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I. The Multiplicative Ergodic Theorem

1 RANDOM MATRIX PRODUCTS AND THE

SUBADDITIVE ERGODIC THEOREM

1.1 THE BIRKHOFF ERGODIC THEOREM

Let Ω be a separable, second-countable metric space equipped with its Borel σ-algebra
B, and let µ be a Borel probability measure on Ω. Suppose we are given a measurable
function θ : Ω → Ω. We denote the pushforward of µ by θ to denote the Borel probability
measure defined by the rule

θ∗µ(E) = µ(θ−1(E))

for Borel sets E ⊂ Ω. We say that the function θ is measure preserving if θ∗µ = µ. In this
situation, we call the information (Ω, µ, θ) a measure-preserving dynamical system.

Given a Borel set E ⊂ Ω, we say that E is θ-invariant if θ−1(E) = E, and denote the
set of θ-invariant sets by Bθ. More generally, we say that a measurable function f : Ω → K
where K is a topological space is θ-invariant if f(ω) = f ◦ θ(ω) for µ-a.e. ω. One can
verify that Bθ is a Borel σ-subalgebra of B. In particular, f is θ-invariant if and only if f
is Bθ-measurable. We say that (Ω, µ, θ) is ergodic if each θ-invariant set E ∈ Bθ either has
µ(E) = 0 or µ(E) = 1.

We will denote by θn the n-fold composition θ ◦ · · · ◦ θ. Given a function f , we write
f = f+ + f− where f+ ≥ 0 and f− ≤ 0. A standard result is the following.

1.1 Theorem (Birkhoff Pointwise Ergodic). Let (Ω, µ, θ) be an ergodic measure-preserving
dynamical system and let f = f+ + f− satisfy f+ ∈ L1(Ω, µ). Then for µ-a.e. ω ∈ Ω, we
have

lim
n→∞

1

n

n−1∑
i=0

f(θi(ω)) =

∫
Ω
f dµ

where the limit may be attained at −∞.

We have written Theorem 1.1 in additive notation, but it can be easily rephrased in
multiplicative notation. Denote by log+(x) = max(0, log x). Write g = exp(f) and note
that f+ = log+(g). Then for µ-a.e. ω ∈ Ω,

lim
n→∞

(g(Tn−1ω) · · · g(ω))1/n = exp

(∫
Ω
log g dµ

)
.

Of course, here, the group written in product notation is still commutative. In the following
section, we consider a more general setting where this is no longer the case.

1.2 RANDOM MATRIX PRODUCTS

The setting of Theorem 1.1 is nice, but in these notes we are interested in a somewhat more
general situation. First consider the following example. Let Ω denote the compact product
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I. THE MULTIPLICATIVE ERGODIC THEOREM

space GLd(C)N equipped with the left-shift map σ : Ω → Ω given by

σ((Mn)
∞
n=1) = (Mn)

∞
n=2

for a sequence of matrices (Mn)
∞
n=1 ⊂ Ω. Let ν be a probability measure on GLd(C) and

let Xi : Ω → GLd(C) for i ∈ N be independent random matrices with distribution ν.
Asymptotic behaviour of random products of the form Xn · · ·X1 can be interpreted as a
matrix-valued generalization of the law of large numbers.

More generally, we are interested in matrix-valued measurable functions, i.e. functions
X : Ω → GLd(C) on a measure-preserving space (Ω, µ, θ). This setting is a generalization
of the setting in Theorem 1.1, where we considered a measurable function f : Ω → R
satisfying an integrability criteria. Let ∥·∥ : GLd(C) be a matrix norm. We will assume that
∥·∥ is submultiplicative (i.e. ∥AB∥ ≤ ∥A∥ ∥B∥), but we do not lose any generality since all
matrix norms are equivalent. We also assume that X satisfies the integrability condition∫

Ω
log+ ∥X(ω)∥dω <∞.

As in the prior section, we are interested in determining statistical information concerning
the limit of the random matrix product

Sn(ω) = X(Tn−1ω) · · ·X(ω).

We will investigate various statistical properties of the random products Sn(ω). Here are
three such examples which we will focus on:

(i) the growth rate of ∥Sn(ω)∥ =
∥∥X(θn−1ω) · · ·X(ω)

∥∥ for large n and “typical” ω.

(ii) the growth rate from a fixed starting point
∥∥X(θn−1ω) · · ·X(ω)v

∥∥ for some v ∈ Cd

(iii) the behaviour of the directions
∥∥X(θn−1ω) · · ·X(ω)v

∥∥ /∥∥X(θn−1ω) · · ·X(ω)v
∥∥ for

some v ∈ Cd.

Here are some settings where this theory is applicable.
Example. 1. Given fixed matrices M1, . . . ,Mℓ ∈ GLd(C), generate a sequence S0 = I

and Sn+1 =Mi · Sn where we take matrix Mi with probability 1/ℓ. The products Sn
can be interpreted as a random walk on GLd(C) (or Cd) where the “steps” are given
by multiplication by a matrix Mi.

2. If U ⊂ Rd is an open set and F : U → U is smooth, by the chain rule, the Jacobian of
Fn at a point u satisfies

D(Fn)u = (DF )Fn−1u · · · (DF )u.

Here, DF : U → GLd(R) is a matrix-valued measurable function. The growth rate
of DF is related to the entropy of F and the dimension of invariant measures.

3. If Ti(x) = Aix + ti where A1, . . . , Aℓ ∈ GLd(R) have operator norms ∥Ai∥ < 1 for
i = 1, . . . , ℓ and ti ∈ Rn, then there is a unique self-affine set K satisfying

K =

ℓ⋃
i=1

Ti(K)
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RANDOM MATRIX PRODUCTS

and, given probabilities p1, . . . , pℓ, a unique self-affine measure, which is a Borel
probability measure ν satisfying

ν =
ℓ∑

i=1

pi(Ti)∗µ.

Here, dimensional properties of the measure ν are related to properties of random
products of the matrices {A1, . . . , Aℓ}.

1.3 LYAPUNOV EXPONENTS

A fundamental statistical property associated with the matrix-valued function X is the
following.
Definition. With notation as above, we define the top Lyapunov exponent λ : Ω → R by

λ(ω) = lim
n→∞

1

n
log ∥Sn(ω)∥ . (1.1)

We now have the following fundamental result.

1.2 Theorem (Furstenburg-Kesten). The function λ is θ-invariant and satisfies∫
Ω
λ(ω) dω = lim

n→∞

1

n

∫
Ω
log ∥Sn(ω)∥dω.

This result can be thought of as interchanging the limit with the integral, i.e. averaging
over space is the same as averaging over time.

In fact, we will prove Theorem 1.2 as a consequence of a more general result. We first
make some observations about the average an :=

∫
Ω log ∥Sn(ω)∥. Observe by submulti-

plicativity of the matrix norm that

an+m :=

∫
Ω
log ∥Sn+m(ω)∥dω

=

∫
Ω
log

∥∥X(θn+m−1ω) · · ·X(ω)
∥∥dω

≤
∫
Ω
log

∥∥X(θn+m−1ω) · · ·X(θmω)
∥∥dω +

∫
Ω
log

∥∥X(θm−1ω) · · ·X(ω)
∥∥dω

=

∫
Ω
log ∥Sn(θmω)∥ dω +

∫
Ω
log ∥Sm(ω)∥dω

= an + am

(1.2)

where the last line follows by the integrability condition on X along with the fact that θ is
measure preserving.
Definition. We say that the sequence (an)

∞
n=1 ⊂ R is subadditive if an+m ≤ an+am for each

n,m ∈ N. More generally, we say that a sequence of functions φn : Ω → R is subadditive if

φn+m(ω) ≤ φn(θ
mω) + φm(ω). (1.3)

The following lemma is straightforward.
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I. THE MULTIPLICATIVE ERGODIC THEOREM

1.3 Lemma. If (an)∞n=1 is a subadditive sequence, then limn→∞
an
n = infn≥1

an
n .

In particular, implies that the limit

lim
n→∞

1

n

∫
Ω
log ∥Sn(ω)∥ dω

always exists. Moreover, if we set φn(ω) = log ∥Sn(ω)∥, we observed in (1.2) that the
sequence of functions φn is subadditive. Thus Theorem 1.2 is a consequence of the
following more general result.

1.4 THE SUBADDITIVE ERGODIC THEOREM

Throughout the statement and the proof, note that many inequalities implicity hold for
µ-a.e. ω ∈ Ω.

1.4 Theorem (Kingman’s Subadditive Ergodic). Let φn : Ω → R be a subadditive se-
quence with φ+

1 ∈ L1(Ω, µ). Then the limit φ(ω) := limn→∞
φn(ω)

n exists for almost every
ω ∈ Ω. Moreover, φ is θ-invariant and∫

Ω
φ(ω) dω = lim

n→∞

1

n

∫
Ω
φn(ω) dω =: L.

Set

φ−(ω) = lim inf
n→∞

φn(ω)

n
φ+(ω) = lim sup

n→∞

φn(ω)

n
.

We first observe that φ− (and by an analgous argument φ+) is θ-invariant. By the subaddi-
tivity assumption (1.3) with m = 1,

φ−(ω) ≤ lim inf
n→∞

φn(θω) + φ(ω)

n+ 1
= φ−(θω)

so with Xa = {ω ∈ Ω : φ−(ω) ≥ a} for any a ∈ R, we have θ−1(Xa) ⊃ Xa. But θ is
measure-preserving, so this can forces µ(θ−1(Xa) \Xa) = 0, i.e. φ− is θ-invariant.

Our general idea in this proof is to first establish the result for the function φ−, and
then use subadditivity and a repeat application of this result to obtain the result for φ+.
To subdivide the proof more clearly, we will first prove two intermediate lemmas.

1.5 Lemma. We have
∫
Ω φ−(ω) dω = L.

Proof. Let ϵ > 0 be arbitrary. For k ∈ N, define

Ek =
{
ω ∈ Ω :

φj(ω)

j
≤ φ−(ω) + ϵ for some j = 1, . . . , k

}
.

Note that Ek ⊂ Ek+1 and
⋃

k Ek = ω. Now set

ψk(ω) =

{
φ−(ω) + ϵ : ω ∈ Ek

φ1(ω) : ω ∈ Ec
k

Observe that ψk ≥ φ−(ω) + ϵ by definition of Ek.
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RANDOM MATRIX PRODUCTS

First, we will prove that for all n > k and almost every ω ∈ Ω,

φn(ω) ≤
n−k−1∑
i=0

ψk(θ
iω) +

n−1∑
i=n−k

max{ψk, φ1}(θiω). (1.4)

Since φ− is θ-invariant, we may assume that φ−(θ
nω) = φ−(ω) for all n.

We will inductively define a sequence m0 ≤ n1 < m1 ≤ n2 < · · · as follows. Let
m0 = 0. Inductively, let nj ≥ mj−1 be the minimal integer such that θnjω ∈ Ek (if it exists).
By definition of Ek, there exists mj such that 1 ≤ mj − nj ≤ k and

φmj−nj (θ
njω) ≤ (mj − nj)(φ−(θ

njω) + ϵ). (1.5)

Let ℓ be maximal such that mℓ ≤ n. By subadditivity, inductively applying the inequality

φi(ω) ≤ φ1(θ
iω) + φi−1(ω)

if i ̸= mj for some j and the inequality

φmj (ω) ≤ φnj (ω) + φmj−nj (θ
njω),

we obtain

φn(ω) ≤
∑
i∈I

φ1(θ
iω) +

ℓ∑
j=1

φmj−nj (θ
njω) (1.6)

where I =
⋃ℓ−1

j=0[mj , nj+1) ∪ [mℓ, n). Now if i ∈ I with i < nℓ+1, we have

φ1(θ
iω) = ψk(θ

iω)

since θiω /∈ Ec
k. Since φ−(θ

nω) = φ−(ω) and ψk ≥ φ− + ϵ by definition, by (1.5),

φmj−nj (θ
njω) ≤

mj−1∑
i=nj

(φ−(θ
iω) + ϵ) ≤

mj−1∑
i=nj

ψk(θ
iω).

Thus (1.4) follows by (1.6) and the fact that n− nℓ < k.
Now, suppose φn/n ≥ −C for some fixed constant C > 0. The upper bound follows

by Fatou’s Lemma: ∫
Ω
φ−(ω) dω ≤ lim inf

n→∞

1

n

∫
Ω
φn(ω) dω = L.

To get the lower bound, by (1.4),

1

n

∫
Ω
φn(ω) dω ≤ n− k

n

∫
Ω
ψk(ω) dω +

k

n

∫
Ω
max{ψk, φ1}(ω) dω.

Thus taking the limit as n goes to infinity, we have

L ≤
∫
Ω
ψk(ω) dω

which holds for any k ∈ N. Moreover, limk→∞ ψk = φ− + ϵ, so that L ≤
∫
Ω φ−(ω) dω + ϵ.

But ϵ > 0 was arbitrary, giving the desired equality.
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I. THE MULTIPLICATIVE ERGODIC THEOREM

More generally, let φ(C)
n = max{φn,−Cn} and φ

(C)
− = max{φ−,−C}. Then by the

Monotone Convergence Theorem,∫
Ω
φ−(ω) dω = inf

C

∫
Ω
φ
(C)
− (ω) dω = inf

C
inf
n

∫
Ω

φ
(C)
n (ω)

n
dω

= inf
n

∫
Ω

φn(ω)

n
dω = L

as required. □

1.6 Lemma. We have lim supn→∞
φnk(ω)

nk = φ+(ω) pointwise a.e.

Proof. The upper bound follows since by subadditivity and invariance of φ+,

lim sup
n→∞

φnk(ω)

n
≤

k−1∑
j=0

lim sup
n→∞

φn(θ
njω)

n

= kφ+(ω).

Conversely, given n ∈ N, write n = kqn + rn where rn ∈ {1, . . . , k}. By subadditivity,

φn(ω) ≤ φkqn(ω) + φrn(θ
kqnω) ≤ φkqn(ω) + ψ(θkqnω)

where ψ = max{φ+
1 , . . . , φ

+
k }. By assumption, ψ ∈ L1. Below, we will show that

lim
n→∞

ψ ◦ θkqn
qn

= 0 (1.7)

pointwise a.e. Assuming this result, we have

lim sup
n→∞

φn

n
≤ lim sup

n→∞

1

n
φkqn =

1

k
lim sup
n→∞

1

qn
φkqn ≤ 1

k
lim sup
n→∞

φnk

n
.

Let’s prove (1.7). Let ϵ > 0 be arbitrary. We first observe that

∞∑
n=1

µ
(
{ω ∈ Ω : |ψ(θnω)| ≥ ϵn}

)
=

∞∑
n=1

µ
(
{ω ∈ Ω : |ψ(ω)| ≥ ϵn}

)
=

∞∑
n=1

∞∑
k=n

µ
(
{ω ∈ Ω : kϵ ≤ |ψ(ω)| < (k + 1)ϵ}

)
=

∞∑
k=1

kµ
(
{ω ∈ Ω : kϵ ≤ |ψ(ω)| < (k + 1)ω}

)
≤

∫
Ω

|ψ(ω)|
ϵ

dω <∞.

Thus the result follows by the Borel-Cantelli Lemma. □

Proof (of Theorem 1.4). We are now in position to complete the proof. As before, we
first assume that φn/n ≥ −C for some fixed C > 0. Set

ϕk = −
n−1∑
j=0

φk ◦ θkj .
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RANDOM MATRIX PRODUCTS

By definition, ϕn+m = ϕm + ϕn ◦ θkm and ϕ1 = −φk ≤ Ck, so ϕ+1 ∈ L1(Ω, µ). Let
ϕ− = lim infn→∞

ϕn

n dω. Then by Theorem 1.5 and the fact that µ is θ-invariant,∫
Ω
ϕ−(ω) dω = lim

n→∞

∫
Ω

ϕn(ω)

n
dω =

∫
Ω
φk(ω) dω.

Now by the subadditivity assumption and Theorem 1.6,

−ϕ− = lim sup
n→∞

1

n

n−1∑
j=0

φk ◦ θkj ≥ lim sup
n→∞

φkn

n
= kφ+.

Combining the last two equations, we obtain∫
Ω
φ+ dω ≤ −1

k

∫
Ω
ϕ− dω ≤ 1

k

∫
Ω
φk(ω) dω.

But this holds for any k ∈ N, so that
∫
Ω φ+ dω ≤ L.

In general, as in the proof of Theorem 1.5, set φ(C)
n = max{φn,−Cn} and φ

(C)
± =

max{φ±,−C}. We just showed that
∫
Ω−φ(C)

− dω =
∫
Ω φ

(C)
+ (ω) dω. But φ(C)

− ≤ φ
(C)
+ , so

that φ(C)
− = φ

(C)
+ . Thus the result follows by the Monotone Convergence Theorem. □

Remark. This result generalizes Theorem 1.1 since, using the notation from that theorem,
the function φn(ω) =

∑n−1
i=0 f(T

iω) is subadditive (since it is additive) and by invariance
of T , ∫

Ω
f(T iω) dω = f(T iω).

In fact, Theorem 1.1 follows directly from Theorem 1.5 since both (φn)
∞
n=1 and (−φn)

∞
n=1

are subadditive sequences of functions.
The argument in Theorem 1.6 can be interpreted as a “stability result” for subadditive

sequences, which we then use to get control over φ+ in the general case.

2 POSITIVITY OF LYAPUNOV EXPONENTS

2.1 NON-EXISTENCE OF INVARIANT MEASURES

In this section, we specialize slightly to the following setting. Let ν be a probability
measure on GLd(C). Then we take Ω = GLd(C)N equipped with the left-shift map σ,
and µ is the infinite product µ = ν⊗N. In this setting, the measure-preserving dynamical
system (Ω, µ, σ) is ergodic. Since the Lyapunov exponent λ is σ-invariant, λ is constant
µ-a.e. Abusing notation, we denote this constant by λ.

What can we say about the almost-everywhere value of λ? Of course, λ ≥ 0, so we
naturally specialize to distinguishing the cases where λ = 0 or λ > 0. There are some
simple natural settings where λ = 0. Denote by Gν the closure of the subgroup generated
by the matrices in supp ν.

1. If Gν is compact, then the norms of any random product is uniformly bounded
above by a constant, so in fact λ = 0 everywhere.
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I. THE MULTIPLICATIVE ERGODIC THEOREM

2. If Gν is contained in an abelian subgroup, then

λ =

∫
Ω
∥M∥dν(M)

which may be zero depending on the choice of ν.

3. If µ is the atomic measure with support

suppµ =
{(2 0

0 1/2

)
,

(
0 1
−1 0

)}
,

then λ = 0 almost everywhere. More generally, if µ consists of a uniformly chosen
random rational rotation, along with a uniformly chosen contraction or dilation
depending on the angle, then λ = 0 almost everywhere.

Our main theorem in this section is that the three examples above are essentially the
only ways in which we can have λ = 0 almost everywhere. We first state the following
definition.
Definition. We say that a subgroup G of GLd(C) is totally irreducible if there is no finite
union of proper subspaces of Cd which are G-invariant.

We first observe a basic consquence of total irreducibility and non-compactness.
Here, P(Cd) is d − 1-dimensional projective space, equipped with the projection map
[·] : Cd \{0} → P(Cd) taking x ∈ Cd to the equivalence class

[x] := {y ∈ Cd : y = λx, λ ∈ C \{0}}.

Of course, Md(C) acts naturally on P(Cd) as well by M · [x] = [Mx] for M ∈Md(C).

2.1 Lemma. SupposeGν is totally irreducible and non-compact. Then there is noGν-invariant
probability measure on P(Cd).

Proof. Suppose for contradiction µ is a Gν-invariant probability measure on P(Cd).
Since Gν is unbounded, there exists a sequences of matrices (gn)

∞
n=1 ⊂ Gν such that

limn→∞ ∥gn∥ = ∞. Let un = gn/ ∥gn∥, so that limn→∞ detun = 0. Since ∥un∥ = 1 for each
n, passing to a subsequence if necessary, we may assume

lim
n→∞

un = u ∈Md(C)

entry-wise. Write
V = [keru] ⊂ P(Cd) and W = [imu] ⊂ P(Cd)

and since ∥u∥ = 1 so that u ̸= 0 and detu = 0, V and W are proper projective subspaces
of P(Cd).

Decompose µ = µ1+µ2 where µ1 = µ|V and µ2 = µ|V c . If [x] ∈ V c, then gn ·[x] = un ·[x]
so limn→∞ gn · [x] = u · [x]. Thus

lim
n→∞

(gn)∗µ = lim
n→∞

(gn)∗µ1 + u∗µ2

where we recall (gn)∗µ1 denotes the pushforward of µ1 by gn (and similarly for u∗µ2).
Now, passing to a subsequence and using compactness of P(Cd), we may assume

lim
n→∞

(gn)∗µ1 = µ∞1 and lim
n→∞

gnV = V∞

8



RANDOM MATRIX PRODUCTS

for some probability measure µ∞1 on P(Cd) and projective subspace V∞.
Since supp(gn)∗µ1 ⊂ gnV , we have suppµ∞1 ⊂ V∞, and suppu∗µ2 ⊂ W . Since each

gnV is a proper projective subspace of P(Cd), so is V∞. But now suppµ ⊂ V∞ ∪W so
that µ(V∞ ∪W ) = 1. Let F ⊂ V∞ ∪W be the smallest finite union of proper projective
subspaces such that µ(F ) = 1. Thus by invariance of µ under Gν , we have gF = F for any
g ∈ Gν , contradicting the assumption of total irreducibility. □

2.2 POSITIVITY OF LYAPUNOV EXPONENTS

We now prove our main result on positivity of Lyapunov exponents. For simplicity, we
will assume that Gν ⊂ SLd(C).

2.2 Theorem (Furstenberg). Suppose Gν is totally irreducible and non-compact. Then

λ(ω) > 0

for µ-a.e. ω ∈ Ω.

It is meaningful to obtain the following operator-theoretic formulation of Theorem 2.2;
this perspective will also reappear in TODO: cite Furstenberg measures section. Consider
the Hilbert space

H = L2(Cd) =
{
f : Cd → C :

∫
Cd

|f(x)|2 dm(x) <∞
}
.

Then a matrix g ∈ SLd(C) acting on Cd induces a natural action π(g) : H → H by
π(g)f(x) = f(g−1x), so we may define the operator Pν : H → H given by the Gelfand-
Pettis integral

Pνf =

∫
Gν

π(g)f dν(g).

Of course, by definition of the Gelfand-Pettis integral, Pνf(x) =
∫
Gν(C) f(g

−1x) dν(g). One
can interpret the operator Pν as applying a random transformation of f by a matrix g
chosen according to the probability measure ν. We first list some basic properties of the
action π and the operator Pν .

2.3 Lemma. (i) ∥π(g)f∥2 = ∥f∥2 for any g ∈ SLd(C)
(ii) ∥Pν∥ ≤ 1

(iii) Pν1Pν2 = Pν1∗ν2
(iv) P ∗

ν = Pν∗ where dν∗(g) = dν(g−1)

Proof. Part (i) follows by a change of variables since |det g| = 1, and parts (iii) and (iv)
follow directly from the definition of Pν .
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It remains to see (ii). By Jensen’s inequality and an application of Fubini’s Theorem,

∥Pνf∥22 =
∫
Cd

∣∣∣∫
Gν

π(g)f(x) dν(g)
∣∣∣2 dm(x)

≤
∫
Cd

∫
Gν

|π(g)f(x)|2 dν(g) dm(x)

=

∫
Gν

∫
Cd

|π(g)f(x)|2 dmdν(g)

=

∫
Gν

∥π(g)f∥2 dν(g)

= ∥f∥2

where the last line follows by (i) and the fact that ν is a probability measure. □

Our proof approach is bound ∥Pν∥ and then relate Theorem 2.2 to the operator Pν . We first
need a standard result from analysis in Hilbert spaces, which we include for completeness.

2.4 Lemma. Let P be a self-adjoint operator on a Hilbert space H. Then

∥P∥ = sup
∥f∥=1

|⟨Pf, f⟩|.

Proof. Set
sup
∥f∥=1

|⟨Pf, f⟩| =: α

Of course, we always have α ≤ ∥P∥ by the Cauchy-Schwarz inequality. Conversely,
it suffices to show that |⟨Pf, g⟩| ≤ α for any f, g with ∥f∥ = ∥g∥ = 1 (since taking
g = Pf/ ∥Pf∥, |⟨Pf, g⟩| = ∥P∥). It suffices to prove the case where ⟨Pf, g⟩ ∈ R. Then
since P is self-adjoint,

⟨Pf, g⟩ = ⟨P (f + g), f + g⟩ − ⟨P (f − g), f − g⟩
4

so that

|⟨Pf, g⟩| ≤ α · ∥f + g∥2 + ∥f − g∥2

4
= α

by the parallelogram identity. □

2.5 Lemma. If ∥Pν∥ = 1, then there is a Gν-invariant probability measure µ on P(Cd).

Proof. We have that PνPν∗ = Pν∗ν∗ is self adjoint, and ∥PνP
∗
ν ∥ = ∥Pν∥2 (this is just the

C∗ identity). Thus ∥Pν∥ = 1 if and only if ∥Pν∗ν∗∥ = 1, so without loss of generality, we
may assume that Pν is self-adjoint.

Suppose for contradiction ∥Pν∥ = 1. By Theorem 2.4, get (fn)∞n=1 ⊂ H with ∥fn∥2 = 1
and limn→∞ |⟨Pfn, fn⟩| = 1. Since |⟨Pνfn, fn⟩| ≤ ⟨Pν |fn|, |fn|⟩ ≤ 1, we may assume
fn ≥ 0. Now, by continuity and linearity of the inner product along with properties of the
Gelfand-Pettis integral,

lim
n→∞

∫
Gν

⟨π(g)fn, fn⟩ dν(g) = lim
n→∞

⟨Pνfn, fn⟩.

10
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Since ⟨π(g)fn, fn⟩ ≤ 1, we have limn→∞⟨π(g)fn, fn⟩ = 1 ν-a.e.
In particular, for ν-a.e. g, we have since fn ≥ 0

lim
n→∞

∥π(g)fn − fn∥22 = lim
n→∞

(
∥π(g)fn∥22 + ∥fn∥22 − 2⟨π(g)fn, fn⟩

)
= 2− 2 lim

n→∞
⟨π(g)fn, fn⟩ = 0

so by Cauchy-Schwarz,

lim
n→∞

∥∥π(g)f2n − f2n
∥∥
2
≤ lim

n→∞
∥π(g)fn − fn∥2 · ∥π(g)fn + fn∥2

≤ 2 lim
n→∞

∥π(g)fn − fn∥2 = 0. (2.1)

Now, consider the probability measures dµn = f2n dm on Cd, and let µn denote the
pushforward onto the projective space P(Cd). Since P(Cd) is compact, {µn}∞n=1 has a
weak*-accumulation point µ, and by (2.1), µ is Gν-invariant. □

We now finish the proof by relating the operator Pν with Lyapunov exponents.
Proof (of Theorem 2.2). By Theorem 1.2, it suffices to show that

λ(ω) = lim
n→∞

1

n

∫
log ∥Sn(ω)∥ dµ(ω) = lim

n→∞

1

n

∫
GLd(C)

log ∥g∥dν∗n(g) > 0

for µ-a.e. ω ∈ Ω.
Combining Theorem 2.1 and Theorem 2.5, we observe that γ := ∥Pν∥ < 1. Let

f(x) = min{C, |x|−α}
K = {x : 1 ≤ |x| ≤ 2}

where α is chosen so that f ∈ L2(Cd) and C > 0 is a constant to be determined below. We
then have

lim sup
n→∞

|⟨Pν∗nf,1K⟩|1/n = lim sup
n→∞

|⟨Pn
ν f,1k⟩|1/n

≤ lim sup
n→∞

∥Pn
ν ∥

1/n · ∥f∥1/n2 · ∥1K∥1/n2 ≤ γ.

On the other hand,

⟨Pν∗nf,1K⟩ =
∫
1≤|x|≤2

∫
GLd(C)

min{C,
∥∥g−1x

∥∥−α
dν∗n(g) dm(x)

≥
∫
1≤|x|≤2

∫
GLd(C)

min{C,
∥∥g−1

∥∥−α · ∥x∥−α} dν∗n(g) dm(x)

≥ C0

∫
GLd(C)

min{C,
∥∥g−1

∥∥−α} dν∗n(g)

for some constant C0 depending only on α. Since infg∈SLd(C) ∥g∥ > 0, we can take C
sufficiently large so that min{C,

∥∥g−1
∥∥−α} =

∥∥g−1
∥∥−α for any g ∈ SLd(C). We also use the

fact that
∥∥g−1

∥∥ ≤ C ′
0 ∥g∥

d−1, which follows by the adjoint formula for the matrix (since

11
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the entries in the adjoint are degree d − 1 polynomial functions of the entries of g, and
| deg g| = 1). Thus there is some constant C1 > 0 such that

⟨Pν∗nf,1K⟩ ≥ C1

∫
GLd(C)

∥g∥−α(d−1) dν∗n(g).

Thus taking logarithms, applying Jensen’s inequality, and rearranging, we have∫
GLd(C)

log ∥g∥dν∗n(g) ≥ logC1

α(d− 1)
− 1

α(d− 1)
log⟨Pν∗f,1K⟩

and therefore

lim
n→∞

1

n

∫
GLd(C)

log ∥g∥ dν∗n(g) = − 1

α(d− 1)
lim sup
n→∞

1

n
log⟨Pν∗nf,1K⟩

≥ − 1

α(d− 1)
log γ > 0

as required. □

3 OSELEDEČ MULTIPLICATIVE ERGODIC THEOREM

3.1 SINGULAR VALUE DECOMPOSITIONS AND THE EXTERIOR ALGEBRA

If M ∈Md(C) is any matrix, we can write M = UΣV ∗ where

Σ =

ρ1 · · · 0
...

. . .
...

0 · · · ρd

 with ρ1 ≥ · · · ≥ ρd ≥ 0,

and U, V are unitary matrices. We refer to the this as the singular value decomposition of M ,
and the values ρ1, . . . , ρd are the singular values ofM . Note that ifM ∈Md(R), the matrices
U and V can be chosen to be real-valued (so that they are orthogonal). Here, the singular
values are the eigenvalues of

√
M∗M which, by the continuous functional calculus, are

the square roots of the eigenvalues of M∗M (which is self-adjoint and therefore has a real
and positive spectrum). A standard exercise shows that ∥M∥op = ρ1.

Recall that X : Ω → GLd(C) is a matrix-valued function on a measure-preserving
dynamical system (Ω, µ, θ), and

Sn(ω) = X(θn−1ω) · · ·X(ω).

In this section, we generally want to answer the following two questions:
(i) What is the exponential growth rate of the singular values of the random products

Sn(ω)?
(ii) What is the exponential growth rate of ∥Sn(ω)v∥ for some fixed starting vector

v ∈ Cd?
Of course, since ∥M∥op = ρ1, (i) is a generalization of the discussion in Section 1.

In order to approach these questions, we want to convert statements about singular
values into statements about norms of linear operators on some larger vector space. A
natural way to do this is through the exterior algebra.

12
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Given a vector spaceW , the kth exterior power
∧kW is the unique vector space satisfying

the following universal property. If W ′ is any other vector space and T : W k → W ′ is
an alternating multilinear map (i.e. T is multilinear and T (v1, . . . , vk) = 0 whenever
{v1, . . . , vk} is linearly dependent), then there exists a unique linear map ϕ such that the
following diagram commutes:

W k
∧kW

W ′

∧k

T
ϕ

In practice, we may define
∧kW as the quotient of the kth tensor product W⊗k by the

subspace generated by tensors of the form v1 ⊗ · · · ⊗ vk where {v1, . . . , vk} is linearly
dependent in W . We denote the equivalence class of [v1 ⊗ · · · ⊗ vk] by v1 ∧ · · · ∧ vk, and
we have a natural wedge map ∧k :W k →

∧kW given by (v1, . . . , vk) 7→ v1 ∧ · · · ∧ vk. The
wedge map induces a map ∧k : Hom(W ) → Hom(

∧kW ) by

∧kM(v1 ∧ · · · ∧ vk) =M(v1) ∧ · · · ∧M(vk).

Note that if W is d-dimensional, then

∧dM(v1 ∧ · · · ∧ vd) = (detM)v1 ∧ · · · ∧ vd.

We define an inner product on
∧kW by

⟨v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk⟩ = det(M).

where Mi,j = ⟨vi, wj⟩ and extend it to the whole space. Let {e1, . . . , ed} be an orthonormal
basis for W consisting of eigenvectors of M∗M . Then one can show that {ei1 ∧ · · · ∧ eik :

1 ≤ i1 < · · · < ik ≤ d} is an orthonormal basis for
∧kW . Moreover, directly by definition,

∧k(M∗) = (∧kM)∗. Thus

(∧kM)∗(∧kM)(ei1 ∧ · · · ∧ eik) = ρ2i1 · · · ρ
2
ik
ei1 ∧ · · · eik

so ∧kM∗M has eigenvectors ei1 ∧ · · · ∧ eik with corresponding eigenvalues ρ2i1 · · · ρ
2
ik

. In
particular,

∥∥∧kM
∥∥
op

= ρ1 · · · ρk.
With this in mind, we may define the Lyapunov exponents λ1(ω), . . . , λd(ω) inductively

by the rule

λ1(ω) + · · ·+ λk(ω) = lim
n→∞

log
∥∥∧kSn(ω)

∥∥
n

for each 1 ≤ k ≤ d. Of course, λ1(ω) = λ(ω) where λ(ω) is the Lyapunov exponent defined
in (1.1). Note that these limits exist µ-a.e. by Theorem 1.2. The following result now
follows immediately from the discussion above.

3.1 Theorem (Oseledeč Multiplicative Ergodic I). Let ρ(n)1 (ω) ≥ · · · ≥ ρ
(n)
d (ω) ≥ 0 be

the singular values of Sn(ω). Then for µ-a.e. ω and all j ∈ {1, . . . , d},

lim
n→∞

log ρ
(n)
j (ω)

n
= λj(ω).

13



I. THE MULTIPLICATIVE ERGODIC THEOREM

3.2 GROWTH RATES OF SINGULAR VALUES

Fix 0 = τs+1 < τs < · · · < τ1 = d. A flag of type τ is a sequence of subspaces {0} = Vs+1 ⊃
Vs ⊃ · · · ⊃ V1 = Cd such that dimVi = τi. Let F(τ) denote the space of flags of type τ .

We can define a metric on F(τ) as follows. Fix σ1, . . . , σs where σi ̸= σj for i ̸= j and
some h > 0. Suppose we are given flags V (j) = {V (j)

s+1 ⊃ · · · ⊃ V
(j)
1 } for j = 1, 2. Then for

each 1 ≤ i ≤ s there are spaces U (j)
i so that

V
(j)
i = U

(j)
i ⊥ V

(j)
i+1

Where A ⊥ B denotes the direct sum of orthogonal subspaces A and B. In particular,
Cd = U

(j)
1 ⊥ · · · ⊥ U

(j)
s . We may now define

d(V (1), V (2)) = max
i ̸=j,∥x∥=∥y∥=1

x∈U(1)
i ,y∈U(2)

j

|⟨x, y⟩|h·|σi−σj |−1

. (3.1)

Intuitively, the function d measures the degree of orthogonality between the flags V (1)

and V (2), along with an exponential scaling factor. If U (1)
i and U (2)

j are orthogonal, then

|⟨x, y⟩| = 0 for any x ∈ U
(1)
i and y ∈ U

(2)
j .

3.2 Lemma. Suppose h−1|σi − σj | ≥ s − 1 for all i ̸= j. Then d defines a metric on F(τ),
and F(τ) is complete with respect to this metric.

Proof. TODO: write □

We can now state and prove our main result in this section.

3.3 Theorem (Oseledeč Multiplicative Ergodic II). Suppose log+ ∥X∥ ∈ L1(Ω, µ). Then
for a.e. ω ∈ Ω,

lim
n→∞

∥S∗
n(ω)Sn(ω)∥

1/2n =: Λ(ω)

exists, and the eigenvalues of Λ(ω) are eλi(ω).

Fix ω for which Theorem 3.1 holds, and set Xn(ω) = X(θn−1ω). Arguing similarly to (1.7),
we may assume that

lim sup
n→∞

log
∥∥X±1

n

∥∥
n

≤ 0. (3.2)

Let α1 > · · · > αs denote the sorted distinct values of the {λi(ω) : 1 ≤ i ≤ d}.
Let ϵ > 0 be small and for each 1 ≤ i ≤ s, let U (s)

i denote the subspace generated by
the eigenvectors corresponding to the eigenvalues ρ of (S∗

nSn)
1/2 satisfying∣∣∣∣ log ρn − αi

∣∣∣∣ < ϵ. (3.3)

Let P (n)
i denote the orthogonal projection onto U (n)

i .
We will need the following lemma, which heuristically states that the projections maps

are, in the limit, pairwise orthogonal.

14
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3.4 Lemma. For all i ̸= j and all n sufficiently large,∥∥∥P (n)
i P

(n+1)
j

∥∥∥ =
∥∥∥P (n+1)

j P
(n)
i

∥∥∥ ≤ e(−|αi−αj |+4ϵ)n.

Proof. Let x ∈ Cd, y = P
(n)
i x ∈ U

(n)
i , and z = P

(n+1)
j y. First, suppose i > j. Since

y ∈ U
(n)
i , applying (3.3), we have

∥Sn+1y∥ ≤ ∥Xn+1∥ · ∥Sny∥ ≤ ∥Xn+1∥ eαi+ϵ ∥y∥ . (3.4)

Since the spaces U (n+1)
k are invariant under the matrix S∗

n+1Sn+1, and U (n+1)
k1

is orthogonal

to U (n+1)
k2

for any k1 ̸= k2, we have

⟨Sn+1z, Sn+1(y − z)⟩ = ⟨Sn+1z, Sn+1P
(n+1)
j (y − z)⟩ = 0.

Thus by the Pythagoras rule and again applying (3.3),

∥Sn+1y∥ =

√
∥Sn+1z∥2 + ∥Sn+1(y − z)∥2 ≥ ∥Sn+1z∥

≥ e(αj−ϵ)(n+1) ∥z∥ ≥ e(αj−2ϵ)n ∥z∥ .

Rearranging and applying (3.4), we have ∥z∥ ≤ ∥Xn+1∥ e(αi−αj+3ϵ)n ∥y∥. Moreover, by
(3.3), ∥Xn+1∥ ≤ eϵn for n sufficiently large. Thus∥∥∥P (n+1)

j P
(n)
i x

∥∥∥ ≤ e(αi−αj+4ϵ)n
∥∥∥P (n)

i x
∥∥∥

≤ e(αi−αj+4ϵ)n ∥x∥ .

Otherwise let i < j. Then for x ∈ Cd, y = P
(n+1)
j x, and z = P

(n)
i y, we have by (3.2)

and (3.3) that

∥Sny∥ =
∥∥X−1

n+1Sn+1y
∥∥ ≤

∥∥X−1
n+1

∥∥ ∥Sn+1y∥
≤

∥∥X−1
n+1

∥∥ e(αj+ϵ)(n+1) ∥y∥ ≤ e(αj+3ϵ)n ∥y∥ .

and for the lower bound, as argued above,

∥Sny∥ =

√
∥Snz∥2 + ∥Sn(y − z)∥2 ≥ ∥Snz∥ ≥ eαi−ϵ ∥z∥ .

Thus ∥z∥ ≤ e(αj−αi+4ϵ)n ∥y∥ and it follows that
∥∥∥P (n)

i P
(n+1)
j

∥∥∥ ≤ e(αj−αi+4ϵ)n. □

Proof (of Theorem 3.3). Consider the sequence of flags V (n) = {V (n)
sn+1 ⊂ · · · ⊂ V

(n)
1 }

where

Vi =

sn⊕
k=i

U
(n)
k .

Note that for n sufficiently large, V (n) ∈ F(τ) by (3.3) and the definition of U (n)
i . By

properties of projections, the Cauchy-Schwarz inequality, and Theorem 3.4, we have

|⟨x, y⟩| = |⟨P (n)
i x, P

(n+1)
j y⟩| = ⟨x, P (n)

i P
(n+1)
j y⟩| ≤ e(−|αi−αj |+4ϵ)n. (3.5)
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Fix a metric d on F(τ) as in (3.1) by taking σi = αi and h sufficiently small from Theorem
3.2. Thus by (3.5), we have

d(V (n), V (n+1)) ≤ max
i ̸=h

e(−|αi−αj |+4ϵ)n·h|αi−αj |−1

≤ e−(1−ϵ′)hn

for some small ϵ′ > 0 depending on ϵ. Thus for ϵ sufficiently small, {V (n)}∞n=1 is Cauchy
so limn→∞ V (n) = V∞ ∈ F(τ), and

d(V (n), V∞) ≤ Ce−(1−ϵ′)hn (3.6)

for some fixed constant C > 0. Let ρ(n)1 , . . . , ρ
(n)
kn

denote the distinct eigenvalues of

(S∗
nSn)

1/2 and for each 1 ≤ i ≤ s let I(n)i ⊂ {1, . . . , kn} denote the indices corresponding to
αi. Again, for ϵ sufficiently small and n sufficiently large,

⋃s
i=1 I

(n)
i = {1, . . . , kn} where

the union is disjoint. Since S∗
nSn is self-adjoint, by the spectral theorem,

(S∗
nSn)

1/2n =

kn∑
j=1

(ρ
(n)
j )1/n · P (n)

j

where limn→∞(ρ
(n)
j )1/n = αi for any j ∈ I

(n)
i by Theorem 3.1, and limn→∞

∑
j∈I(n)

i

Q
(n)
j =

Pi by (3.6). Thus

lim
n→∞

(S∗
nSn)

1/2n =

s∑
i=1

αiPi

and the desired result follows directly. □

3.3 RANDOM WALKS OF VECTORS

Using similar arguments as above, we can also determine the asymptotic growth rate of
norms of images Sn(ω)x.

3.5 Theorem (Oseledeč Multiplicative Ergodic III). For a.e. ω ∈ Ω, there exists a flag
V (ω) = {Vs+1 ⊃ · · · ⊃ V1} such that for all x ∈ Vi+1 \ Vi,

lim
n→∞

log ∥Sn(ω)x∥
n

= αi(ω)

where α1(ω) > · · · > αs(ω) are the distinct values of the Lyapunov exponents of ω.

Proof. Let V (ω) be the flag V∞ from the proof of Theorem 3.3. □
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