆ I so I | (a); since we
have unique factorization of ideals, there are only finitely many such I . □

Example. Which I ⊆ Z[i] have norm 5? Note that 5 = (1 + 2i)(1 − 2i) is a factorization
into primes, since if N(I) = 5, then I = (1 + 2i)a(1− 2i)b for a, b ∈ {0, 1}. Thus one can
verify N(I) = 5 if and only if I = (1 + 2i) or I = (1− 2i).

10.1 THE IDEAL NORM IS MULTIPLICATIVE

Definition. If B,C ⊆ OK are ideals, we say D ⊆ OK is the gcd of B,C if D | B, D | C and,
whenever E|B and E|C, we have E | D. We also say L =⊆ OK is the lcm of B,C if B | L,
C | L, and L is minimal with this property.

Remark. One can see that the gcd and lcm both exist and are unique by factorization of
ideals into primes. Alternatively, in light of Corollary 9.5, gcd(I, J) = I + J is the smallest
ideal containing both I and J , and lcm(I, J) = I ∩ J is the smallest ideal contained in I
and J .

10.6 Lemma. Suppose B,C ⊆ OK are non-zero ideals. Then there exists α ∈ B such that
gcd

(
(α)
B , C

)
= 1.
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Remark. This makes sense since if α ∈ B, then (α) ⊆ B and B | (α).

Proof. If C = OK , choose any α ∈ B. Otherwise, write C =
∏r

i=1 P
ei
i as a product of

prime ideals. If r = 1, then C = P e. Let α ∈ B \BP be arbitrary, so that

gcd

(
(α)

B
,P e

)
= Pm

Suppose for contradiction m ≥ 1; then, P ÷ (α)
B so (α) = B (α)

B = BPE ⊆ BP so that
α ∈ BP , a contradiction.

Now suppose r > 1; then by the r = 1 case for any m ∈ {1, . . . , r}, set

Bm : = B
P1 · · ·Pr

Pm
αm ∈ Bm s.t. gcd

(
(αm)

Bm
, Pm

)
= 1 α =

r∑
i=1

αi

In particular, since B ⊇ Bi, αi ∈ B for any i so that α ∈ B. Furthermore, for i ̸= m,
αi ∈ Bi ⊆ BPm.

Let’s show that α /∈ BPm for any m. If α ∈ BPm, then since αi ∈ BPm for i ̸= m, we
have αm ∈ BPm. Thus BPm ÷ (αm) and Bm ÷ (αm) by assumption so that Pm ÷ (αm)

B and
P1···Pr
Pm

÷ (αm)
B . ThusBP1 · · ·Pr÷(αm). But then since BP1···Pr

Bm
= Pm, Pm÷ (α)

Bm
, contradicting

the choice of αm.
Now suppose gcd

(
(α)
B , C

)
̸= 1. Then there exists m such that Pm ÷ (α)

B , so BPm | (α)
and α ∈ BPm, a contradiction. Thus the result follows. □

10.7 Lemma. Suppose B,C ⊆ OK are non-zero ideals. If αβ ≡ 0 (mod BC) and

gcd

(
(α)

B
,C

)
= 1,

then β ≡ 0 (mod C).

Proof. Since αβ ∈ BC, BC ÷ (α)(β) so that C ÷ (α)
B (β). Since gcd

(
(α)
B , C

)
= 1, we

have C | (β) so β ∈ C. □

10.8 Theorem. If B,C ⊆ OK are non-zero ideals, then N(BC) = N(B)N(C).

Proof. By Lemma 10.6, get α ∈ B such that gcd
(
(α)
B , C

)
= 1. Let β1, . . . , βN(B) ∈ OK

and γ1, . . . , γN(C) ∈ OK represent the distinct classes in OK/B and OK/C respectively.
Let’s show that βi + αγj represent the distinct classes in OK/BC , which would give the
result N(BC) = N(B)N(C).

Let’s first see that βi + αγj are distinct mod BC and suppose

βi + αγj ≡ βk + αγl (mod BC) ⇐⇒ βi − βk ≡ α(γl − γi) (mod BC)

Thus since BC ⊆ B, the congruence also holds mod B. Then since α ∈ B, βi − βk ≡ 0
(mod B) and i = k. As a result, 0 ≡ α(γl − γj) (mod BC), so by Lemma 10.7, γl − γj ≡ 0
(mod C) and j = l.

Next, we need to show if ω ∈ OK , then there exists i, j such that ω ≡ βi + αγj
(mod BC). Let i be such that ω ≡ βi (mod B). Then ω − βi ∈ B = gcd((α), BC) =
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(α) +BC so that ω − βi = αa+ b for some a ∈ OK and b ∈ BC. Let j be such that a ≡ γj
(mod C). Then

ω = βi + αγj + α(a− γj) + b

with α ∈ B, a− γj ∈ C. Then α(a− γj) ∈ BC and b ∈ BC, so ω = βi + αγj (mod BC).□

Remark. Note that N(I) = 1 if and only if I = OK . If [K : Q] = n and P is a prime
ideal, we already showed P | (p) for some prime p ∈ Z. Factor (p) = PJ and since the
norm is multiplicative, N((p)) = N(P )N(J) so N(P ) = pf for some 1 ≤ f ≤ n. We write
f(P |p) := f . If N(I) is prime, then I is a prime ideal (though the converse is not true!)

11 CLASS GROUP

Fix OK and let I, J ⊆ OK be ideals. Define an equivalence relation ∼ on the set of ideals
of OK by I ∼ J if there exists α, β ∈ OK such that (α)I = (β)J . One can verify that this is
indeed an equivalence relation.
Definition. The class group ofK is Cl(OK) is the set of ideals modulo the above equivalence
relation, where the group operation is multiplication of ideals. We define the class number
hK := |Cl(OK)|.

11.1 Theorem. If K is a number field, then there exists a constant CK such that for all
0 ̸= A ⊆ OK ideal, there exists α ∈ A such that |N(α)| ≤ CKN(A).

Proof. Let {ω1, . . . , ωn} be an integral basis for OK and let t := ⌊N(A)1/m⌋. Consider
all elements of OK of the form c1ω1 + · · ·+ cnωn where 0 ≤ ci ≤ t. There are (t+ 1)n such
elements where (t + 1)n > N(A); thus, by the pidgeonhole principle, there exists some
β1 ̸= β2 so that β1 ≡ β2 (mod A). Set α = β1 − β1 ∈ A; then, α = t1ω1 + · · ·+ tnωn with
|ti| ≤ t. Then

|N(α)| =

∣∣∣∣∣∣
n∏

j=1

σj(α)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∏
j=1

t1σj(ω1) + · · ·+ tnσj(ωn)

∣∣∣∣∣∣
≤

n∏
j=1

(|t1| · |σj(ω1)|+ · · ·+ |tn| · |σj(ωn)|)

≤ tn
n∏

j=1

(|σj(ω1)|+ · · ·+ |σj(ωn)|) < N(A)CK

where CK =
∏n

j=1

(∑n
j=1 |σj(ωi)|

)
depends only on K. □

Remark. This bound is not very good; we will later show that much better bounds are
indeed possible.

11.2 Theorem. If K is a number field, then the class number hK <∞.

Proof. By Corollary 10.5, it suffices to show that that every ideal class contains an ideal
with norm at most CK .
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Let 0 ̸= I ⊆ OK ; then, get 0 ̸= A such that IA is principal. By Theorem 11.1, there
exists 0 ̸= α ∈ A such that |N((α))| ≤ CKN(A). Since α ∈ A, it follows that (α) ⊆ A, so
(α) = AB for some B. Thus, in the class group Cl(OK), we have A = I−1 and B = A−1,
so B = I in Cl(OK). Since AB = (α), N(A)N(B) ≤ CKN(A), so N(B) ≤ CK . In other
words, B and I are in the same class and N(B) ≤ CK . □

11.1 COMPUTING AN IDEAL CLASS GROUP

Last time, we showed every ideal class has a representation of norm at most CK ; this
yields a general procedure for computing the class group, assuming we have a bound M
of CK .

1. Take a bound M for CK ; for example, we may take M =
√
|disc(K)|.

2. From the proof of Theorem 11.2, it suffices to consider ideals with norm at most
M . Since I =

∏
P ei
i is a factorization, the primes P with N(P ) ≤ M will generate

Cl(OK).
3. SinceN(P ) ∈ P by Proposition 10.4, P lies over a prime pwith p ≤M . Thus P ⊆ (p),

so every such prime will arise as a factor of (p) with p ≤ CK .
Example. Consider Cl(Q(

√
−23)), so CK =

√
23 < 5. Thus we need ideals with norm a

most 4, so it suffices to consider (2), (3). From a homework assignment, we know that

(2) =

(
2,

1 +
√
−23

2

)
︸ ︷︷ ︸

P

(
2,

1−
√
−23

2

)
︸ ︷︷ ︸

P ′

(3) =

(
3,

1−
√
−23

2

)
︸ ︷︷ ︸

Q

(
3,

1 +
√
−23

2

)
︸ ︷︷ ︸

Q′

is a factorization into primes, so that all the ideals of norm at most 4 are products of
the above primes. We will write I ∼ J if I = J in Cl(K). Note that PP ′ ∼ (2) so that
P ′ = P−1; similarly, Q′ = Q−1. Furthermore, one can verify that

PQ =

(
6, 2

1−
√
−23

2
, 3

(
1−

√
−23

2

)
,

(
1−

√
−23

2

)2
)

= (6)

so P = Q−1 and Q ∼ P ′. An analoguous computation shows P ′Q′ ∼ (1) so Q′ ∼ P . We
now have

N

(
3 +

√
−23

2

)
= 8 = N

(
3−

√
−23

2

)
and these two ideals are distinct. Since p is not principal b/c there is no principal ideal of
norm 2. Similarly, p′ is not principal. Since we know there are at last two distinct principal
ideals of norm 8, we must have p, p′ not principal. Thus p3, p′3 are not principal, so p3 ∼ 1
and p has order 3 in Cl(K).
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12 QUADRATIC RECIPROCITY

Suppose we wish to solve the equation x2 + bx+ c in Fp. After completing the square, this
reduces to the question of solving x2 = a (mod p). Is there a nice way to determine when
a is a square mod p?
Definition. We define the Legendre symbol by(

a

p

)
=

{
1 a is a square in Fp

−1 : otherwise

Let Hp be the set of squares in (Zp)
×. On a homework assignment, we showed that

[(Zp)
× : Hp] = 2; in particular, (Zp)

×/Hp
∼= Z2. In particular, if a, b are not squares, then

ab is a square; if a is not square and b is square, then ab is not square. This observation is
the fact that (

ab

p

)
=

(
a

p

)(
b

p

)
Said another way, the map ϕ : (Zp)

× → Z2 with a 7→
(
a
p

)
is a homomorphism with

kerϕ = Hp.
More generally, since (Zp)

× is cyclic, let α ∈ (Zp)
× be a generator. Then the map

θ(Zp)
× → Zp−1 given by αk 7→ k is a group isomorphism. To summarize, the following

diagram commutes

(Zp)
× Hp

Zp−1 2Zp−1

x 7→x2

θ θ|Hp

x 7→2x

Thus 2Zp−1 = ker(ψ) where ψ : Zp−1 → Z2 is the map a 7→ a · (p− 1)/2; this map lifts to a
map ϕ∗ : Hp → {−1, 1}. In particular, taking a = −1, we have that(

−1

p

)
=

{
1 p ̸≡ 3 (mod 4)

−1 p ≡ 3 (mod 4)

Let’s record this as a proposition:

12.1 Proposition. Let p be prime.

(i)
(
−1

p

)
=

{
1 p ̸≡ 3 (mod 4)

−1 p ≡ 3 (mod 4)

(ii)
(
ab

p

)
=

(
a

p

)(
b

p

)
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Let’s view (Zp)
× ∼= Gal(Q(ζp)/Q). Let p∗ = (−1)

p−1
2 p, Hp denote the squares in (Zp)

×,
and Kp = Q(

√
p∗). Then Q(ζp)

Hp = Kp and Hp = Gal(Q(ζp)/Kp) by the fundamental
theorem of Galois theory Theorem 3.2. In particular,(

q

p

)
= 1 ⇐⇒ q ∈ Hp ⇐⇒ σq fixes Kp ⇐⇒ OK/P = Fq (12.1)

Given a ∈ (Zp)
×, let σa denote the Galois group element σa : ζp 7→ ζap . Let Q denote

any ideal of Z[ζp] lying over q, so σq acts on Z[ζp]/Q by

σq

(
p−1∑
i=0

aiζ
i
p

)
=

p−1∑
i=0

aiζ
qi
p =

(
p−1∑
i=0

aiζ
i

)q

since Z[ζp]/Q has characteristic q. Thus for all α ∈ Z[ζp]/Q , σq(α) = αq. We say that σq is
the Frobenius map associated to q, and write σq = Frobq ∈ Gal(Q(ζp)/Q). The reasoning
behind this name is that Z[ζp]/Q / Z/(p) = Fp, so Z[ζp]/Q is a an extension of finite fields,
and the map σq induces the Frobenius map on this extension.

In particular, since Kp/Q is also Galois, σq = Frobq in Gal(Kp/Q) as well. One can
show that Frobq is the unique map up to conjugacy since the Galois group acts transitively
on the primes lying over p.

Now let P ⊆ OKp ; note that σq = id |Gal(Kp/Q) if and only if OK/P = Fq. From a
homework assignment, this happens if and only if (q) ⊆ Kp is not prime. Thus combining
with (12.1), we have that(

q

p

)
= 1 ⇐⇒ (q) is not prime in Q(

√
p∗) ⇐⇒

(
p∗

q

)
= 1

Thus we have proven

12.2 Theorem (Quadratic Reciprocity). Let p, q be distinct primes. Then(
q

p

)
=

(
p∗

q

)
or equivalently

(
p∗

q

)
= (−1)

p−1
2

· q−1
2

(
p

q

)
Example. A good way to illustrate the computational power of quadratic reciprocity is
through an example: (

17

113

)
=

(
113

17

)
=

(
11

17

)
=

(
17

11

)
=

(
6

11

)
=

(
2

11

)(
3

11

)
= −

(
11

3

)
= −

(
−1

3

)
= 1

Remark. Let G = Gal(Q(ζp)/Q) ∼= (Zp)
×. If q is prime, we say σ ∈ G is Frobq if, given Q

lying over q, σ(α) = αq (mod Q). Which elements of G are of the form Frobq for some q?
The perhaps surprising answer is that for every a, this happens infinitely often. In fact,

this is a way of rephrasing Dirichlet’s theorem for primes in arithmetic progressions.
This fact generalizes to all Galois groups, and is called the Chebotarev density theorem.

One consequence: if K is a number field, then {p ∈ Z : p splits completely in OK}.
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13 FERMAT’S LAST THEOREM

13.1 Theorem (Fermat’s Last). If p ≥ 3 is prime and p ∤ x, y, z for x, y, z,∈ Z \{0}, then
xp + yp ̸= zp.

Definition. We say that p is regular if p ∤ hQ(ζp).

The goal of this section is to prove Fermat’s last theorem for regular primes. The key
observation is that if p is a regular prime, if I ⊆ OQ(ζp) is ideal with Ip is principal, then I
is principal as well.

13.2 Theorem (Hilbert Class Field). Let K be a number field; then there exists a number
field L such that L/K is normal and Gal(L/K) = Cl(OK). Such an L is called the Hilbert
class field.

In particular, this has the property that for every ideal I ⊆ OK , IOL is principal in OL.
Definition. We say p is a regular prime if p ∤ hQ(ζp).

13.3 Lemma. Let ζ = ζp. Then in Z[ζ],
(i) the elements 1− ζ, 1− ζ2, . . . , 1− ζp−1 are associates.

(ii) 1 + ζ is a unit
(iii) There exists u ∈ Z[ζ]× so that p = u(1− ζ)p−1 so that (1− ζ) is the only prime ideal

dividing (p).

Proof. (i) Consider 1−ζj

1−ζ = 1 + ζ + · · · + ζj−1 ∈ Z[ζ]. As well, 1−ζ
1−ζj

= 1−ζjk

1−ζj
∈ Z[ζ]

where jk ≡ 1 (mod p). Thus 1− ζ, . . . , 1− ζp are associates.

(ii) We have 1 + ζ = 1−ζ2

1−ζ , so 1 + ζ is a unit.

(iii) Recall that

1 + x+ · · ·+ xp−1 =

p−1∏
j=1

(x− ζj)

so

p =

p−1∏
j=1

(1− ζj) = (1− ζ)p−1
p−1∏
j=1

1− ζj

1− ζ
= u(1− ζ)p−1

where u =
∏p−1

j=1
1−ζj

1−ζ ∈ Z[ζ]× from (i). □

13.4 Lemma. If u ∈ Z[ζ]×, then u
u is a root of unity.

Proof. Let σ ∈ Gal(Q(ζ)/Q). Then σ(ζ) = ζa for some a, so σ(ζ) = ζ−a = σ(ζ). Thus
for any such σ, ∣∣∣σ (u

u

)∣∣∣2 = σ
(u
u

)
σ
(u
u

)
= 1

so all the conjugates of u
u have complex norm 1. One can show that if α is an algebraic

integer and all its conjugates have norm 1, then α is a root of unity. □
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13.5 Theorem (Kummer). If p ≥ 3 is a regular prime and p ∤ x, y, z for x, y, z,∈ Z \{0},
then xp + yp ̸= zp.

Proof. Recall from a homework that the roots of unity in Z[ζp] are ±ζj . In Z[ζ], zp =

xp + yp =
∏p−1

j=0(x+ ζjy).
Let’s show that the ideals (x+ ζjy) are relatively prime. To the contrary, suppose ρ is a

common prime factor of (x+ ζj) and (x+ ζj
′
y). In particular, ρ is a prime factor of

(x+ ζjy)− (x+ ζj
′
y) =

(
ζjy(1− ζj

′−j)
)
= (y(1− ζ))

and (y(1 − ζ)) ÷ (yp) from (iii) in Lemma 13.3. Thus, ρ ÷ (yp); but also, ρ ÷ (zp), a
contradiction since (zp), (yp) are coprime.

Since the (x + yζj) are coprime and
∏p−1

j=0(x + yζj) = (zp) is a pth power, we must
have each (x+ yζj) = Ipj . Since p ∤ hQ(ζ) and Ipj is trivial in Cl(Q(ζ)), we have that Ij is a
principal.

Fix j = 1, and we have (x+ζy) = (t)p so that for some t ∈ Z[ζ] and u ∈ Z[ζ]×, x+ζy =
utp. Write t = b0 + b1ζ + · · ·+ bp−2ζ

p−2; then modulo (p), we have tp ≡ b0 + b1 + · · ·+ bp−2

(mod p). But then t = b0 + · · · + bp−2ζ
−1, so t

p ≡ b0 + · · · + bp−2 (mod p) and tp ≡ t
p

(mod p). From Lemma 13.4, we have that u
u = ±ζj for some j. Let’s treat the case ±ζj = ζj ,

so that
x+ yζ = utp = ζjutp ≡ ζjut

p
= ζj(x+ ζy)

and
x+ yζ − yζj−1 − xζj ≡ 0 (mod p) (13.1)

But now,

Z[ζ]
/
(p) = Z[x]

/
(p, xp−1 + · · ·+ x+ 1)

= Fp[x]
/
(xp−1 + · · ·+ x+ 1) = Fp[x]

/
(x− 1)p−1

so, modulo p, 1, ζ, ζ2, . . . , ζp−2 form a basis. If j /∈ {0, 1, 2, p−1}, then (∗) contradicts linear
independence. (Incomplete?) □

14 LATTICES AND MINKOWSKI’S THEOREM

Definition. A lattice is an abelian subgroup Λ of Rn such that Λ ∼= Zn.

Example. If [K : Q] = n, then OK is a lattice in K ∼= Qn ⊆ Rn. OK is a lattice since it has
an integral basis.

Example. Consider C ∼= R2, and let τ be in the upper half plane. Then Λ = Z⊕Z τ , and
C/Λ = T is the torus. In a sense that can be made precise, T is an elliptic curve, and every
elliptic curve arises like this.

Choose a basis {α1, . . . , αn} for Λ; this basis is also an R−basis for Rn. If {α1, . . . , αn} is a
basis for Λ and {α′

1, . . . , α
′
n} is a basis for Λ, then we have a change of basis matrixα

′
1
...
α′
n

 = P

α1
...
αn
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Since P ∈ GLn(Z), detP = ±1. Thus, we can define the volume of Λ to be

d(Λ) = | det(α1, . . . , αn)|

which is independent of the choice of matrix by the above observation.

14.1 Theorem (Blichfeldt). Suppose Λ ⊆ Rn is a lattice,m ∈ Z+ and S ⊆ Rn with Lebesgue
measure µ(S). Suppose µ(S) ≥ md(Λ) S is compact if equality holds. Then there exist distinct
x1, . . . , xm+1 ∈ S such that xi − xj ∈ Λ.

Proof. Let α1, . . . , αn be a basis for Λ. Let P = {
∑n

i=1 θiαi | 0 ≤ θi < 1}, so thatµ(P ) =
d(Λ). For each λ ∈ Λ, let R(λ) = {ν ∈ P | λ+ ν ∈ S}. Then∑

λ∈Λ
µ(R(λ)) = µ(S) ≥ mµ(P )

If S is not compact, then there exists ν0 ∈ P which occurs in at least m+ 1 of the R(λ)’s.
If instead S is compact, for any ϵr > 0, get νr ∈ P (1 + ϵr) which occurs in at least m+ 1
of R(λ)’s. This sequence has a convergent subsequence with limit ν0 which has the same
property.

Let λ1, . . . , λm+1 distinct such that if ν ∈ R(λi), then xi = λi + v0 ∈ S. Then xi − xj =
λi − λj ∈ Λ. □

14.2 Theorem (Minkowski). Let Λ ⊆ Rn be a lattice, m ∈ Z+, S ⊆ Rn convex and
symmetric about the origin. Suppose µ(S) ≥ m2nd(Λ) with S compact if equality holds. Then
there exist m pairs (λ1,−λ1), . . . , (λm,−λm) with λj ∈ Λ \ {0}, λj ∈ S.

Proof. Either µ(S/2) > md(Λ) or µ(S/2) = md(Λ) and S/2 is compact. Thus by
Theorem 14.1, there exist x1, . . . , xm+1 ∈ S such that xi/2− xj/2 ∈ Λ. Order these xi such
that x1 > x2 > · · · > xm+1 where we say xi > xj if the first non-zero coordinate of xi − xj
is positive. Take λj = xj/2− xm+1/2. By choice of ordering, the ±λj are distinct. Since S
is symmetric, −xm+1/2 ∈ S. Since S is convex, λj = xj/2 + (−xm+1)/2 ∈ S. □

Remark. The bound is sharp: consider S = {(x1, . . . , xn) ∈ Rn : |x1| < m, |xj | < 1}. Then
µ(S) = m2n = m2nd(Zn) and S contains exactly m lattice points.

14.1 EMBEDDING OK IN Rn

Suppose [K : Q] = n so that K = Q(θ). Let σ1, . . . , σn ↪→ C be the embeddings, so
r1 is the number of real embeddings {σ1, . . . σr1} and r2 pairs of complex embeddings
{σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2}. With these embeddings, we can define σ : K ↪→ Rn by

α 7→
(
σ1(α), . . . , σr1(α),Reσr1+1(α), Imσr1+1(α), . . . ,Reσr1+r2(α), Imσr1+r2(α)

)
Equivalently, we say σ : K ↪→ Rr1 ×Cr2 given by

α 7→
(
σ1(α), . . . , σr1(α), σr1+1(α), . . . , σr1+r2(α)

)
and these are equivalent by identifying R2r2 ∼= Cr2 as vector spaces. We call this embed-
ding the Minkowski embedding.
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14.3 Lemma. Let A ̸= 0 be an ideal of OK . Then σ(A) is a lattice Λ ⊆ Rn and d(Λ) =
2−r2

√
|disc(K)|N(A).

Proof. Let α1, . . . , αn be an integral basis for A. Let D0 be the determinant of the matrix
whose ith row is

D0 =

σ1(α1) . . . σr1(α1) Reσr1+1(α1) · · · Imσr1+r2(α1)
...

...
...

...
σ1(αn) . . . σr1(αn) Reσr1+1(αn) · · · Imσr1+r2(αn)


From Theorem 10.1, we know det(σj(αi)) =

√
| disc(K)| · N(A). Using the fact that

Reσ = σ+σ
2 and Imσ = σ−σ

2i combined with elementary row operations, we have that

D0 =
(

1
−2i

)r2
det(σj(αi)). In particular, since D0 ̸= 0, Λ is a lattice and d(Λ) = D0. □

14.4 Theorem. If A is a non-zero ideal in OK , then there exists 0 ̸= α ∈ A such that
|N(α)| ≤

(
2
π

)r2√|disc(K)|.

Proof. Given t ∈ R+, let

St =
{
(x1, . . . , xn) ∈ Rn :|xi| ≤ t, i = 1, . . . , r1,

x2r1+2j+1 + x2r1+2j+2 ≤ t2, j = 0, . . . , r2 − 1
}
.

St is clearly convex and symmetric, and µ(St) = 2r1πr2tn. Define

t =

((
2

π

)r2√
| disc(K)|N(A)

)1/n

so that
2r1πr2tn = 2n

1

rr2

√
|disc(K)|N(A)

We now apply Theorem 14.2 with m = 1 and Lemma 14.3 to get 0 ̸= α ∈ A such that
σ(α) ∈ St. Then

|N(α)| =

∣∣∣∣∣
r1∏
i=1

σ(αi)

∣∣∣∣∣ ·
∣∣∣∣∣
r2∏
i=1

σi+r2(α)σi+r2(α)

∣∣∣∣∣ ≤ tr1+2r2 = tn

since σ(α) ∈ St. Thus, |N(α)| ≤ tn =
(
2
π

)r2√| disc(K)| ·N(A). □

The following corollary is then immediate.

14.5 Corollary. CK ≤
(
2
π

)r2√| disc(K)|.

14.2 FOUR SQUARES THEOREM

14.6 Theorem. Let p be an odd prime. Then the following are equivalent:
(i)
(
−1
p

)
= 1

(ii) p ≡ 1 (mod 4)
(iii) there exists x, y ∈ Z such that p = x2 + y2.
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Here’s a proof of this theorem using the algebraic tools we have developed so far.

Proof. (i⇔ ii) This is Proposition 12.1.

(ii ⇒ iii) Since
(
−1
p

)
= 1, (p) splits in Z[i] so that (p) = PQ in Z[i], where P,Q are

primes. Then p2 = N(p) = N(P )N(Q) and N(P ) = p. Since Z[i] is a PID, P = (a+ bi) so
that p = N(P ) = a2 + b2.

(iii ⇒ ii) The squares modulo 4 are 0 and 1, and since p is odd, we see that p ≡ 1
(mod 4). □

We can also see the hard implication (ii⇒ iii) using Minkowski’s Theorem:

Proof. (ii ⇒ iii) Get l ∈ Z such that l2 ≡ −1 (mod p). Let Λ ⊆ R2 be the lattice
with Z−basis (1, l) and (0, p), so that d(Λ) = p. Let S be a disc with radius r; then
µ(S) = πr2 > 22p. Set r = 2

√
p/π.

By Minkowski Theorem 14.2, S contains a non-zero lattice point m(1, l) + n(0, p) =
(m,ml + np) ∈ S; in particular, 0 < m2 + (ml + np)2 ≤ r2 < 2p. Then,

m2 + (ml + np)2 ≡ m2 + (ml)2 ≡ m2(1 + l2) ≡ 0 (mod p)

so m2 + (ml + np)2 = p. □

Remark. If ai, bi ∈ Z, then (a21+b
2
1)(a

2
2+b

2
2) = c21+c

2
2. To see this, a := a21+a

2
2 = N(a1+ia2)

and b := b21 + b22 = N(b1 + ib2). Then ab = N(z2) = c21 + c22 where z = (a1 + ia2)(b1 + ib2).
In particular, if n =

∏
pi where pi ≡ 1 (mod 4), then n = x2 + y2. In fact, you can prove

n = x2 + y2 if and only if the prime factors p ≡ 3 (mod 4) occur to even exponents.

14.7 Proposition (Euler’s Four Squares Identity). We have(
4∑

i=1

a2i

)
·

(
4∑

i=1

b2i

)
=

4∑
i=1

c2i

where

c1 = a1b1 − a2b2 − a3b3 − a4b4

c2 = a1b2 + a2b1 + a3b4 − a4b3

c3 = a1b3 − a2b4 + a3b1 + a4b2

c4 = a1b4 + a2b3 − a3b2 + a4b1

Proof. You can compute this directly or recall that the norm on quaternions is multi-
plicative and proceed as in the preceding remark. □

14.8 Theorem (Four Squares). If n ∈ Z+, then there exists x, y, z, w ∈ Z such that n =
x2 + y2 + z2 + w2.

In light of the four squares identity Proposition 14.7, it suffices to show that primes are
sums of four squares.

Claim I. If p is prime, then there exists x, y ∈ Z such that x2 + y2 ≡ −1 (mod p).
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Proof. If p ≡ 1 (mod 4), then
(
−1
p

)
= 1 and we may take y = 0. Otherwise, we

suppose that
(
−1
p

)
= −1. Equivalently, we want to solve y2 + 1 ≡ −x2 (mod p).

Note that
|{y2 + 1 | y ∈ Fp}| =

p+ 1

2

((p− 1)/2 squares, plus 0)) and y2 + 1 ̸= 0 since
(
−1
p

)
= −1. Thus y2 + 1 takes (p+ 1)/2

non-zero values; since there are only (p− 1)/2 non-zero squares, so y2 + 1 must be non-
square for some y = y0. Then −(y20 + 1) is a square modulo p; that is, there exists x such
that x2 ≡ −(y20 + 1) (mod p), as required.

We can now prove the theorem.
Proof. Given p prime, choose a, b ∈ Z such that a2 + b2 ≡ −1 (mod p). Consider the

lattice Λ ⊆ R4 with basis

{(1, 0, a, b), (0, 1, b,−a), (0, 0, p, 0), (0, 0, 0, p)}

such that d(Λ) = p2. Let S be a ball of radius r, and µ(S) = π2r4/2. Let r2 = 4p/π
√
2, so

µ(S) = p2. By Minkowski Theorem 14.2, S contains a non-zero lattice point (x, y, z, w)
with 0 < x2 + y2 + z2 +w2 ≤ r2 < 2p. Note that (x, y, z, w) = αv1 + βv2 + γv3 + δv4. Then
x = α, y = β, z = aα+ bβ + pγ, w = bα− aβ + pδ. Modulo p, we see that

x2 + y2 + z2 + w2 ≡ x2 + y2 + (ax+ by)2 + (bx− ay)2

≡ x2 + y2 + a2x2 + b2y2 + b2x2 + a2y2

≡ (1 + a2 + b2)x2 + (1 + a2 + b2)y2 ≡ 0

since a2 + b2 ≡ −1 (mod p). Thus the result follows. □

14.3 DIRICHLET UNIT THEOREM

Our final application of Minkowski’s theorem is a generalization of the classification of
units in a quadratic number field Theorem 5.7 to any number field.

14.9 Theorem (Dirichlet Unit). If K is a number field with r1 real embeddings and 2r2
complex embeddings, then O×

K
∼= UK × Zr1+r2−1, where UK is the set of roots of unity in K.

Let θ : K → V := Rr1 ×Cr2 be given by

α 7→
(
σ1(α), . . . , σr1(α), σr1+1(α), . . . , σr1+r2(α)

)
where σ1, . . . , σr are the real emebddings and σr1+1, . . . , σr1+r2 are the complex embed-
dings. Let N : V → R be given by

N
(
x1, . . . , xr1 , zr1+1, . . . , zr1+r2

)
=

r1∏
i=1

xi ·
r1+r2∏
i=r1+1

|zi|2

N is chosen so that N(θ(α)) = NK
Q (α). Furthermore, V is a ring with coordinate-wise

operations; in particular, it has units V × = (R×)r1 × (C×)r2 . Set

G := {v ∈ V × : |N(v)| = 1}
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so that G is a subgroup of V ×. G is also closed as a topological space since it is the inverse
image of 1 under the continuous map v 7→ |N(v)|. Define

U := θ(O×
K) = θ(OK) ∩G

In particular, θ(OK) ⊆ V is a lattice (identifying C ∼= R2), and U ⊆ G is a discrete group.
In order to understand O×

K , we want to understand the group U . A natural way to do this
is to transform the multiplicative structure on U to an additive structure via the “log map”

L : V × → Rr1+r2 given b(xi; zj) 7→ (log |xi|; 2 log |zj |)

This is a surjective continuous group homomorphism; as a straightforward exercise, one
can show that L(G) ∼= Rr1+r2−1. We have the following diagram summarizing these
constructions:

G/U L(G)/L(U)

G L(G) Rr1+r2−1

U L(U)

L◦π

L

π

∼=

In order to understand U ⊆ G, by the first isomorphism theorem, it suffices to understand
kerL|U Claim III and L(U) Claim II. In fact, we claim that L(U) ∼= Rr1+r2−1. We will
prove that L(U) ⊆ L(G) is a lattice. Assuming this, it suffices to show that L(G)/L(U) is
compact; and since L is surjective, it is in fact enough to show that G/U is compact Claim
I.

Claim I. G/U is compact in the quotient topology of V ×/U .

Proof. Let v ∈ V × be arbitrary; then, multiplication by v is a linear map with matrix
representation M ; in particular, det(M) = |N(v)|. If R ⊆ V is any region, then µ(vR) =
λ(R) · |N(v)|; if v ∈ G, then λ(R) = λ(vR).

Let C ⊆ G be any compact, symmetric, convex region with µ(C) ≥ 2n. For all g ∈ G,
µ(g−1C) = λ(C) ≥ 2nλ(θ(OK)). As well, one can verify that g−1C is also symmetric,
compact, and convex. Thus by Theorem 14.2, there exists 0 ̸= α ∈ OK such that θ(α) ∈
g−1C. In particular, ∣∣NK/Q(α)

∣∣ = |N(θ(α))| ∈
∣∣N(g−1C)

∣∣
Since C is compact, |N(C)| ⊆ R is also compact and thus contains finitely many

integers. If α1, . . . , αm ∈ OK represent all possible |N(αi)| ∈ |N(C)|, then |N(α)| =
|N(αi)| for some i, so α ∈ αiO×

K . But then for any g ∈ G, there exists i such that g−1C ∩
θ(αiO×

K) ̸= ∅, so
gU ∩ θ(α−1)C ̸= ∅

Thus G/U has representatives covered by G ∩
⋃m

i=1 θ(αi)
−1C which is a finite union of

compact sets. Since G/U is closed, we are done.

Claim II. L(U) ⊆ L(G) is a lattice, and L(U) ∼= Rr1+r2−1.
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Proof. Want to show that L(U) is a full lattice in Rr1+r2−1; this happens if and only if the
quotient is compact. Recall that L(G) ∼= Rr1+r2−1 let B = {(yi) : |yi| ≤ b} be an arbitrary
hypercube. Let’s show that L(U) ∩B is finite. If L(θ(α)) ∈ B, then |σ(α)| ≤ eb for some σ
real, and |σ(α)| ≤ eb/2 for some σ complex. Then∏

σ

(t− σ(α)) ∈ Z[t]

has bounded coefficients. There are only finitely many such polynomials, so there are only
finitely many α and L(U) ⊆ L(G) is a discrete subgruop.

Thus L(U) ∼= Zr for some r ≤ r1 + r2 − 1. Since G/U → L(G)/L(U) is a surjection,
L(G)/L(U) ∼= (S1)r × Rr1+r2−1−r is compact, so r = r1 + r2 − 1.

Claim III. kerL|U ∼= UK .

Proof. Clearly ker(L) = {±1}r1×(S1)r2 is a compact set and θ(UK) ⊆ U ∩ker(L). Since
U ⊆ V × is discrete, U ∩ ker(L) ⊆ kerL is compact and, in particular, a finite group. Thus
by Lagrange’s theorem, each x ∈ U ∩ ker(L) has finite order, so in fact U ∩ ker(L) ⊆ θ(UK),
and equality holds. □

Example. To illustrate the definitions explicitly, consider the following case. Take K =
Q(

√
2) so that θ : K → V = R2 is given by a+b

√
2 7→ (a+b

√
2, a−b

√
2). ThenN : R2 → R

is given by (x, y) 7→ xy, so G = {(x, y) : xy = ±1} is the set of hyperbolas. Note that G is
closed but not compact. In this case, U = θ(±(1 +

√
2)Z), and U ⊆ G is discrete.

θ(1)

θ(−1)

θ(1 +
√
2)

G
G/U

Here, we can see that G/U is compact.

Example. If K = Q(
√
d), then r1 = 2, r2 = 0, µk = {±1} ∼= Z /2 and O×

K
∼= Z2×Z as in

Theorem 5.7. If K = Q(
√
2,
√
3), then r2 = 0, r1 = 4, O×

K = {±1} × Z3.
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