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currently in draft form and will likely remain so for a long time. If you find errors
(typographical or logical), you can contact me at alex@rutar.org.
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I. Structure of Finite Groups

1 GROUP QUOTIENTS

1.1 UNIVERSAL PROPERTY OF QUOTIENTS

Let H ⊴ G be a normal subgroup of G, and let π : G → G/H be the natural projection
map. This map has the following universal property:

1.1 Theorem (Universal Property of Quotients). Let ϕ : G→ G′ be a homomorphism. If
H ⊂ ker(ϕ), there is a unique homomorphism ϕ : G/H → G′ so that ϕ = ϕ ◦ π.

In particular, ker(ϕ) = ker(ϕ)/H and im(ϕ) = im(ϕ).

One can rephrase this universal property as follows. Suppose ϕ : G → G′ is a homo-
morphism of groups and H ⊴ G is a normal subgroup. If H ≤ ker(ϕ), then ϕ induces
a homomorphism ϕ : G/H → G′ given by xH 7→ ϕ(x) such that ker(ϕ) = ker(ϕ)/H ,
im(ϕ) = im(ϕ).

Proof. Define ϕ(xH) = ϕ(x). Then ϕ ◦ π(g) = ϕ(gH) = ϕ(g), so ϕ ◦ π = ϕ. This map is
well-defined: suppose xH = yH . Then y−1x ∈ H , so ϕ(y−1x) = 0 since H ≤ ker(ϕ). Thus

ϕ(xH) = ϕ(x) = ϕ(yy−1x) = ϕ(y)ϕ(y−1x) = ϕ(y) = ϕ(yH)

so ϕ is well-defined.
To see that ϕ is unique, let ψ satisfy the universal property as well, so ψ ◦ π = ϕ. In

particular, ϕ(h) = ψ ◦ π(g) = ψ(gN), so ψ(gN) = ϕ(gN) so ϕ is unique.
ϕ is a homomorphism since ϕ is:

ϕ((aH)(bH)) = ϕ((ab)H) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(aH)ϕ(bH)

Finally,

xH ∈ ker(ϕ) ⇐⇒ ϕ(xH) = 0 ⇐⇒ ϕ(x) = 0 ⇐⇒ x ∈ ker(ϕ) □

1.2 Corollary (First Isomorphism). Suppose ϕ : G → H is a surjective homomorphism.
Then G/ ker(ϕ) ∼= H .

Proof. Take H = ker(ϕ), so ϕ : G/ ker(ϕ) → H is surjective since im(ϕ) = im(ϕ) = H
and injective since ker(ϕ) = ker(ϕ)/ ker(ϕ) = {1}. □

1.2 CORRESPONDENCE THEOREM

1.3 Theorem. Let ϕ : G→ G′ be a homomorphism of groups. ϕ induces two maps on the set
of subgroups Γ and Γ′ of G and G′ respectively:

ϕ∗ : Γ→ Γ′ given by ϕ∗(H) = ϕ(H)

ϕ∗ : Γ′ → Γ given by ϕ∗(H ′) = ϕ−1(H ′)

Then ϕ∗ ◦ ϕ∗(H ′) = H ′ ∩ im(ϕ) and ϕ∗ ◦ ϕ∗(H) = ⟨H, ker(ϕ)⟩.
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I. STRUCTURE OF FINITE GROUPS

Recall that H ′ ∩ im(ϕ) is the largest subgroup of H ′ contained in im(ϕ), and ⟨H, ker(ϕ)⟩ is
the smallest group containing H and ker(ϕ).

1.4 Corollary. Let G be a group and N ⊴ G. Then the quotient map π : G → G/N is a
bijection from the set of subgroups of G containing N to the set of subgroups of G/N .

Proof. Recall that π is a group homomorphism, and ker(ϕ) = N and im(ϕ) = G/N .
Then π∗ ◦π∗(H ′) = H ′∩ im(π) = H ′ and π∗ ◦π∗(H) = ⟨H, ker(π)⟩ = H so π is a bijection.□

2 GROUP ACTIONS

Definition. We say that a group G acts on a set X if there is a map G×X → X satisfying
g(hx) = (gh)x and 1x = x.

Equivalently, an action of G on X is a map g 7→ πg, which assigns to each g ∈ G a
permutation πG ∈ SX which respects the operation of G; that is to say, if g, h ∈ G, then
πgh = πg ◦ πh. In other words, an action of G on X is a homomorphism π : G→ SX .

The action is often written in multiplicative form: we say πg(a) = b and can write
g · a = b, with a, b ∈ X and g ∈ G.
Example. The most classic example of a group action is the action of G on itself by conju-
gation. For each g ∈ G, define the map ϕg : G→ G given by ϕg(x) = gxg−1. Since ϕg is an
automorphism, it is certainly a permutation, and for any g, h ∈ G,

ϕgh(x) = (gh)x(gh)−1 = g(hgh−1)g−1 = ϕg ◦ ϕh(x)

Definition. Let π be an action of G on X .
1. The kernel of the action is the kernel of π as a homomorphism G → SX ; in other

words, the set {g ∈ G : g · a = a for all a ∈ X}.
2. The action is faithful if the kernel is {1} (equivalently, if π is injective).
3. Given a ∈ X , the orbit of a is the set G · a = {g · a : g ∈ G}

If G acts faithfully on X , then G is isomorphic to a subgroup of SX with isomorphism
given by π.

2.1 Proposition. Let G act on X . The orbits of the action partition X .

Proof. The orbits clearly cover X since a ∈ G · x for any a ∈ X . Suppose G · a and G · b
are orbits. Either they or disjoint, or x ∈ G · a ∩G · b. Thus get g, h so that x = g · a = h · b.
But

(g−1h) · b = g−1 · (h · b) = g−1 · (g · a) = (g−1g) · a = 1 · 1 = a

so a ∈ G · b. Thus G · a ⊆ G · b; the reverse inclusion follows identically, so G · a = G · b.□

Definition. An action of G on X is transitive if it has only one orbit, X .

Definition. Let π be an action of G on X . Given a ∈ X , the stabilizer of a is the set
Ga = {g ∈ G : g · a = a}.

2.2 Proposition (Orbit-Stabilizer). Suppose G acts on X . For every a ∈ X ,
(i) Ga ≤ G

(ii) |G · a| = [G : Ga]

2



INTRODUCTION TO GALOIS THEORY

Hence if G is finite, then every orbit has size dividing G.

Proof. 1. It suffices to show that Ga is closed under multiplication and inverses.
Let g, h ∈ Ga. Then (gh) · a = g · (h · a) = g · a = a, so gh ∈ Ga. Similarly,
g−1 · a = g−1 · (g · a) = (g−1g) · a = 1 · a = 1.

2. Let g, h be arbitrary. Then

g · a = h · a ⇐⇒ h−1 · (g · a) = h−1 · (h · a)
⇐⇒ (h−1g) · a = a

⇐⇒ h−1g ∈ Ga
⇐⇒ hGa = gGa

so that g · a depends only on gGa. Thus the number of distinct values of g · a equals
the number of left cosets of Ga. □

2.1 CONJUGATION AND THE CLASS EQUATION

Recall the action of G on itself by conjugation: the maps ϕg are given by ϕg(x) = gxg−1.
Definition. The conjugacy class of an element a ∈ A is the set G · a = {gag−1 : g ∈ G} :=
Conj(a).
By general properties of group actions, G is partitioned by its conjugacy classes, and
|Conj(g)| = [G : Ga]. In particular, when G is finite, |Conj(a)| ÷ |G| for any g ∈ G.
Furthermore, the stabilizer Ga satisfies

Ga = {g ∈ G : g · a = a} = {g ∈ G : gag−1 = g} = {g ∈ G : ga = ag} = CG(a)

which is the centralizer of a in G. We thus have that |Conj(g)| = [G : CG(g)].
What happens when Conj(g) = {g}? In this case, we say that g is central (and otherwise

call the conjugacy classes non-central). In this special case,

|Conj(g)| = 1 ⇐⇒ [G : CG(g)] = 1

⇐⇒ G = CG(g)

⇐⇒ ga = ag∀a ∈ G
⇐⇒ g ∈ Z(G)

Thus G is the disjoint union of Z(G) and its non-central conjugacy classes. In particular, if
a1, . . . , am are representatives of the non-central conjugacy classes, we have

|G| = |Z(G)|+
m∑
i=1

|Conj(ai)| = |Z(G) +
m∑
i=1

[G : CG(ai)]

2.2 CONJUGATION ACTION ON SUBGROUPS

Let G be a group, P,Q ≤ G be subgroups. Let K denote the set of conjugates of P in G.

2.3 Proposition. For any A ∈ K, A ≤ G. If A,B ∈ K, then |A| = |B|.

3



I. STRUCTURE OF FINITE GROUPS

In other words, K is composed of subgroups of G conjugate to P , all of which have the
same size as P .

Proof. If a, b ∈ hPh−1, then a = hp1h
−1, b = hp2h

−1 so ab = h(p1p2)h
−1 ∈ hPh−1.

Similarly, a−1 = (hp1h
−1)−1 = hp−1

1 h−1 ∈ hPh−1 as well.
To see that |A| = |B|, sinceA,B are conjugate, get x soB = xAx−1. The map α : A→ B

given by a 7→ xax−1 is a bijection. It is injective, since if xa1x−1 = xa2x
−1 then a1 = a2;

and it is surjective, since if b ∈ B, get a ∈ A so xax−1 = b. □

Given this setup, Q acts on K by conjugation: for g ∈ Q and hPh−1 ∈ K, we define
g · hPh−1 = g(hPh−1)g−1 = (gh)P (gh)−1 ∈ K.

The orbits are equivalence classes of conjugates of P , where h1Ph−1
1 ∼ h2Ph

−1
2 if they

are conjugate by some element of Q.
Recall that NG(H) = {g ∈ G : gHg−1 = H}; note that NG(H) is the largest subgroup

of G containg H as a normal subgroup. Then the stabilizers are given by QPi = {q ∈ Q :
qPiq

−1 = Pi} = NG(Pi) ∩Q.

3 STRUCTURE OF FINITELY GENERATED ABELIAN

GROUPS

4 SYLOW THEOREMS

Lagrange’s theorem, that says that the order of any subgroup of a group G must divide its
order. From the previous section, for finite abelian G, if m÷ |G| is any factor, then G has a
subgroup of order m. This does not necessarily hold for groups which are not abelian.

4.1 Proposition. There exists a group G and m÷ |G| so there is no subgroup of G with order
m.

Proof. Take G = A4, so |G| = 12. I claim that H has no group of order 6. For
contradiction, suppose H ≤ G and |H| = 6. Let a ∈ G such that |a| = 3; there are 8 such
elements. Consider the cosets H , aH , a2H . Since [G : H] = 2, there are 3 cases:

• aH = H , so a ∈ H
• aH = a2H , so H = aH and a ∈ H
• a2H = H so H = aH and a ∈ H , since a3 = 1.

Thus all 8 elements of order 3 are in H , contradiction. □

While in general these subgroups do not exist, a partial converse is given by the First
Sylow Theorem.

4.1 SYLOW p-GROUPS

Definition. Let p be a prime. We say that a group G is a p-group if |G| = pk, k ∈ N. If
H ≤ G is a p-group, we say that H is a p-subgroup. If |H| = pk||G|with k maximal, then
we say that G is a Sylow p-subgroup of G.

Before we prove the First Sylow Theorem, let’s recall Cauchy’s Theorem. Some standard
proofs resort to the class equation; here, I will present a different alternative approach.

4.2 Theorem (Cauchy). Let G be a finite group and let p÷ |G| be prime. If r is the number of
solutions to the equation xp = 1, then p|r.
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INTRODUCTION TO GALOIS THEORY

Proof. Let |G| = n, p|n prime, and define

S = {(a1, a2, . . . , ap) : ai ∈ G, a1a2 · · · ap = 1}

and note that |S| = np−1. Define ∼ on S by a ∼ b if a and b are cyclic permutations of each
other.

If all components of a p−tuple are equal, then its equivalence class has 1 member.
Otherwise, its equivalence class has p members.

If r denotes the number of solutions to xp = 1, then r is equal to the number of
equivalence classes with exactly 1 member. Let s denote the number of equivalence classes
with p members; then, r + ps = np−1 and since p|n, p|r as well. □

4.3 Corollary. If p÷ |G| is prime, then there exists H ≤ G with |H| = p.

Proof. By Cauchy’s Theorem, there is at least one non-trivial solution to the equation
xp = 1. Let g be such an element; then H = ⟨g⟩ ≤ G has order p. □

In a sense, Cauchy’s Theorem provides a partial converse to Lagrange’s Theorem. How-
ever, the First Sylow Theorem is a strengthening of this claim. In particular, Cauchy’s
Theorem follows as an easy corollary.

4.4 Theorem (First Sylow). Let G be a finite group and let p be a prime dividing its order.
Then G contains a Sylow p−subgroup.

Proof. The proof follows by induction on |G|. If |G| = 2, then G is its own Sylow
2-subgroup. If |G| ≥ 2 is finite, let p÷ |G|, and say |G| = pnm where p ̸ ÷m.

Case 1: p÷|Z(G)|. By Cauchy, there exists a ∈ Z(G) so that o(a) = p. Since ⟨a⟩ ⊆ Z(G),
⟨a⟩ ⊴ G. If n = 1, we are done; otherwise, by induction, G/⟨a⟩ has a Sylow p−subgroup
H . By correspondence, H = H/⟨a⟩ for some H ≤ G. Thus, pn−1 = |H|/p, so |H| = pn and
H is a Sylow p−subgroup of G.

Case 2: p ̸ ÷|Z(G)|. By the Class equation, there is some ai so that p ∤ [G : CG(ai)] =
|G|/|CG(ai)|. Thus pn ÷ |CG(ai)|where ai is non-central. Since ai /∈ Z(G), |CG(ai)| < |G|.
By induction, CG(ai) has a Sylow p−subgroup, which is also a Sylow p−subgroup of G.□

4.2 STRUCTURE OF SYLOW p-SUBGROUPS

Let G be a group and suppose H ≤ G.

4.5 Lemma. Suppose p÷ |G|, P is a Sylow p−subgroup of G, and Q is a p−subgroup of G.
Then Q ∩NG(P ) = Q ∩ P .

Proof. Since P ⊆ NG(P ), P ∩ Q ⊆ NG(P ) ∩ Q. For notation, set N = NG(P ) and
H = NG(P ) ∩Q. It remains to show H ⊆ P ∩Q.

Write |P | = pn and |H| = pm. Since P ⊴ N , HP ≤ N . Thus

|HP | = |H| · |P |
|H ∩ P |

= pk, k ≤ n

As well, P ⊆ HP so n ≤ k, and P = HP . Thus H ⊆ HP = P . □
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I. STRUCTURE OF FINITE GROUPS

4.6 Lemma. Let G, p, P,Q be as in the previous lemma, and let K denote the set of conjugates
ofP inG. LetQ act onK by conjugation, so the orbits have representativesP = P1, P2, . . . , Pr.
Then, |K| =

∑r
i=1[Q : Q ∩ Pi].

Proof. By the Orbit-Stabilizer lemma,

|K| =
r∑
i=1

|Q · Pi| =
r∑
i=1

[Q : QPi ]

=
r∑
i=1

[Q : NG(Pi) ∩Q]

=
r∑
i=1

[Q : Pi ∩Q]

where the last line follows from the previous lemma. □

4.7 Theorem (Second Sylow). If P and Q are Sylow p−subgroups of G, then there exists
g ∈ G so that P = gQg−1.

Since the conjugation action preserves the order of groups, the Sylow p−subgroups of G
are precisely the equivalence class of any Sylow p−subgroup of G.

Proof. Let K be the set of conjugates of P in G, and let P act on K by conjugation.
Recall that for Pi, Pj ∈ K, |Pi| = |Pj |.

Let P = P1, P2, . . . , Pr be orbit represntatives. Then by the Lemma above,

|K| =
r∑
i=1

[P : P ∩ Pi] = 1 +

r∑
i=2

[P : Pi ∩ P ] ≡ 1 (mod p)

since p÷ [P : Pi ∩ P ]: this follows since Pi ∩ P ⪇ P and |P | = pn.
Now let Q act on K by conjugation. Reindexing if necessary, let the orbits have

representatives P = P1, P2, . . . , Ps. IfQ ̸= Pi for i = 1, 2, . . . , s, then by the same argument
as above, |K| =

∑s
i=1[Q : Pi ∩Q] ≡ 0 (mod p), a contradiction. Thus Q = Pi and so Q is a

conjugate of P . □

Now Sylow’s third theorem follows easily:

4.8 Theorem (Third Sylow). Let p÷ |G| be prime, |G| = pnm with gcd(p,m) = 1, and np
denote the number of Sylow p−subgroups of G. Then if P is any Sylow p−subgroup of G,

1. np ≡ 1 (mod p)
2. np = [G : NG(P )]

In particular, np|m, and np = 1 if and only if NG(P ) = G; in other words, that P is a normal
subgroup of G.

Proof. Let P be a Sylow p−subgroup of G and let K be the set of conjugates of P in G.
From the proof of Sylow’s second theorem, np = |K| ≡ 1 (mod p).

Now let G act on K by conjugation so K = G · P . By the Orbit-Stabilizer theorem,
|G| = |GP | · |G · P |. Since GP = NG(P ) ∩G = NG(P ), pnm = |NG(P )| · np. Thus np|pnm,
and since np ̸≡ 0 (mod p), np|m. □
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INTRODUCTION TO GALOIS THEORY

Remark. disc f(x) is not a square in F if and only if Gal f(x) ̸⊆ A2 iff Gal f(x) = S2 iff f(x)
is irreducible.

Example. Prove that there is no simple group of order 56.
Note that 56 = 23 · 7. Since n7 ≡ 1 (mod 7) and n7|8, we have n7 ∈ {1, 8}. If n7 = 1,

then G has a normal Sylow 7−subgroup. By Lagrange, distinct Sylow 7-subgroups
intersect trivially. Thus there are 8 · 6 = 48 elements of order 7 in G. This forces n2 = 1. In
either case, G is not simple.

Remark. If p ̸= q are prime, p, q ÷ |G|. Then if Hp, Hq are p− and q−subgroups, then
Hp ∩Hq = {1}. Similarly, if |G| = pm and H,K are Sylow p−subgroups, then H = K or
H ∩K = {1}.

Example. If |G| = pq, where p, q prime, p < q, p ̸ ÷q − 1. Then G is cyclic.
Since np ≡ 1 (mod p) and np ÷ |q. We cannot have np = q, so G has a normal Sylow

p−subgroup Hp. Since p < q, q ̸ ÷p− 1, so nq = 1 and G has a normal Sylow q−subgroup
Hq, say Hq. Since Hp ∩Hq = {1}, G ∼= Hp ×Hq

∼= Zpq since p, q are coprime.

Example. If |G| = 30, then G has a subgroup isomorphic to Z15. Since n5 ≡ 1 (mod 5)
and n5|6, n5 ∈ {1, 6}. Similarly, n3 ≡ 1 (mod 3), and n3|10, so n3 ∈ {1, 10}. By counting
elements, at least one must be normal. Let H3, H5 be Sylow subgroups. Since 3 ̸ ÷5− 1,
Z15
∼= H3H5 ≤ G by the previous example.

Example. If |G| = 60, n5 > 1, then G is simple. Since |G| = 60, n5 ≡ 1 (mod 5) and n5|12,
we must have n5 = 6 (accounting for 25 elements). Suppose N ⊴ G.

Case 1: 5 ÷ |H|. Then H contains a Sylow 5−subgroup of G. Since H is normal, H
contains all conjugate other Sylow 5-subgroups, so |H| ≥ 25 and |H| = 30. By the previous
example, n5 = 1 since Z15 has only 1 Sylow 5-subgroup.

Case 2: |H| ∈ {2, 3, 4, 6, 12}. If |H| = 12, H has a normal Sylow 2- or 3-subgroup,
which is normal in G. Call it K. If |H| = 6, then H has a normal Sylow 3-subgroup
which is normal in G. Call it K. By replacing H with K if necessary, we may assume
|H| ∈ {2, 3, 4}. Consider G = G/H . Then |G| = {15, 20, 30}. In any case, G has a normal
Sylow 5-subgroup; call it P . By correspondence, P = P/H . P is a normal subgroup of G,
so P is a proper, non-trivial normal subgroup of G. As well, |P | = |P | · |H| = 5, so 5÷ |H|
and 5÷ |P |. This contradicts Case 1.

Example. A5 is simple since |A5| = 60 and ⟨(12345)⟩, ⟨(13245)⟩ are distinct Sylow 5-
subgroups.
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II. Fields

5 IRREDUCIBLE POLYNOMIALS

Definition. Let R be an integral domain. We say f(x) ∈ R[x] is irreducible over R if f is a
non-unit, non-irreducible, and whenever f(x) = g(x)h(x), then either g is a unit or h is a
unit. Otherwise, f is reducible.

Remark. A canonical way to construct new fields as follows. Suppose F be a field and
I an ideal of F [x]. Since F [x] is a PID (F [x] has a division algorithm), then I = ⟨p(x)⟩,
p(x) ∈ F [x]. Moreover, I is maximal if and only if p(x) is irreducible. Thus F [x]/I is a
field if and only if p(x) is irreducible.

5.1 Proposition. Let F be a field. If f(x) ∈ F [x], deg f(x) > 1 and f(x) has a root in F ,
then f(x) is reducible over F . In particular, if deg f(x) ∈ {2, 3}, then f(x) is irreducible over
F if and only if f has no roots in F .

Proof. By the division algorithm, f(x) = (x− a)q(x) + r(x) where deg r(x) ≤ 1. Then
f(x) = 0 + r = r, so f(x) = (x − a)q(x) + f(a), so (x − a) ÷ f(x) if and only if f(a) = 0.
From this, the first claim follows immediately.

For the second claim, if g(x)|f(x), then either deg g = deg f , deg g = 2, or deg g = 1. If
every divisor has the same degree as f , then f is irreducible; otherwise, f has a factor of
degree 1 and the claim follows by the initial observation. □

5.2 Lemma (Gauss’ Lemma). Let R be a UFD with field of fractions F . Let p(x) ∈ R[x]. If
p(x) = A(x)B(x) with A(x), B(x) non-constant in F [x], then there exists r ∈ F× such that
a(x) = rA(x), b(x) = r−1B(x) ∈ R[x].

Proof. PMATH 347. □

Remark. Gauss’ Lemma states that if p(x) ∈ R[x] is reducible over F , then p(x) is reducible
over R. In particular, if p(x) is irreducible over Z, then p(x) is irreducible over Q as well.

Let R be an integral domain and I a proper ideal. If p(x) ∈ R[x] with coefficients ai, then
p(x) ∈ (R/I)[x] with coefficients ai + I . The map p(x) 7→ p(x) is a ring homomorphism.

5.3 Proposition. Let I be a proper ideal of an integral domain R, and p(x) ∈ R[x] non-
constant and monic. If p(x) cannot be factored in (R/I)[x] into polynomials of lesser degree,
then p(x) is irreducible in Frac(R)[x].

Proof. Suppose p(x) is reducible over Frac(R). By Gauss’ Lemma, there is a non-
trivial factorization p(x) = f(x)g(x) over R[x] with deg f, deg g < deg p. Without loss of
generality, f(x) and g(x) are also monic. Thus, in (R/I)[x], p(x) = f(x) = g(x). Since
I ⊊ R, 1 /∈ I , so deg f = deg f , deg g = deg g, deg p = deg p and f = gh is a non-trivial
factorization. □

9
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5.4 Corollary. Let f(x) ∈ Z[x], deg f(x) ≥ 1. Let p ∈ Z be a prime. If f(x) ∈ Zp[x] such
that deg f(x) = deg f(x) and f(x) is irreducible over Zp, then f(x) is irreducible over Q.

Proof. Take R = Z, I = (p) in the previous lemma. □

5.5 Proposition (Eisenstein’s Criterion). Let R be an integral domain and P a prime ideal
of R. Let f(x) = xn + an−1x

n−1 + · · · + a1x + a0. If ai ∈ P and a0 /∈ P 2, then f(x) is
irreducible over R.

Proof. Suppose f(x) is reducible over R. Since f(x) is monic, f(x) = g(x)h(x), where
g(x), h(x) ∈ R[x] with deg g(x), deg h(x) < deg f(x). Therefore,

f(x) = g(x)h(x)

= xn ∈ (R/P )[x]

Since P is prime, R/P is an integral domain. Thus g(0) = h(0) = 0 and g(0), h(0) ∈ P , so
a0 = g(0)h(0) ∈ P 2. □

Example. 1. f(x, y) = x2 + y2 − 1 ∈ Q[x, y] is irreducible. Let g(y) = y2 + (x2 − 1), and
take P = ⟨x + 1⟩. Since x + 1 is irreducible, P is a prime ideal of Q[x]. Moreover,
x2 − 1 ∈ P but (x+ 1)2 /∈ P 2, so by Eisenstein, f(x, y) is irreducible.

2. Suppose f(x) = xn − d, where d is not a perfect square. Then f is irreducible over Q
by Eisenstein.

3. f(x) = x3 + 2x+ 16. Consider modulo 3, f(x) = x3 + 2x+ 1, which is irreducible
by checking 0, 1, 2 as roots.

4. f(x) = x4 + 5x3 + 6x2 − 1. Then f = x4 + x3 + 1 ∈ Z2[x] is irreducible by checking
roots and the unique irreducible quadriatic x2 + x+ 1.

5. Let p be a prime, and f(x) = xp−1 + xp−2 + · · ·+ x+ 1 = (xp − 1)/(x− 1), so

f(x+ 1) =
(x+ 1)p − 1

x
= xp−1 +

(
p

p− 1

)
xp−2 + · · ·+

(
p

2

)
x+

(
p

1

)
Since f(x) is irreducible if and only if f(x+ a) is irreducible, f(x) is irreducible by
Eisenstein.

6 FIELD EXTENSIONS

6.1 Proposition. The polynomial ring F [x] has a division algorithm (i.e. it is a Euclidean
domain). Thus F [x] is a PID.

Proof. PMATH 347. □

Definition. Let K be a field. F ⊆ K is a subfield of K if F is a field under the same
operations. A field extension of F is a field K which contains an isomorphic copy of F as
a subfield. In this case, we write K/F . We say F1/F2/ · · · /Fn is a tower of fields if each
Fi/Fi+1 is a field extension.

10
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Remark. Suppose f(x) ∈ F [x] is irreducible. Then K = F [x]
/
⟨f(x)⟩ contains F in the

following natural way: define ϕ : F → K by ϕ(x) = x+⟨f(x)⟩. It follows that ϕ is injective:
if ϕ(x) = ϕ(y), then x − y ∈ ⟨f(x)⟩. Since x − y ∈ F but ⟨f(x)⟩ ≠ F [x], we must have
x− y = 0 so x = y.

If char(F ) = p > 0, then there is a natural injection Zp → F : consider the map
ϕ : Z→ F given by n 7→ n · 1F ; apply the first isomorphism theorem.

Definition. Let α1, . . . , αn ∈ K. The field extension of F generated by α1, . . . , αn is

F (α1, . . . , αn) =

{
f(α1, . . . , αn)

g(α1, . . . , αn)
: f, g ∈ F [x1, . . . , xn], g(α1, . . . , αn) ̸= 0

}
Remark. Note that K/F (α1, . . . , αn)/F .

6.2 Proposition. Suppose K/F , α ∈ K. If α is a root of some non-zero f(x) ∈ F [x],
which is irreducible over F , then F (α) ∼= F [x]

/
⟨f(x)⟩ . Moreover, if deg f(x) = n, then

F (α) = spanF {1, α, . . . , αn−1}.

Proof. Let α ∈ K be a root of f(x) ∈ F [x] with deg f(x) = n. Consider the map

ϕ : F [x]→ F (α), ϕ(g(x)) = g(α)

One can verify that this is a ring homomorphism. Set I = ker(ϕ): since F [x] is a PID,
I = ⟨g(x)⟩; since f(x) ∈ I , f(x) = g(x)h(x) for some h(x) ∈ F [x]. Since I is a proper ideal,
g is not a unit, so by irreducibility of f , h is a unit and ⟨g(x)⟩ = ⟨f(x)⟩. Thus by the first
isomorphism theorem, F [x]

/
⟨f(x)⟩ ∼= ϕ(F [x]) via h(x) + ⟨f(x)⟩ 7→ h(α).

By definition, ϕ(F [x]) ⊆ F (α). Since ϕ(F [x]) is a field (up to isomorphism) which
contains α = ϕ(x) and F , F (α) ⊆ ϕ(F [x]), so equality holds.

Finally, by the division algorithm,

F [x]
/
⟨f(x)⟩ =

{
cn−1x

n−1 + cn−2x
n−2 + · · ·+ c0 + ⟨f(x)⟩, ci ∈ F

}
Thus F (α) = {cn−1α

n−1 + · · ·+ caα+ c0 : ci ∈ F} = spanF {1, α, . . . , αn−1}. □

Remark. Suppose g ∈ F [x] such that g(α) = 0. Since F [x] is an integral domain, g must
have an irreducible factor f with f(α) = 0. In particular,

1. If h(x) ∈ F [x], h(α) = 0 then h(x) ∈ ⟨f(x)⟩ and f(x)÷ h(x).
2. ⟨f(x)⟩ contains a unique, monic, irreducible polynomial. If g(x) ∈ ⟨f(x)⟩ is irre-

ducible, then g(x) = uf(x).

Definition. Let K/F be an extension and α ∈ K a root of a nonzero polynomial in F [x].
Then, there exists a unique monic irreducible f(x) ∈ F [x] such that f(α) = 0. We call f(x)
the minimal polynomial of α over F . If deg f(x) = n, then n is the degree of α over F .

6.3 Proposition. LetK/F be an extension andα ∈ K with minimal polynomial f(x) ∈ F [x],
with degF (α) = n. Then {1, α, . . . , αn−1} is a basis for K/F .

Proof. That it spans follows from the previous proposition (Proposition 6.2). If the
set is linearly dependent, then the coefficients in the dependence relation would give a
polynomial g with g(α) = 0 and deg g ≤ n− 1, a contradiction. □

6.4 Corollary. Let α, β ∈ K have the same minimal polynomial f(x) ∈ F [x]. Then F (α) ∼=
F (β).

Proof. This is immediate since F (α) ∼= F [x]
/
⟨f(x)⟩ ∼= F (β). □

11
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6.1 FINITE EXTENSIONS

Definition. We say that K/F is a finite extension if K is a finite dimensional F−vector
space. We call dimF K the degree of K/F and denote this dimension by [K : F ].

6.5 Theorem. If K/E and E/F are extensions, then [K : F ] = [K : E][E : F ].

Proof. Let {v1, . . . , vn} be a basis for K/E and {w1, . . . , wm} a basis for E/F . Let’s
show {wivj : i ∈ [n], j ∈ [m]} is a basis for K/F . Suppose

∑
i,j cijviwj = 0. Then∑

i

(∑
j cijwj

)
vi = 0; since the vi are linearly independent, for each i,

∑
j cijwj = 0 is

linearly independent. It is clear that this sets spans, so it is indeed a basis. □

Definition. Let K/F be an extension. We say α ∈ K is algebraic over F if it is the root
of a non-zero polynomial. Otherwise, we say α is transcendental over F . We say K/F is
algebraic if every α ∈ K is algebraic over F . Otherwise, we say K/F is transcendental.

Remark. If α ∈ K is algebraic over F , then α has a minimal polynomial in F [x].

6.6 Theorem. If K/F is finite, then K/F is algebraic.

Proof. Suppose [K : F ] = n <∞, and let α ∈ K. Consider α, α2, . . . , αn+1. If αi = αj

for some i ̸= j then α is a root of f(x) = xj − xi. Otherwise, since {α, α2, . . . , αn+1} is
linearly dependent over F , there is some dependence relation and α is a root of f(x) =
cn+1x

n+1 + · · ·+ c1x ̸= 0. □

Definition. We say thatK is a finitely generated extension of F if there exists α1, . . . , αn ∈ K
such that K = F (α1, . . . , αn).

6.7 Proposition. If K is a finitely generated and algebraic extension of F , then K/F is finite.

Proof. Suppose K/F is algebraic, where K = F (α1, . . . , αn), αi ∈ K. If n = 1, then
[F (α1) : F ] = degF (α1) <∞.

Assume the result for n and consider K = F (α1, . . . , αn, αn+1). Then

[F (α1, . . . , αn, αn+1)] = [F (α1, . . . , αn)(αn+1) : F (α1, . . . , αn)] · [F (α1, . . . , αn) : F ] <∞

by the tower theorem. □

6.8 Proposition. If K/E and E/F are both algebraic, then K/F is algebraic.

Proof. Let α ∈ K. Since K/E is algebraic, α has a minimal polynomial in E:

p(x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0 ∈ E[x]

Thus α is algebraic over F (c0, c1, . . . , cn−1). Note that

[F (cn−1, . . . , c1, c0)(α) : F (cn−1, . . . , c1, c0)] <∞.

Since F (cn−1, . . . , c1, c0) ⊆ E, F (cn−1, . . . , c1, c0)/F is algebraic and finitely generated, so
[F (cn−1, . . . , c1, c0) : F ] <∞. By the tower theorem, [F (cn−1, . . . , c1, c0, α) : F ] <∞, so α
is algebraic over F . □

12
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6.9 Proposition. Let K/F be a extension. The set of elements of K which are algebraic over
F form a subfield of K.

Proof. Let L denote the elements algebraic over F . If α, β ∈ L, then α, β, α−β, αβ, and
β−1 are all elements of F (α, β). Since [F (α, β) : F ] <∞ and since finite implies algebraic,
these elements are all algebraic. □

6.2 SPLITTING FIELDS

Definition. Let f(x) ∈ F [x] be non-constant. We say f(x) splits in an extension K of F if
it factors completely into linear factors over K.

6.10 Theorem (Kronecker). Let f(x) ∈ F [x] be non-constant. Then there exists an extension
K of F such that f(x) has a root in K.

Proof. Let f(x) ∈ F [x] be non-constant; since F [x] is a UFD, let p|f where p is irre-
ducible. Let K = F [t]/(p(t)), so t+ (p(t)) is a root of p(x), which is also a root of f(x). □

6.11 Corollary. Let f(x) ∈ F [x] be non-constant. There exists an extension K of F such
that f(x) splits over K.

Proof. Repeated application of Kronecker. □

Definition. Let f(x) ∈ F [x] be non-constant. A minimal extension K of F with the
property that f splits over K is called a splitting field for f .

If f(x) ∈ F [x], there is an extension K/F such that f(x) splits over K. But then a splitting
field for f(x) over F is F (α1, . . . , αn) where the αi are the roots of f .
Example. Find a splitting field for f(x) = x4+x2−6 over Q. Over C, f(x) = (x+

√
3i)(x−√

3i)(x−
√
2)(x+

√
2). Thus a splitting field for f(x) over Q is Q(

√
2,
√
3i).

6.12 Lemma. Let F, F ′ be fields. If ϕ : F → F ′ is an isomorphism, then the natural map
ϕ̃ : F [x]→ F ′[x] is an isomorphism.

Proof. It’s long but easy. □

We’ll just write
∼
φ ≡ φ.

6.13 Lemma (Isomorphism Extension). Let F, F ′ be fields, ϕ : F → F ′ be an isomorphism.
Let f(x) ∈ F [x] be irreducible, α a root of f(x) in an extension of F . β is a root of ϕ(f(x)) in
some extension of F ′. Then there exists an isomorphism ψ : F (α)→ F ′(β) such that ψ|F = ϕ
and ψ(α) = β.

Proof. The following diagram commutes:

F (α) F ′(β)

F F ′

F [x]
/
⟨f(x)⟩ F ′[x]

/
⟨ϕ(f(x))⟩

ρ1 ∼

ψ

ρ2 ∼

ϕ

∼
σ:g(x)7→ϕ(g(x))

13
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where ψ exists by composing maps. If a ∈ F , then

ψ(a) = ρ2 ◦ σ ◦ ρ1(a) = ρ2 ◦ σ(a) = ρ2(ϕ(a)) = ϕ(a) = a

As well, we verify that

ψ(α) = ρ2 ◦ σ ◦ ρ1(α) = ρ2 ◦ σ(x) = ρ2(ϕ(x)) = ρ2(x) = β □

6.14 Corollary. Let F be a field, f(x) ∈ F [x] non-constant. Let K be a splitting field for
f(x) over F . If F ′ is a field and ϕ : F → F ′ is an isomorphism, then for any K ′ splitting field
for ϕ(f(x)) over F ′, there is an isomorphism ψ : K → K ′ such that ψ|F = ϕ.

Proof. Repeatedly apply the isomorphism extension lemma (Lemma 6.13) to the roots
of f . □

6.15 Corollary. Let f(x) ∈ F [x] be non-constant. If K and K ′ are splitting fields for f(x)
over F , then K ∼= K ′.

Proof. Take ϕ = id in the previous corollary. □

6.3 ALGEBRAIC CLOSURE

Definition. A field F is an algebraic closure of a field F if
• F/F is algebraic
• Every non-constant polynomial in F [x] splits over F .

A field F is algebraically closed if every non-constant polynomial f(x) ∈ F [x] has a root
in F .

Example. C is an algebraic closure for R, but not for Q.

6.16 Proposition. If F is an algebraic closure for F , then F is algebraically closed.

Proof. Let F be an algebraic closer for F . Let f(x) ∈ F (x) be non-constant; by Kro-
necker, f(x) has a root α in some extension of F . Since F (α)/F is algebraic and F/F is
algebraic, F (α)/F is algebraic. Thus α is the root of some non-zero polynomial p(x) ∈ F [x].
Now, p(x) splits over F so α ∈ F and F is algebraically closed. □

6.17 Theorem. For every field F , there exists an algebraically closed field containing F .

Proof. Exercise. □

6.18 Theorem. Let K be an algebraically closed field which contains F . The collection of
elements in K which are algebraic over F is an algebraic closure.

Proof. Let L = {α ∈ K : α is algebraic overF}. We claim that L is an algebraic closure
for F . By construction, L/F is algebraic. Let f(x) ∈ F [x], deg f(x) ≥ 1. Since f(x) splits
over K, f(x) = u(x− α1) · · · (x− αn). Since u ∈ F , αi ∈ K. But, f(αi) = 0 for i = 1, . . . , n
and so αi ∈ L and f(x) splits over L. □

14
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7 EXAMPLES OF FIELD EXTENSIONS

7.1 CYCLOTOMIC EXTENSIONS

What is the splitting field of f(x) = xn − 1?
Definition. We call the roots of xn − 1 (in C) the nth roots of unity.
If ζn = e2πi/n, they are 1, ζn, ζ

2
n, · · · , ζn−1

n . Thus, the splitting field over Q is Q(ζn). What
is [Q(ζn) : Q]? When n = p is prime, xp − 1 = (x − 1)(1 + x + x2 + · · · + xp−1). Since
Φp(x) = xp−1 + · · ·+ x+ 1 is irreducible over Q (from before), so [Q(ζp) : Q] = p− 1.

Example. Since ζ5 = 1
2 + i

√
3
2 , Q(ζ6) = Q(i

√
3) so deg(x2 + 3) = 2.

Note that the nth roots of unity form a finite cyclic subgroup of C; in fact, they are the only
finite cyclic subgroups of C. A generator of this group is called a primitive nth root of unity,
which happens precisely for ζkn where gcd(k, n) = 1. Thus there are ϕ(n) primitive nth

roots of unity.
Definition. The nth cyclotomic polynomial is

Φn(x) =
∏

k∈(Zn)×

(x− ζkn)

7.1 Theorem. Φn(x) is the minimal polynmial for ζn, and [Q(ζn) : Q] = ϕ(n).

Proof. Note that ζn is a root of xn − 1, so ζn is algebraic over Q. By Gauss’ lemma, let
f(x) ∈ Z[x] be the minimal polynomial of ζn over Q so that f(x) ÷ (xn − 1) over Z[x].
Recall that

xn − 1 =
∏
j∈Zn

(x− ζjn)

If j /∈ (Zn)×, then ζjn satisfies x
n

gcd(n,j) − 1 but ζn does not, so ζ and ζjn are not conjugates.
Thus the only possible conjugates for ζn are the ζjn where j ∈ (Zn)×; it suffices to show that
these are precisely the conjugates. In particular, let’s show that if θ = ζtn and p is prime
with p ∤ n, then θp is conjugate to θ. With this, the result follows: if j is coprime to n, write
j = pe11 · · · pemm with pi ∤ n and repeatedly apply the above result to ζn for each pi, ei times.

Thus let’s prove the claim. Write xn − 1 = f(x)g(x) with f, g ∈ Z[x]; since θp is a
root of xn − 1, either it is a root of f(x) - in which case we’re done - or it is a root of g(x).
Suppose g(θp) = 0, so θ is a root of g(xp) ∈ Z[x] so f(x) ÷ g(xp) over Z[x]. Modulo p,
f(x)÷ g(xp) = g(x)p in Zp[x]. Since Zp[x] is a UFD, let s(x) be an irreducible factor of f(x)
so that s|f and thus s|g. But then xn − 1 = fg, so s2 ÷ (xn − 1) and s÷ nxn−1. Since n is
coprime to p, this implies s = cx for some c ∈ Zp. But then cx÷ xn − 1, a contradiction.□

7.2 FINITE FIELDS

Definition. Let F be a field of characteristic p. Then the map ϕ : F → F given by x 7→ xp

is called the Frobenius map.

7.2 Proposition. The Frobenius map is an injective ring homomorphism.

Proof. We have that ϕ(xy) = xpyp = (xy)p, and

ϕ(x+ y) = (x+ y)p =

p∑
i=0

xiyp−i
(
p

i

)
= xp + yp

15



II. FIELDS

since p ÷
(
p
i

)
for all 1 ≤ i ≤ p − 1. Injectivity is immediate since ϕ(1) = 1 and the only

ideals of F are {0} and {F}, forcing ker(ϕ) = {0}. □

7.3 Corollary. If F is a finite field, the Frobenius map is an automorphism.

7.4 Proposition. Suppose F is finite. Then
1. F× = ⟨α⟩ is a cyclic group.
2. |F | = pn.
3. |F | = pn if and only if F is the splitting field for xpn − x over Zp.
4. Finite fields of a fixed size are unique up to isomorphism.

Proof. 1. Write F× ∼= Cn1 × · · · × Cnk
where n1|n2| · · · |nk. Then each Cni has a

subgroup Di
∼= Cnk

; but then every x ∈ D1 × · · · ×Dk satisfies xnk = 1. Since there
are nkk such elements and xnk = 1 has at most nk roots, this forces k = 1 and F× is
cyclic.

2. Recall that F/Zp where p = charF . Thus [F : Zp] = n <∞ so that F = Zp(α) and
|F | = pn.

3. Suppose |F | = pn; by Lagrange, every a ∈ F× satisfies xp
n−1 − 1 so that every a ∈ F

satisfies xp
n − x, so xp

n − x splits over F . Take f(x) = xp
n − x, so that f ′(x) = −1

and f is separable. Thus, any splitting field F must have at least pn elemenets, so
|F | is minimal and F is a splitting field of xp

n − x.
Conversely, suppose F is the splitting field of xp

n − x over Zp. Consider K = {α ∈
F : f(α) = 0}, so that K ≤ F . In particular, F splits in K, forcing K = F . Thus,
|F | = |K| ≤ pn since f can have at most pn roots. However, as above, f(x) is
separable, so |F | = |K| = pn.

4. Splitting fields are unique up to isomorphism. □

Since the splitting field is unique, for any prime p and n ∈ N, there exists a unique field of
order pn (up to isomorphism). We denote the field Fpn .

7.5 Theorem. If E is a subfield of Fpn , then E ∼= Fpr , where r|n. Moreover, if r|n, then Fpn
has a unique subfield of order pr.

Proof. Let E be a subfield of Fpn , so n = [Fpn : Fp] = [Fpn : E][E : Fp]. Set r = [E : Fp],
r|n, and |E| = pr.

Conversely, suppose r|n, and consider Fpn = {α ∈ Fp : αp
n − α = 0}. Since r|n, write

pn − 1 = (pr − 1)(pn−r + pn−2r + · · ·+ pr + 1). From before,

E = {α ∈ Fp : αp
r − α = 0}

= {α ∈ Fp : αp
r−1 − 1 = 0} ∪ {0}

⊆ Fpn

Moreover, |E| = pr. If K is any other subfield and |K| = pr, then for any 0 ̸= α ∈ K,
αp

r−1 = 1 since K× is cyclic, and K ⊆ E. □

16



III. Galois Theory

TODO
• talk about maps σ : K ↪→ ka (algebraic closure of k).
• full proof of algebraic closure
• isomorphism extension lemma in terms of emebeddings
• use lower case k for base field to distinguish.
• Use universal property of simple field extensions

8 GALOIS GROUPS

Let f(x) ∈ F [x] be non-constant, and α1, . . . , αn be the roots of f(x) in its splitting field.
Our goal is to study these roots by permuting them using automorphisms of K.
Definition. Let K/F . Recall that Aut(K) is the group of automorphisms of K. We define
Gal(K/F ) = {ϕ ∈ Aut(K) : ϕ|F = id} ≤ Aut(K).

8.1 Lemma. Let K/F . If α ∈ K is a root of f(x) ∈ F [x] and ϕ ∈ Gal(K/F ), then ϕ(α) is
also a root of f(x).

Proof. Note that 0 = ϕ(f(α)) = f(ϕ(α)) since ϕ fixes the coefficients of f . □

8.2 Corollary. If α ∈ K is algebraic over F and ϕ ∈ Gal(K/F ), then ϕ(α) is algebraic over
F and has the same minimal polynomial in F [x].

Example. Compute Gal(Q(
√
2,
√
3)/Q). If ϕ ∈ Gal(Q(

√
2,
√
3)/Q), then ϕ(

√
2) = ±

√
2

and ϕ(
√
3) = ±

√
3. Thus the automorphisms are given by.

ϕ1 =

{√
2 7→

√
2√

3 7→
√
3

ϕ2 =

{√
2 7→ −

√
2√

3 7→
√
3

ϕ3 =

{√
2 7→

√
2√

3 7→ −
√
3

ϕ4 =

{√
2 7→ −

√
2√

3 7→ −
√
3

and G = {ϕ1, ϕ2, ϕ3, ϕ4}. Since |ϕi| = 2 for all i, G is abelian, so G ∼= Z2×Z2.

Example. Consider G = Gal(Q( 3
√
2)/Q). If ϕ ∈ G, then ϕ( 3

√
2) ∈ { 3

√
2, 3
√
2ζ3,

3
√
2ζ23}, so

ϕ( 3
√
2) = 3

√
2. Thus ϕ = id and G = {id}.

Let F be a field, f(x) ∈ F [x], deg f(x) = n ≥ 1. Let K be the splitting field for f(x)
over F , so the roots of f(x) are α1, α2, . . . , αn. Let G = Gal(K/F ), so for any ϕ ∈ G,
ϕ(αi) = αj . In particular, for any ϕ ∈ Gal(K/F ), ϕ(αi) = απ(i) for some π ∈ Sn. Thus the
map Gal(K/F )→ Sn given by ϕ 7→ π is injective.
Remark. If f(x) ∈ F [x],K the splitting field for f(x), then we write Gal(K/F ) = Gal(f(x)).
Example. Consider f(x) = (x2−2)(x2−3) ∈ Q[x]. Then Gal(f(x)) ∼= Z2×Z2. Let α1 =

√
2,

α2 = −
√
2, α3 =

√
3, α4 = −

√
3, so Gal(f(x)) = {ϵ, (34), (12), (12)(34)}.
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Example. Gal(x2 + 1) ∼= Z2 over Q[x], but Gal(x2 + 1) = {1} over Z2[x].

8.3 Corollary. Let F be a field, f(x) ∈ F [x] irreducible, K the splitting field for f(x) over
F . Then for any roots α, β ∈ K of f(x), there exists ϕ ∈ Gal(K/F ) such that ϕ(α) = β.

Proof. By the isomorphism extension lemma (Lemma 6.13), id : F → F extents to an
automorphism ϕ : F (α) → F (β) such that α 7→ β, which extends to an isomorphism
K → K. □

Definition. A subgroup H of Sn is transitive if for all i, j ∈ {1, 2, . . . , n}, there exists π ∈ H
such that π(i) = j.

8.4 Corollary. Let f(x) ∈ F [x], deg f(x) = n ≥ 1, f(x) separable and irreducible. Then
Gal(f(x)) is isomorphic to a transitive subgroup of Sn.

Example. Compute G = Gal(x3 − 2) over Q[x]. Since f(x) = x3 − 2 is irreducible, f(x) is
also separable. Then G is isomorphic to a transitive subgroup of S3. Let α1, α2, α3 be the
roots of f(x), and x = {α1, α2, α3}. ThenG acts onX via ϕ ·αi = ϕ(αi). By Orbit-Stabilizer,
|G| = |G · α| · | Stab(α1)|. By transitivity, |G · α| = 3, so 3÷ |G| and G ∼= A3 or S3.

Consider G as a subgroup of S3 relative to the order α1 = 3
√
2, α2 = α1ζ3, α3 = α1ζ

2
3 .

Note that x3 − 2 is irreducible over Q(ζ3) since x3 − 2 has no roots in Q(ζ3). Thus by
the isomorphism extension lemma, there exists ϕ ∈ G such that the following diagram
commutes:

Q(ζ3, α1) Q(ζ3, α1)

Q(ζ3) Q(ζ3)

Q Q

ϕ:ϕ(α1)=α1

ζ3 7→ζ23

id

Thus ϕ(α1) = α1, ϕ(α2) = α3 and ϕ(α3) = α2. Hence ϕ ∼ (23) ∈ G is an element of order
2, so G ∼= S3.

Remark. When computing G = Gal(K/F ), it is useful to know |G|.

Definition. Suppose K/F and E/F are field extensions. Any homomorphism ϕ : K → E
which fixes F is called an F−map from K to E.

Remark. If ϕ : K → E is a F−map, since K is a field, ϕ is automatically injective. Further-
more, for any α ∈ F , v ∈ K, ϕ(αv) = αϕ(v), so ϕ is F−linear.

If ϕ : K → K and [K : F ] < ∞, then ϕ is surjective and ϕ : K → K is an F−map if
and only if ϕ ∈ Gal(K/F ).

8.5 Lemma. Let K/F , E/F , [K : E] <∞. The number of distinct F−maps ϕ : K → E is
at most [K : F ].

Proof. We proceed inductively on the number of generators of K/F . If K = F (α1) and
ϕ : K → E is an F−map, then α1 and ϕ(α1) have the same minimal polynomial over F .
Thus there are at most [F (α1) : F ] = [K : F ] options ϕ(α1), so there are at most [K : F ]
many such F−maps.
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Now assume K = F (α1, . . . , αn), and let L = F (α1, . . . , αn−1). Let ϕ : K → E be
an F−map, so ϕ|L : L → E is an F−map. By induction, the number of possible ϕ|L is
at most [L : F ]. Since ϕ is completely determined by ϕ|L and ϕ(αn), there are at most
[L : F ][L(αn) : L] = [K : F ] possibilities for ϕ. □

Remark. How can it happen that |Gal(K/F )| < [K : F ]? It could be that the extension is
not normal; i.e. the extension has conjugates not contained in the extension.

It can also happen that there are repeated roots: consider G = Gal(Z2(t)/Z2(t
2)), so

[Z2(t) : Z2(t
2)] = 2. Then t 7→ x2 − t2 ∈ Z(t2)[x], so (x− t)2 ∈ Z(t)[x]. Thus if ϕ ∈ G, then

ϕ(t) = t, so ϕ = id and G = {1}.

9 SEPARABLE AND NORMAL EXTENSIONS

Definition. We say α ∈ K is separable if α is algebraic over F and its minimal polynomial
is separable (over F ). We say K/F is separable if K/F is algebraic and all elements of K
are separable over F . A field F is perfect if every algebraic extension of F is separable.

Remark. Suppose f(x) ∈ F [x] is irreducible. Then f(x) is separable if and only if f ′(x) ̸= 0.

9.1 Proposition. Let f(x) ∈ F [x] be irreducible.
1. If char(F ) = 0, then f(x) is separable.
2. If char(F ) = p > 0 then f(x) is not separable if and only if f(x) = g(xp) for some
g(x) ∈ F [x].

Proof. Immediate from the preceding remark. □

9.2 Corollary. 1. If char(F ) = 0, then F is perfect.
2. If char(F ) = p, then F is perfect if and only if ϕ(x) = xp is an automorphism.

Proof. (1) is clear, so we prove (2). In characteristic p, ϕ is always injective.
First suppose ϕ(x) = xp is also surjective. Suppose there exists f(x) ∈ F [x] irreducible

but not separable. Thus f(x) = g(xp), and write

f(x) = anx
pmn + · · ·+ a1x

pm1 + a0

= bpnx
pmn + · · ·+ bp1x

pm1 + bp0
= (bnx

mn + · · ·+ bxx
m1 + b0)

p

Conversely, suppose xp is not an automorphism; in particular, xp is not surjective. Let
α /∈ im(ϕ). But then f(x) = xp−α is irreducible, but if K is the splitting field for F , then r
is a root so rp = α and (x− r)p = xp − α and f is not separable. □

Remark. Since the Frobenius map is an isomorphism when F is a finite field, every finite
field is perfect.

9.3 Theorem. Let f(x) ∈ F [x] be non-constant and separable, and K the splitting field for
f(x) over F . Then |Gal(K/F )| = [K : F ].
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Proof. We proceed by induction on [K : F ]. If [K : F ] = 1, this is obvious.
Otherwise, let [K : F ] = n > 1. Let p(x) ∈ F [x] be an irreducible factor of f(x),

so p(x) is also separable over F . Say the roots of p(x) are α1, α2, . . . , αm where m =
deg p(x); suppose α1 /∈ F and let E = F (α1). Then K/E/F is a tower of fields with
[K : E] = n

m < n. Furthermore, K is the splitting field for f(x) over E, so by induction,
|Gal(K/E)| = [K : E] = n

m .
Since p(x) ∈ F [x] is irreducible, for all j, get ϕj ∈ Gal(K/F ) such that ϕj(α1) = αj ;

note that ϕ1, . . . , ϕm are distinct in Gal(K/F ). Moreover, ϕ−1
j ◦ ϕi(α1) ̸= α1 ∈ E. Thus

ϕ−1
j ◦ϕi /∈ Gal(K/E), so ϕiGal(K/E) ̸= ϕj Gal(K/E). Thus |Gal(K/F )/Gal(K/E)| ≥ m.

Thus |Gal(K/F )| ≥ m|Gal(K/E)| = n, and we’re done. □

Definition. We say an extension K/F is simple if there exists α ∈ K such that K = F (α).
We say α is a primitive element for K/F .

9.4 Theorem (Primitive Element). If K/F is finite and separable, then K/F is simple.

Proof. Suppose K/F is finite and separable.
First suppose F is finite, so that K is also finite and K× = ⟨α⟩ for some α ∈ K. Thus,

K = F (α).
Otherwise, F is infinite, and write K = F (π1, . . . , πn) for some πi ∈ K. It suffices to

prove the result for n = 2; say, K = F (α, β). Let p, q be the minimal polynomial of α and
β respectively. Let L be the splitting field for p(x)q(x) over K, and let α = α1, . . . , αn and
β = β1, . . . , βk the distinct conjugates in L of α and β (since K/F is separable). Let

S =

{
αi − α1

β1 − βj
: 1 < i ≤ n, 1 < j ≤ m

}
Since S is finite and F is infinite, get u ∈ S \ F so that γ := α + uβ ̸= αi + uβj for any
i, j ̸= 1. Certainly F (γ) ⊆ F (α, β). Let h(x) be the minimal polynomial for β over F (γ).
Since q(x) ∈ F (γ)[x] and q(β) = 0, h(x)|q(x). As well, h(x)|p(γ − ux) since p(γ − uβ) = 0;
but the only shared root is β by choice of u, deg h = 1 and β ∈ F (γ). □

9.5 Corollary. If F is perfect and [K : F ] <∞, then K/F is simple.

TODO: move def’n of conjugates somewhere more logical.
Definition. Let [K : F ] < ∞. We say K/F is normal if K is the splitting field of some
non-constant f(x) ∈ F [x] over F . Suppose α ∈ K has minimal polynomial p(x) ∈ F [x].
The roots of p(x) in its splitting field are called the F−conjugates (or just conjugates when
the base field is clear) of α.
Remark. If ϕ : K → E is an F−map and α has minimal polynomial p(x) ∈ F [x], then
p(ϕ(α)) = ϕ(p(α)) = ϕ(0) = 0, so that ϕ(α) is also a conjugate of p(x) in a splitting field
L/F .

9.6 Theorem (Characterization of Normal Extensions). Let [K : F ] <∞. The following
are equivalent:

1. K/F is normal.
2. For every L/K, if ϕ is an F−map from L to L, then ϕ|K ∈ Gal(K/F ).
3. If α ∈ K, then all of the F−conjugates of α are in K.
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4. If α ∈ K, then its minimal polynomial splits over K.

Proof. (1 ⇒ 2) If K/F is normal, then K is the splitting field of some f(x) ∈ F [x].
Let ϕ : L → L be an F−map. Write K = F (α1, . . . , αn) where αi are the roots of
f(x) in K. It suffices to show that ϕ|K(K) ⊆ K. For each i, there exists j such that
ϕ|K(αi) = ϕ(αi) = αj ∈ K. Since each x ∈ K is a F−linear combination of the αi, it
follows that ϕ(x) ∈ K, and the result follows.

(2 ⇒ 3) Let α ∈ K with minimal polynomial f(x) ∈ F [x]. Since [K : F ] < ∞,
K = F (α1, . . . , αn) with αi ∈ K. For each i, let hi be the minimal polynomial for αi over
F . Let p(x) = f(x)h1(x)h2(x) · · ·hn(x) and L be the splitting field of p(x) over F . Such a
choice is necessary to ensure L/K/F . Let β ∈ L be a root of f(x), and get ϕ ∈ Gal(L/F )
such that ϕ(α) = β. By assumption, ϕ|K ∈ Gal(K/F ), so β = ϕ(α) ∈ K, as required.

(3⇒ 4) Immediate.
(4⇒ 1) Since [K : F ] <∞, K = F (α1, . . . , αn) for αi ∈ K. Let hi(x) be the minimal

polynomial for αi over F , and set f(x) = h1(x) · · ·hn(x). Then the splitting field for f(x)
over F is F (α1, . . . , αn) = K. □

Example. Q( 3
√
2)/Q is not normal. Fpn /Fp is normal, since it is the splitting field of xp

n−x.
Q(ζn)/Q is normal with Φn(x). Zp(t)/Zp(tn) is normal with xp − tp.

10 GALOIS EXTENSIONS AND THE FUNDAMENTAL

THEOREM

Definition. We say that K/F is Galois if K/F is normal and separable.

Remark. If F is perfect and K/F is finite, then K/F is Galois if and only if K/F is normal.

Definition. Let K be a field and G ≤ Aut(K). Then the fixed field of G is

Fix(G) =
{
a ∈ K : ϕ(a) = a for all ϕ ∈ G

}
Remark. Certainly Fix(Gal(K/F )) ⊇ F by definition.

10.1 Theorem (Characterization of Galois Extensions). The following are equivalent:
1. K is the splitting field of a non-constant separable f(x) ∈ F [x] over F .
2. |Gal(K/F )| = [K : F ]
3. Fix(Gal(K/F )) = F
4. K/F is Galois

Proof. (1⇒ 2) This is Theorem 9.3.
(2 ⇒ 3) Assume |Gal(K/F )| = [K : F ] and set E = Fix(Gal(K/F )) so that K/E/F

is a tower of fields. Moreover, Gal(K/E) ≤ Gal(K/F ) is a subgroup so [K : F ] =
|Gal(K/F )| ≥ |Gal(K/E)|. Let a ∈ E and ϕ ∈ Gal(K/F ). Then ϕ(a) = a by the definition
of E, so Gal(K/E) = Gal(K/F ). Thus

[K : F ] = |Gal(K/F )| = |Gal(K/E)| ≤ [K : E] ≤ [K : F ]

so equality holds and [E : F ] = 1 by the tower theorem.
(3 ⇒ 4) Assume Fix(Gal(K/F )) = F . Let α ∈ K with minimal polynomial p(x) ∈

F [x]; we must show p(x) that splits over K with no repeated roots. Let G = Gal(K/F )
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and {α1, . . . , αn} = {ϕ(α) : ϕ ∈ G} ⊆ K. Without loss of generality, α = α1, and consider
h(x) = (x − α1) · · · (x − αn) ∈ K[x]. Then if ϕ ∈ G, ϕ(h(x)) = h(x) ∈ (FixG)[x] = F [x]
since ϕ acts by permutation on the αi. Thus h(x) splits over K with no repeated roots, and
in fact h(x) = p(x) since every root of h(x) is a F−conjugate of α, and thus a root of p(x).

(4 ⇒ 1) Since K/F is finite, K = F (α1, . . . , αn), αi ∈ K. For each i, let qi(x) ∈ F [x]
be its minimal polynomial. Say p1(x), . . . , pm(x) is a list of distinct qi(x). Then f(x) =
p1(x) · · · pm(x), and since K/F is normal, its splitting field over F is K, and by A6, f(x) is
separable. □

Example. Consider α =
√
2 +
√
3 ∈ C, with minimal polyomial x4−4x2+1. Since Q is per-

fect, we only need to check normality, and f(x) has roots ±
√

2±
√
3. The Q−conjugates

of α are ±α,±β where β =
√

2−
√
3. Since αβ = 1, β = α−1. Thus ±α, ±β ∈ Q(α) and

Q(α)/Q is normal.

α −α β −β S4
ϕ1 α −α β −β ϵ
ϕ2 −α α −β β (12)(34)
ϕ3 β −β α −α (13)(24)
ϕ3 −β β −α α (14)(23)

so G ∼= Z2×Z2.

10.2 Theorem (Artin). Let K be a field, H a finite subgroup of Aut(K). Let F = FixH .
Then

1. K/F is Galois
2. Gal(K/F ) = H
3. |H| = [K : F ]

Proof. Let α ∈ K and σ1, . . . , σr ∈ H with r maximal such that the σi(α) are distinct.
If τ ∈ G is arbitrary, then (τ ◦ σi(α)) differs from (σi(α)) only by a permutation: by
maximality of r, τ ◦ σi(α) = σj(α) for every i and some j. Injectivity of τ shows that it is
indeed a permutation. Thus taking τ = σ−1

1 if necessary, we may assume that σ1(α) = α
and α is a root of the polynomial

f(x) =

r∏
i=1

(x− σi(α))

and for any τ ∈ G, τ(f) = f . Thus f(x) ∈ (FixH)[x] = F [x]. Since the σi(α) are distinct,
f is separable.

Since α ∈ K was arbitrary and r ≤ |H|, we see that every α ∈ K is the root of a
separable polynomial with degree at most |H| and coefficients in F , and the polynomial
splits in K. Thus K/F and since the minimal polynomial of each α ∈ F splits completely
in K, K/F is normal by Theorem 9.6. In particular, by the primitive element theorem
(Theorem 9.4), K = F (α) where the degree of α is at most |H|, so that [K : F ] ≤ |H|.

Note that H ⊆ Gal(K/F ) and |H| ≤ |Gal(K/F )| ≤ [K : F ]; we have shown that
[K : F ] ≤ |H|, so we’re done. □
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10.1 THE FUNDAMENTAL THEOREM OF GALOIS THEORY

We adopt the following notation for the rest of this section. Suppose K/F : then E = {E :
F ⊆ E ⊆ K} is the set of intermediate subfields of K/F , andH is the set of subgroups of
Gal(K/F ). We then define the Galois correspondence by

E H

E Gal(K/E)

FixH H

Note that if E1 ⊆ E2 in E , then Gal(K/E1) ⊇ Gal(K/E2). Similarly, if H1 ⊆ H2 inH, then
FixH1 ⊇ FixH2. Thus the Galois correspondence is inclusion reversing.

10.3 Theorem (Fundamental Theorem of Galois Theory). Let K/F be a finite Galois ex-
tension. The Galois correspondences give an inclusion-reversing bijection (antitone Galois
connection) between E andH:

1. If E ∈ E , then Fix(Gal(K/E)) = E. In particular, K/E is Galois.
2. If H ∈ H, then Gal(K/Fix(H)) = H .

Proof. 1. K/F is normal and separable, so K/E is also normal and separable so
that K/E is Galois. Thus the result follows by Theorem 10.1.

2. This is a direct application of Theorem 10.2. □

10.4 Corollary. Suppose K/F is finite Galois. If H1 ⊆ H2 inH, then [H2 : H1] = [FixH1 :
FixH2].

Proof. We have

[FixH1 : FixH2] =
[K : FixH2]

[K : FixH1]

=
|Gal(K/FixH2)|
|Gal(K/FixH1)|

=
|H2|
|H1|

= [H2 : H1] □

To summarize the previous results, perhaps the easiest way to visualize it is with a digram.
On the left, we have the subgroup lattice of G = Gal(K/F ), and on the right, we have the
intermediate fields of K/F .
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G

H2H1 H3

...
...

...

{1}

n1
n2

n3

Hi 7→ Fix(Hi) = Ei

Hi = Gal(K/Ei)←[ Ei

F

E2E1 E3

...
...

...

K

n1
n2

n3

Example. Consider G = Gal(x3 − 2) and set α = 3
√
2. Since Q is perfect and x3 − 2 is

irreducible, then x3 − 2 is separable, so Q(α, ζ3) is the splitting field for x3 − 2 over Q.
Then |G| = [Q(α, ζ3) : Q] = 6 and since G ≤ S3, G ∼= S3.

10.5 Proposition. Let E be an intermediate subfield of K/F . For any ϕ ∈ Gal(K/F ),
ϕGal(K/E)ϕ−1 = Gal(K/ϕ(E)).

Proof. For any ψ ∈ Aut(K),

ψ ∈ Gal(K/E) ⇐⇒ ψ(α) = α for all α ∈ E
⇐⇒ ψ ◦ ϕ−1 ◦ ϕ(α) = ϕ−1 ◦ ϕ(α) for all α ∈ E
⇐⇒ ψ ◦ ϕ−1(β) = ϕ−1(β) for all β ∈ ϕ(E)

⇐⇒ ϕ ◦ ψ ◦ ϕ−1(β) = β for all β ∈ ϕ(E)

⇐⇒ ϕ ◦ ψ ◦ ϕ−1 ∈ Gal(K/ϕ(E)) □

Definition. Let K/E/F and H ≤ Gal(K/F ). We say E is invariant under H if ϕ(E) = E
for all ϕ ∈ H .

10.6 Proposition. Suppose K/F is finite and Galois. If E is an intermediate subfield of K/F ,
then the following are equivalent:

1. E/F is Galois
2. E is Gal(K/F )−invariant
3. Gal(K/E) ⊴ Gal(K/F )

Proof. (2⇔ 3) This is straightfoward in light of Proposition 10.5.
(1 ⇒ 2) Suppose E/F is Galois and take ϕ ∈ Gal(K/F ). Since E/F is Galois,

ϕ|E ∈ Gal(E/F ); thus, ϕ|E(E) = ϕ(E) = E.
(2⇒ 1) Suppose E is G−invariant where G = Gal(K/F ). By A7, E/F is separable.

To show normality, we show that E is closed under conjugation. Let α ∈ E with minimal
polynomial f(x) ∈ F [x]. Since K/F is normal, f(x) splits over K. Let β ∈ K be a
F−conjugate of α. Since f(x) ∈ F [x] is irreducible, there exists ϕ ∈ G such that ϕ(α) = β
so that β = ϕ(α) ∈ ϕ(E) = E. □

10.7 Proposition. Let K/E/F , K/F finite and Galois. If E/F is Galois, then Gal(E/F ) ∼=
Gal(K/F )

/
Gal(K/E) .

Proof. Consider the map ψ : Gal(K/F ) → Gal(E/F ) given by ψ(ϕ) = ϕ|E . Then
kerψ = Gal(K/E) and the result follows by the first isomorphism theorem. □
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11 GALOIS GROUP COMPUTATIONS

Example (Cyclotomic Galois Group). Let’s compute Gal(Q(ζn)/Q). Note that Q(ζn) is the
splitting field for the separable polynomial Φn(x) over Q so that Q(ζn)/Q is Galois. To see
that Gal(Q(ζn)/Q) ∼= Z×

n , one can realize that the map ψ : Z×
n → G by ψ(k) = {ζn 7→ ζkn}

is an isomorphism.

Example (Finite Field Galois Group). We can also compute Gal(Fpn /Fp). Since Fpn is the
splitting field of xp

n − x over Fp, Fpn /Fp is Galois with index n. Consider the Frobenius
map ϕ : Fpn → Fpn such that ϕ(a) = ap; by Fermat, ϕ ∈ Gal(Fpn /Fp). Let j = |ϕ|, so j ≤ n.
Furthermore, since ϕ is an automorphism, every element of Fpn is a root of xp

j − x, which
is only possible if j ≥ n. Thus equiality holds and G = ⟨ϕ⟩.

We now turn towards computing the Galois groups of arbitrary splitting fields of cubic
and quadratic polynomials. To do this, we need to introduce some new machinery.

Definition. Let f(x) ∈ F [x] be non-constant with splitting field K. Say f(x) = u(x −
α1) · · · (x− αn) ∈ K[x]. We say

disc f(x) =
∏
i<j

(αi − αj)2

is the discriminant of f(x).

Remark. (i) disc(f(x)) ̸= 0 if and only if f(x) is separable.
(ii) If f(x) = x2 + bx+ c, then disc f(x) = b2 − 4c.

11.1 Lemma. Suppose f(x) ∈ F [x] is non-constant. Then disc f(x) ∈ F .

Proof. If f(x) is not separable, this is obvious, so suppose f(x) is separable. For all
ϕ ∈ Gal(f(x)), ϕ(disc f(x)) = disc f(x), so disc f(x) ∈ Fix(Gal(f(x))) = F . □

11.2 Proposition. Suppose charF ̸= 2, f(x) separable with degree n ≥ 2. SetG = Gal f(x)
and d =

∏
i<j(αi − αj).

If ϕ ∈ G ⊆ Sn, then ϕ(d) = ±d. Moreover, ϕ(d) = d if and only if ϕ ∈ An. In particular,
Gal(K/F (d)) = G ∩An and G ⊆ An if and only if d ∈ Fix(G) = F .

Proof. Let ϕ ∈ G, so d, ϕ(d) are roots of x2 − d2 ∈ F [x]; thus, ϕ(d) = ±d. Observe that
Sn acts on X = {d,−d} by

σ ·
∏
i<j

(αi − αj) =
∏
i<j

(ασ(i) − ασ(j))

Moreover, ϵ · d = d and ((n)(n− 1)) · d = −d, so the action is transitive. By Orbit-Stabilizer,
n! = |Sn| = |Stab(d)| · |Sn · d| = |Stab(d)| · 2, so Stab(d) = An since An is the only index 2
subgroup of Sn. □

For the remainder of this section, we will assume that charF ̸= 2, 3.
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11.1 GALOIS GROUPS FROM CUBIC SPLITTING FIELDS

We first treat the case where f(x) is cubic. If f(x) ∈ F [x] is irreducible and separable, then
Gal f(x) ∼= S3 or A3. Suppose g(x) = x3 + αx2 + βx+ γ ∈ F [x] irreducible and separable
and consider f(x) = g(x − α/3) = x3 + bx + c ∈ F [x]. Note that f(x) is still irreducible
and separable; in particular, Gal f(x) = Gal g(x). Such a cubic is called a depressed cubic.
One can compute disc f(x) = −4b3 − 27c2. Then by applying Proposition 11.2, we see that

Gal f(x) =

{
A3 : disc f(x) = d2, d ∈ F
S3 : otherwise

11.2 GALOIS GROUPS FROM QUARTIC SPLITTING FIELDS

Suppose f(x) = x4 + αx3 + βx2 + γx+ δ ∈ F [x]; as before, we take g(x) = f(x− α/4) =
x4 + bx2 + cx + d, and Gal(f(x)) = Gal(g(x)). If G = Gal f(x), then G is a transitive
subgroup of S4 with 4 ÷ |G|. Thus, the possible options are S4, A4, D4, V , C4, where
V = {ϵ, (12)(34), (13)(24), (14)(23)}.

Let the roots of f(x) be given by α1, . . . , α4. Let K = F (α1, α2, α3, α4) and set

u = α1α2 + α3α4

v = α1α3 + α2α4

w = α1α4 + α2α3

We define the resolvent cubic of f(x)

Res f(x) = (x− u)(x− v)(x− w) = x3 − bx2 − 4dx+ 4bd− c2 ∈ F [x]

where the coefficients may be evaluated by the reader.
Let L = F (u, v, w), so that K/L/F . Since K/F is Galois, K/L is Galois, and

Gal(Res f(x)) = Gal(L/F ).

Since Gal(K/L) = G ∩ V and L/F is Galois, Gal(K/L) ⊴ Gal(K/F ), and Gal(L/F ) =
G/G ∩ V . Let m = |Gal(Res f(x))|.

G S4 A4 D4 V C4

G ∩ V V V V V C2

G/(G ∩ V ) S3 C3 C2 {1} C2

m 6 3 2 1 2

Note that G is uniquely determined when m ∈ {1, 3, 6}, so let’s examine the case m = 2.
Since deg(Res f(x)) = 3 and m = 2, exactly one of u, v, or w is in F . Without loss of
generality, assume u ∈ F . Either option forG has a 4-cycle which fixes u, so σ = (1324) ∈ G
and σ2 = (12)(34) ∈ G. Consider

(x− α1α2)(x− α3α4) = x2 − ux+ d

(x− (α1 + α2))(x− (α3 + α4)) = x2 + (b− u)

Let’s see that G = ⟨σ⟩ ∼= C4 if and only if both of these polynomials split over L.
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(=⇒) Suppose G = ⟨σ⟩. Then Gal(K/L) = G ∩ V = ⟨σ2⟩, so α1α2, α3α4,α1 + α2,α3 +
α4 ∈ Fix⟨σ2⟩ = L.

(⇐=) Conversely, suppose α1α2, α3α4,α1 + α2,α3 + α4 ∈ L. Then α1α2 ∈ L(α1) that
α1, α2 ∈ L(α1). Then since v−w = (α1−α2)(α3−α4) ∈ L, so α3−α4 ∈ L(α1) as well, so
that α3, α4 ∈ L(α1).

Now, K = F (α1, . . . , α4) = L(α1), and [K : L] = [L(α1) : L] = |Gal(K/L)|. The
polynomial p(x) = x2 − (α1 + α2)x+ α1α2 ∈ L[x] has p(α1) = 0 so that [K : L] ≤ 2. Thus
[K : F ] ≤ 4, which forces G = C4. TODO: why is [L : F ] ≤ 2?
Example. Consider f(x) = x4 − 2x− 2. Then Res f(x) = x3 + 8x− 4 has no rational roots,
and is irreducible. Now, disc(Res f(x)) = −4 · (83) − 27 · 42 < 0 is not a square in Q, so
Gal(Res f(x)) = S3. Thus Gal f(x) ∼= S4.
Example. Consider g(x) = x4 +5x+5, irreducible by Eisenstein, so Res g(x) = x3− 20x−
25 = (x− 5)(x2+5x+5). Thus GalRes g(x) = Z2, and m = 2. We let u = 5 ∈ Q. Consider
x2 − 5x − 5 and x2 − 5. The roots of x2 + 5x + 5 are −5±

√
5

2 , so L = Q(
√
5). The roots of

x2 − 5 are also in L. Thus Gal f(x) = Z4.

12 SOLVABILITY AND RADICAL EXTENSIONS

Throughout this section, we assume that charF = 0.
Definition. A group G is solvable if there exists a chain of subgroups G = G0 ⊵ G1 ⊵
G2 ⊵ · · · ⊵ Gn = {1} such that Gi

/
Gi+1 is abelian.

Example. Any abelian solvable is abelian. We have S4 ⊇ A4 ⊇ V ⊇ {1}, so S4 is solvable.
If G is simple, then G is solvable if and only if G is abelian. For example, A5 is simple and
non-abelian, and thus not solvable.

12.1 Proposition. If G is solvable and N ≤ G, then N is solvable; if N ⊴ G, then G/N is
solvable.

Proof. Since G is solvable, get G = G0 ⊵ G1 ⊵ · · · ⊵ Gn = {1}. Then
• Consider the sequenceN = G0∩N ⊵ G1∩N ⊵ · · · ⊵ Gn∩N = {1}, since normality

is preserved under intersection. Furthermore,

N ∩Gi
/
N ∩Gi+1

∼= (N ∩Gi)Gi+1
/
Gi+1 ⊆ Gi

/
Gi+1

is abelian.
• Consider the sequence G/N = G0/N ⊵ G1/N ⊵ · · · ⊵ Gn/N = {1} and use

the third isomorphism theorem. TODO: finish this, something is weird: N is not a
normal subgroup of Gi, use correspondence theorem for normal subgroups. □

12.2 Proposition. Let N ⊴ G; then N is solvable if and only if N and G/N are solvable.

Proof. The forward direction is done; conversely, suppose N and G/N are solvable.
Let

N = N0 ⊇ N1 ⊇ · · · ⊇ Nm = {1}
G/N = G0/N ⊇ G1/N ⊇ · · · ⊇ Gl/N = {N}

By the third isomorphism theorem, Gi/N
/
Gi+1/N

∼= Gi
/
Gi+1 , so G = G0 ⊇ G1 ⊇ · · · ⊇

N . TODO: fix this. □
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Remark. Let G be finite, solvable. By refining the chain as much as possible, we may
assume G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1} with Gi/Gi+1, and no Hi ≤ G with Gi ⊋ Hi ⊇
Gi+1 normal. That is to say, Gi/Gi+1 is abelian and simple, so

∣∣Gi/Gi+1

∣∣ prime.

Definition. We say K/F is a simple radical extension if K = F (α) for some α ∈ K such
that αn ∈ F for some n ∈ N. A radical tower over F is a tower Km/Km−1/ · · · /K1/F such
that K1/F and Ki+1/Ki are each simple radical extensions. We say K/F is radical if there
exists a radical tower over F starting at K. We say f(x) ∈ F [x] is solvable by radicals over
F if its splitting field is contained in a radical extension of F .

Example. Consider f(x) = x4 − 4x2 + 2. Then Q(
√

2 +
√
2) ⊇ Q(

√
2) ⊇ Q is solvable by

radicals over Q.

Definition. We say an extension K/F is cyclic if K/F is finite and Galois, and Gal(K/F )
is cyclic.

12.3 Proposition. If F contains a primitive nth root of unity and K = F (α) with αn ∈ F ,
then K/F is cyclic.

Proof. Consider f(x) = xn − αn ∈ F [x]. Let ζ ∈ F be a primitive nth root of unity. The
roots of f(x) inK are αζi for i ∈ {0, 1, . . . , n−1}. ThusK is the splitting field for f(x) over
F , so K/F is Galois. For each ϕ ∈ Gal(K/F ), there exists a unique 0 ≤ i ≤ n− 1 such that
ϕ(α) = αζi. Write i = Γ(ϕ), and it is straightforward to verify that Γ : Gal(K/F )→ Zn is
an injective homomorphis. Thus Gal(K/F ) is isomorphic to a cyclic subgroup of Zn, and
thus cyclic. □

TODO: finish all the proofs in this section.
Definition. We say {σ1, . . . , σn} ⊆ AutK is linearly dependent over K if there exists ai ∈ L,
not all zero, such that a1σ1(α) + · · · + anσn(α) = 0 for all α ∈ K. Otherwise, we say
{σ1, . . . , σn} is linearly independent.

12.4 Lemma. Let [K : F ] <∞. Then any finite subset of Gal(K/F ) is linearly independent
over K.

Proof. Suppose not; it suffices to prove the result for Gal(K/F ). Let {σ1, . . . , σr} be a
minimal linearly dependent subset of Gal(K/F ) and let

a1σ1 + · · ·+ arσr = 0

be a non-trivial dependence relation; note that each ai ∈ K× by minimality. Certainly,
r > 1.

Let β ∈ K be such that σ1(β) ̸= σ2(β). We then have for any α ∈ K that

a1σ1(α)σ1(β) + a2σ2(α)σ2(β) + · · ·+ arσr(α)σr(β) = 0 (12.1)
a1σ1(α)σ1(β) + a2σ2(α)σ1(β) + · · ·+ arσr(α)σ1(β) = 0 (12.2)

where (12.1) follows since σi(αβ) = σi(α)σi(β). Subtracting (12.1) and (12.2), we get

a2σ2(α)[σ2(β)− σ1(β)] + · · ·+ arσr(α)[σr(β)− σ1(β)] = 0

which is a dependence relation on {σ2, . . . , σr}, contradicting minimality. □
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We now provide a converse to Proposition 12.3. TODO: maybe merge the theorems?

12.5 Proposition. Let F be a field which contains a primitive nth root of unity. If K/F is
cyclic with [K : F ] = n, then K/F is simple radical.

Proof. Suppose ζ ∈ F is a primitive nth root of unity and K/F is cyclic of degree n. Let
G = Gal(K/F ) = ⟨σ⟩, |G| = n for some σ ∈ G. For α ∈ K, define

g(α) := α+ ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α)

Note that ζσ(g(α)) = g(α) so that σ(g(α)) = ζ−1g(α). In particular,

σ(g(α)n) = σ(g(α))n =
(
ζ−1g(α)

)n
= g(α)n

Thus for all α ∈ K, since G = ⟨σ⟩, g(α)n ∈ FixG = F . Moreover, since G is linearly
independent over K, there exists α ∈ K such that g(α) ̸= 0. Furthermore, σi(g(α)) =
ζ−ig(α) ̸= g(α) for any 1 ≤ i ≤ n − 1; thus g(α) /∈ FixH for any {1} ̸= H ≤ G. Thus by
the fundamental theorem of galois theory (Theorem 10.3), g(α) /∈ E for any F ⊆ E ⊊ K,
so F (g(α)) = K. □

12.6 Proposition. Let K/E/F , E/F Galois, K/E radical. Then there exists L/K such that
L/F is Galois and L/E is radical such that Gal(L/E) is solvable.

Proof. We prove the result when K/E is simple radical; the more general case follows
by induction. Suppose K = E(α) where αn = β ∈ E. Also suppose G = Gal(E/F ) =
{σ1, . . . , σr}. Consider

f(x) = Φn

r∏
i=1

(xn − σi(β)) ∈ (FixG)[x] = F [x]

and let L be the splitting field for f(x) over K; let’s show that L has the desired properties.

• L/F is Galois. First note that L is the splitting field for f(x) over E. Since E/F is
Galois, E is the splitting field of some separable polynomial h(x) ∈ F [x]. Then L
is the splitting field for h(x)f(x), and since charF = 0 so that F is perfect, L/F is
Galois.

• L/E is radical. Let ζ be a root of Φn(x) in L. We extend each σi ∈ G to a σ∗i ∈
Gal(L/F ). Thus, the roots of f(x) are of the form ζiσ∗i (α), so

L = E(ζ, σ∗1(α), . . . , σ
∗
r (α)).

Let E0 = E(ζ) and for 1 ≤ i ≤ r, Ei = E(ζ, σ∗1(α), . . . , σ
∗
i (α)) so Er = L. Note that

ζn = 1 ∈ E and σ∗i (α)
n = σ∗i (α

n) = σ∗i (β) = σi(β) ∈ E. Thus,

E ⊆ E0 ⊆ E1 ⊆ · · · ⊆ Er = L

is a radical tower, so that L/E is radical.
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• Gal(L/E) is solvable. Let Gi = Gal(L/Ei), so by the fundamental theorem of galois
theory,

{1} = Gr ≤ Gr−1 ≤ · · · ≤ G2 ≤ G1 ≤ G0 ≤ G′

where G0 = Gal(L/E(ζ)). Moreover, G0 ≤ G′ := Gal(L/E). First,

G0 = Gal(L/E(ζ)) ⊴ Gal(L/E)

since E(ζ)/E is Galois (splitting field of Φn(x) over E). Furthermore, G′/
G0
∼=

Gal(E(ζ)/E) is abelian in the same way that Q(ζ)/Q is abelian.

Now, Gal(L/Ei+1) ⊴ Gal(L/Ei) since Ei+1/Ei is Galois (Ei+1/Ei is simple radical
with ζ ∈ Ei and σ∗i+1(α)

n ∈ Ei. By the proposition,Ei+1/Ei is cyclc. Also,Gi/Gi+1
∼=

Gal(Ei+1/Ei) is cyclic (correspondence between simple radical and cyclic). □

12.7 Corollary. Take E = F . If K/F is radical, then there exists L/K such that L/F is
radical and Galois with Gal(L/F ) is solvable.

12.8 Theorem (Galois). Let f(x) ∈ F [x]. Then f(x) is solvable over F if and only if
Gal f(x) is solvable.

Proof. (=⇒) Reading
(⇐=) Suppose f(x) is solvable by radicals over F . Say f(x) = p1(x)

i1 · · · pl(x)il where
the pi are distinct and irreducible. By replacing f(x) with p1(x) · · · pl(x), we may assume
f(x) is separable. LetE be the splitting field of f(x) over F . ThenE/F is Galois. Moreover,
E ⊆ K, K/F is radical. Then by the proposition, there exists L/K such that L/F is
Galois and radical. Since E/F is Galois, Gal(L/E) ⊴ Gal(L/F . Thsn Gal(E/F ) ∼=
Gal(L/F )

/
Gal(L/E) . □

Example. If 1 ≤ deg(x) < 5, then f(x) is solvable by raicals. Let g(x) be the product of
distinct factors of f(x). Then Gal(g(x)) ≤ S4 since g(x) is separable, and S4 is solvable.

Remark. Note that Sn = ⟨(12), (123 · · ·n)⟩. If p is prime, then Sp = ⟨τ, σ⟩ where τ is any
transposition and σ is any p−cycle.

12.9 Lemma. Let f(x) ∈ Q[x] be irreducible with prime degree p. If f(x) has exactly 2
non-real roots, then Gal f(x) = Sp.

Proof. Let α be a root of f(x), then [Q(α) : Q] = deg f(x) = p. Thus p÷ [K : Q] where
k is the splitting field of f(x) over Q. Thus there exists σ ∈ Gal f(x), |σ| = p. Without
loss of generality, σ = (123 · · · p). Moreover, ϕ : C→ C by ϕ(z) = z is a Q−map. By the
normality theorem, ϕ|K ∈ Gal f(x). Since f(x) has only 2 non-real roots, ϕ|K = (ij). Thus
Gal f(x) = Sp. □

Example. Consider f(x) = x5 + 2x3 − 24x − 2, irreducible by Eisenstein. By IVT, f(x)
has at least 3 real roots. Computing the sum of squares of roots as

∑
α2
i = (

∑
αi)

2 −
2
∑

i<j αiαj = −4, one sees that not all rots of f(x) are real. Since non-real roots of f(x)
appear in conjugate pairs, f(x) has exactly 2 non-real roots. By the lemma, Gal f(x) = S5,
S5 is not solvable, so f(x) is not solvable by radicals.
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