Convexity and Subadditivity
ALEX RUTAR

ABSTRACT. This work in progress discusses various properties of functions which
satisfy some form of convexity or subadditivity, with a focus on functions satisfying
both.
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1. SUBADDITIVITY

Definition 1.1. Let A be an abelian semigroup (typically R, N, R?, etc.). We say that
[+ A — Ris subadditive if

flx+y) < flz)+ fy)
forall z,y € R.

A natural first example of a subadditive function is a sequence (a,);>; C R sat-
istying a,+rm, < a, + a,,. As a fundamental illustration of the nice properties of
subadditivity, we have the following result due to Fekete []:

Lemma 1.2 (Subadditivity). If (a;)2, is subadditive, then lim,,_,. a,/n exists and is equal
to its infimum L = inf,,>1 a,/n.

Proof. For any € > 0, let n be such that a,,/n < L + ¢ and b = max{a; : 1 <i < n}. For
m > n, write m = gn + r with 0 < r < n. Then from the subadditivity property, we
have

aanrT S qan + Ay S qan + b
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so that
b
P
m m m
n(L + € b mooo
<q< )+— % L+e
m m
since gn/m — 1 as m — oo. O

1.1. Subadditivity for functions on the positive reals. Here we establish some
conditions which guaratee that a function f: (0,00) — R is subadditive:

Proposition 1.3. (i) If f(t)/t is decreasing on (0, 00), then f(t) is subadditive.
(i) If f: (0,00) — R is concave with lim sup,_,, f(t) > 0, then f is subadditive.

Proof. To see (i), we have

f(t1+752)+t [t +t2) <t1f(t1)+t2f(t2)

t o ty) =t
fltr+1) Yt 2t t, g t

= f(t1) + f(t2)

as claimed.
To see (ii), if f(¢) is concave, for 0 < a < b, let 0 < ¢t < a be arbitrary and let a be
such that ot + (1 — a)b = a. Then by concavity, we have

fla) > af(#) + (1= ) f(b) = af(t) + = 50).
Thus ‘
fla) > alim sup f(&)+ f(0) lim sup uam— %f(b)
so that f(t)/t is decreasing. Then apply (i). O

We can also establish the equivalent statement of Lemma 1.2 for Borel measur-
able functions f: (0,00) — R. The key technical detail is to establish a continuous
equivalence of the maximum max{a; : 1 <1i < n} in the proof of Lemma 1.2.

The proofs of the following lemma and theorem are due to Hille [3]:

Lemma 1.4. Let f: (0,00) — R be Borel measurable and subadditive. Then f is bounded on
any compact subset of (0, 00).

Proof. Let a € (0,00) be arbitrary. If t1,t, € (0,00) satisfy t; + ¢, = a, then f(a) <
f(t1) + f(t2). It follows that, with

E,={t: f(t) > f(a)/2,0 <t < a},

we have (0,a) = E, U (a — E,) and therefore m(E,) > a/2. Suppose for contradiction
f is unbounded on some interval («, ) with 0 < a < 8 < 0.

If f is not bounded above on («, (), then there exists a sequence (,,)5°; where each
f(t,) > 2nand (t,)52, — to € [a, 5]. Butnow each E;,, = {t: f(t) > n,0 <t <t,} C
[0, 8] has m(E},) > t,/2 > a/2, a contradiction. Thus f is bounded above on any
interval (a, ).
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If f is not bounded below on («, /), then there exists a sequence (¢,,);°; where each
f(tn,) < —nand (,)52, — to € [, B]. Let M = sup{f(t) : 2 <t < 5} < oo. Now
if t' € (2,5), we have f(t' +1t,) < f(t')+ f(tn) < M — n. For sufficiently large n,
(to+3,to+4) C (t, +2,t, +5) so for each t € (ty + 3,ty +4), we have f(t) < M —n,
a contradiction. Thus f is bounded below on any interval («, /), and hence bounded
below on any compact subset of (0, c0). O

The previous lemma is the key technical result for the following theorem; the
remaining details of the proof are similar to Lemma 1.2.

Theorem 1.5. Let f: (0,00) — R be Borel measurable and subadditive. Then
LG R()

nr — < oo.

t—oo ¢ t>0 ¢
Proof. We first assume L := inf; @ > —o0; the case L = —oo follows analgously.
For any € > 0, let b > 0 be such that f(b)/b < L + ¢. Now for any ¢ > 2b, let n € N and
b <r < 2bsuch thatt = nb+ r. Then

ft) _ finbtr) _ nf(b) + f(r)

L< =
B t - t
_n S0 f0)
—t b t
But » € [b,20] and since sup{f(¢t) : t € [b,2b]} < oo by Lemma 1.4, we have
limy oo @ < L + e. But € > 0 was arbitrary, so the desired result holds. O

Remark 1.6. Of course, subadditivity is preserved under isomorphism. Let A and B be
abelian semigroups and f: A — R a subadditive function. If T': A — B is an isomorphism
of semigroups, then g = T o f o T~': B — R is also subadditive. For example, submultiplica-
tivity is equivalent to subadditivity by using the map T'(x) = —log(x) as a function from
(0, 1) (with multiplication) to (0, co) (with addition).

1.2. Subadditive functions with multiple arguments. Next, we establish the follow-
ing subadditivity result for a certain family of multivariate functions. Note that we
must a priori assume that our sequence is bounded in the second coordinate.

Lemma 1.7. Suppose {1)(k,m) : k € N,m € N} is a family of real numbers such that:
(i) For each m € N, there is a C,,, € R so that 1(k,m) < C,, forall k € N.
(i1) Forall k,m,n € N,
ma(k,m) +np(k +m,n)

k < .
Y(k,m+n) < e

Then
limsup limsup ¢(k,m) = lim limsup v (k,m) = lim supv(k,m)

m—oo  k—00 M=00 ko0 Mm—00 keN
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Proof. Note that applying (ii) inductively, we obtain for any {m;}!_; C Nand k € N

>y mitp (k + 3552 my, i)

(1.1) w(k, iy mi) < S

We take the empty sum to be 0.
We establish the first equality. Write a,,, = m - limsup,,_, . ¥(k, m). Applying (1.1),

min = (M +n)limsup ¢ (k, m + n)

k—o0

k k
< () i sup ") + ok + )
k—o0 m+n
< a,, + a,.

Thus the sequence (a., )5y, is subadditive, so the limit of a,,/m exists and is equal to
inf,,en @, /m by Lemma 1.2. Note that the same argument applies with a supremum
in place of the limit supremum.

It remains to verify the second equality. Write

B = lim limsup(k, m).

m=0o0 k00

The final equality holds trivially if 5 = —o0, so we may assume otherwise. It suffices
to show for each € > 0 and all m sufficiently large depending on e and all £ € N,

(1.2) Y(k,m) < B+ 3e.

By the definition of 3, there is some m( and K so that for all £ > K, ¢(k,mo) < 8 +e.
Let

C =max{C;:j € N1 < j <max{mg, K}}.
Now let n € N be arbitrary and write n = ¢mg+j for some ¢ € NU{0} and 0 < j < my.
Applying (1.1), there is some N € N so that foralln > N,

m ST (k + img, mo) + jib(k + fmo, §)
n

(5+e)+%0§ﬁ—|—26.

U(k,n) <

< fmo
n
Nowletk € {1,...,K}and m > N + K, and set j = K — k. Again applying (1.1),
Jo(k, ) + (m = )Y, m — j)
m

P(k,m) <

<LC+D(B+26)§B+36
m m

for all m sufficiently large since j < K. This proves (1.2), as required. OJ
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1.3. Approximate subadditivity and other variants. Sometimes, it is useful to con-
sider an approximate form of subadditivity.

Definition 1.8. We say that f: (0,00) — R is approximately subadditive if there exist
constants ¢ € R and r € (0, 00) such that

fla+y+r) < flx)+ fly) +c

For example, the following result holds, and the proof is essentially same as Theo-
rem 1.5:

Theorem 1.9. Let f: (0,00) — R be approximately subadditive. Then lim,_,, f(t)/t exists
and is equal to inf,~q f(t)/t.

We can also consider types of subadditivity for functions of two variables. This
result is motivated by the technique used in [2, Prop. 3.1]:

Theorem 1.10. Let f: (0,00) x (0,1) — R and suppose for any ¢ > 0:
(i) There is 6 > 0 such that whenever s, t € (0, 00) have s/t < 0,

f{t+s,2€¢) > f(t,¢),
and
(ii) There are r € (0, 00) and D > 0 such that for any e € (0,1/2) and p € N, there exists
N(e) > 0 so that
f(p(t +1),2€) = DP(f(t,€))”
foranyt > N(e).
Then
log f(t, €)

| t
lim lim sup log f(t,¢) = lim lim inf —*—~"2,
e—0 ¢ 00 e—0 t—oo t

Proof. Let € > 0 be arbitrary and sufficiently small, and set
1 1 4
L = limsup m M = liminf M.
t—o00 t t—o00 t
It suffices to show that L < M. Lett, > N(e) be arbitrary and let to+r < s; <55 < ---
be a sequence tending to infinity such that

1 4

n— 00 Sn

=M.

Now for n € N sufficiently large, there exists p,, € Nand 0 < s <ty + r such that
Spn = pulto + 1)+ sand s/(p,(to + 7)) < ¢. Applying (i) and then (ii), we have
f(3n>4€) = f(p<t0 + 7’) + 5746) > f(pn(tﬂ + T)v 26) > Dpnf(tm E)pn
so that
log f(sn,4€) _ log(D) + log f(to, €)

Sn Sn/pn
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Now, observe that lim,,_,. s,/pn, = to + r so that

. log(D) + log f(ty, )
- to +r

(1.3) M

where t; > 0 is arbitrary.

Moreover, we observe that lim;_,, f(,€) = oo as a consequence of (ii). Let (¢,)7,
be a sequence tending to infinity with lim,, ., % = L. Then for each n € N with
t, > N(¢), we have by (1.3)

log D +1
M > lim 08D logfltn e _
n—00 t,+71

as required. O
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