Convexity and Subadditivity

ALEX RUTAR

Abstract

This work in progress discusses various properties of functions which satisfy some form of convexity or subadditivity, with a focus on functions satisfying both.

CONTENTS

1. Subadditivity 1
1.1. Subadditivity for functions on the positive reals 2
1.2. Subadditive functions with multiple arguments 3
1.3. Approximate subadditivity and other variants 5

References 6

1. Subadditivity

Definition 1.1. Let A be an abelian semigroup (typically $\mathbb{R}, \mathbb{N}, \mathbb{R}^{d}$, etc.). We say that $f: A \rightarrow \mathbb{R}$ is subadditive if

$$
f(x+y) \leq f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$.
A natural first example of a subadditive function is a sequence $\left(a_{n}\right)_{n=1}^{\infty} \subset \mathbb{R}$ satisfying $a_{n+m} \leq a_{n}+a_{m}$. As a fundamental illustration of the nice properties of subadditivity, we have the following result due to Fekete [1]:

Lemma 1.2 (Subadditivity). If $\left(a_{i}\right)_{i=1}^{\infty}$ is subadditive, then $\lim _{n \rightarrow \infty} a_{n} / n$ exists and is equal to its infimum $L:=\inf _{n \geq 1} a_{n} / n$.

Proof. For any $\epsilon>0$, let n be such that $a_{n} / n<L+\epsilon$ and $b=\max \left\{a_{i}: 1 \leq i \leq n\right\}$. For $m \geq n$, write $m=q n+r$ with $0 \leq r<n$. Then from the subadditivity property, we have

$$
a_{q n+r} \leq q a_{n}+a_{r} \leq q a_{n}+b
$$

[^0]Key words and phrases. convexity, subadditivity.
so that

$$
\begin{aligned}
\frac{a_{m}}{m} & \leq \frac{q a_{n}}{m}+\frac{b}{m} \\
& <\frac{q n(L+\epsilon)}{m}+\frac{b}{m} \xrightarrow{m \rightarrow \infty} L+\epsilon
\end{aligned}
$$

since $q n / m \rightarrow 1$ as $m \rightarrow \infty$.
1.1. Subadditivity for functions on the positive reals. Here we establish some conditions which guaratee that a function $f:(0, \infty) \rightarrow \mathbb{R}$ is subadditive:
Proposition 1.3. (i) If $f(t) / t$ is decreasing on $(0, \infty)$, then $f(t)$ is subadditive.
(ii) If $f:(0, \infty) \rightarrow \mathbb{R}$ is concave with $\lim \sup _{t \rightarrow 0} f(t) \geq 0$, then f is subadditive.

Proof. To see (i), we have

$$
f\left(t_{1}+t_{2}\right)=t_{1} \frac{f\left(t_{1}+t_{2}\right)}{t_{1}+t_{2}}+t_{2} \frac{f\left(t_{1}+t_{2}\right)}{t_{1}+t_{2}} \leq t_{1} \frac{f\left(t_{1}\right)}{t_{1}}+t_{2} \frac{f\left(t_{2}\right)}{t_{2}}=f\left(t_{1}\right)+f\left(t_{2}\right)
$$

as claimed.
To see (ii), if $f(t)$ is concave, for $0<a<b$, let $0<t<a$ be arbitrary and let α be such that $\alpha t+(1-\alpha) b=a$. Then by concavity, we have

$$
f(a) \geq \alpha f(t)+(1-\alpha) f(b)=\alpha f(t)+\frac{a-\alpha t}{b} f(b)
$$

Thus

$$
f(a) \geq \alpha \limsup _{t \rightarrow 0} f(t)+f(b) \limsup _{t \rightarrow 0} \frac{a-\alpha t}{b} \geq \frac{a}{b} f(b)
$$

so that $f(t) / t$ is decreasing. Then apply (i).
We can also establish the equivalent statement of Lemma 1.2 for Borel measurable functions $f:(0, \infty) \rightarrow \mathbb{R}$. The key technical detail is to establish a continuous equivalence of the maximum $\max \left\{a_{i}: 1 \leq i \leq n\right\}$ in the proof of Lemma 1.2.

The proofs of the following lemma and theorem are due to Hille [3]:
Lemma 1.4. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be Borel measurable and subadditive. Then f is bounded on any compact subset of $(0, \infty)$.
Proof. Let $a \in(0, \infty)$ be arbitrary. If $t_{1}, t_{2} \in(0, \infty)$ satisfy $t_{1}+t_{2}=a$, then $f(a) \leq$ $f\left(t_{1}\right)+f\left(t_{2}\right)$. It follows that, with

$$
E_{a}:=\{t: f(t) \geq f(a) / 2,0<t<a\},
$$

we have $(0, a)=E_{a} \cup\left(a-E_{a}\right)$ and therefore $m\left(E_{a}\right) \geq a / 2$. Suppose for contradiction f is unbounded on some interval (α, β) with $0<\alpha<\beta<\infty$.

If f is not bounded above on (α, β), then there exists a sequence $\left(t_{n}\right)_{n=1}^{\infty}$ where each $f\left(t_{n}\right) \geq 2 n$ and $\left(t_{n}\right)_{n=1}^{\infty} \rightarrow t_{0} \in[\alpha, \beta]$. But now each $E_{t_{n}}=\left\{t: f(t) \geq n, 0<t<t_{n}\right\} \subset$ $[0, \beta]$ has $m\left(E_{t_{n}}\right) \geq t_{n} / 2 \geq \alpha / 2$, a contradiction. Thus f is bounded above on any interval (α, β).

If f is not bounded below on (α, β), then there exists a sequence $\left(t_{n}\right)_{n=1}^{\infty}$ where each $f\left(t_{n}\right) \leq-n$ and $\left(t_{n}\right)_{n=1}^{\infty} \rightarrow t_{0} \in[\alpha, \beta]$. Let $M=\sup \{f(t): 2<t<5\}<\infty$. Now if $t^{\prime} \in(2,5)$, we have $f\left(t^{\prime}+t_{n}\right) \leq f\left(t^{\prime}\right)+f\left(t_{n}\right) \leq M-n$. For sufficiently large n, $\left(t_{0}+3, t_{0}+4\right) \subset\left(t_{n}+2, t_{n}+5\right)$ so for each $t \in\left(t_{0}+3, t_{0}+4\right)$, we have $f(t) \leq M-n$, a contradiction. Thus f is bounded below on any interval (α, β), and hence bounded below on any compact subset of $(0, \infty)$.

The previous lemma is the key technical result for the following theorem; the remaining details of the proof are similar to Lemma 1.2.

Theorem 1.5. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be Borel measurable and subadditive. Then

$$
\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\inf _{t>0} \frac{f(t)}{t}<\infty
$$

Proof. We first assume $L:=\inf _{t>0} \frac{f(t)}{t}>-\infty$; the case $L=-\infty$ follows analgously. For any $\epsilon>0$, let $b>0$ be such that $f(b) / b<L+\epsilon$. Now for any $t \geq 2 b$, let $n \in \mathbb{N}$ and $b \leq r<2 b$ such that $t=n b+r$. Then

$$
\begin{aligned}
L & \leq \frac{f(t)}{t}=\frac{f(n b+r)}{t} \leq \frac{n f(b)+f(r)}{t} \\
& \leq \frac{n}{t} \cdot \frac{f(b)}{b}+\frac{f(r)}{t}
\end{aligned}
$$

But $r \in[b, 2 b]$ and $\operatorname{since} \sup \{f(t): t \in[b, 2 b]\}<\infty$ by Lemma 1.4, we have $\lim _{t \rightarrow \infty} \frac{f(t)}{t} \leq L+\epsilon$. But $\epsilon>0$ was arbitrary, so the desired result holds.

Remark 1.6. Of course, subadditivity is preserved under isomorphism. Let A and B be abelian semigroups and $f: A \rightarrow \mathbb{R}$ a subadditive function. If $T: A \rightarrow B$ is an isomorphism of semigroups, then $g=T \circ f \circ T^{-1}: B \rightarrow \mathbb{R}$ is also subadditive. For example, submultiplicativity is equivalent to subadditivity by using the map $T(x)=-\log (x)$ as a function from $(0,1)$ (with multiplication) to $(0, \infty)$ (with addition).
1.2. Subadditive functions with multiple arguments. Next, we establish the following subadditivity result for a certain family of multivariate functions. Note that we must a priori assume that our sequence is bounded in the second coordinate.

Lemma 1.7. Suppose $\{\psi(k, m): k \in \mathbb{N}, m \in \mathbb{N}\}$ is a family of real numbers such that:
(i) For each $m \in \mathbb{N}$, there is a $C_{m} \in \mathbb{R}$ so that $\psi(k, m) \leq C_{m}$ for all $k \in \mathbb{N}$.
(ii) For all $k, m, n \in \mathbb{N}$,

$$
\psi(k, m+n) \leq \frac{m \psi(k, m)+n \psi(k+m, n)}{m+n} .
$$

Then

$$
\limsup _{m \rightarrow \infty} \limsup _{k \rightarrow \infty} \psi(k, m)=\lim _{m \rightarrow \infty} \limsup _{k \rightarrow \infty} \psi(k, m)=\lim _{m \rightarrow \infty} \sup _{k \in \mathbb{N}} \psi(k, m)
$$

Proof. Note that applying (ii) inductively, we obtain for any $\left\{m_{i}\right\}_{i=1}^{\ell} \subset \mathbb{N}$ and $k \in \mathbb{N}$

$$
\begin{equation*}
\psi\left(k, \sum_{i=1}^{\ell} m_{i}\right) \leq \frac{\sum_{i=1}^{\ell} m_{i} \psi\left(k+\sum_{j=1}^{i-1} m_{j}, m_{i}\right)}{\sum_{i=1}^{\ell} m_{i}} \tag{1.1}
\end{equation*}
$$

We take the empty sum to be 0 .
We establish the first equality. Write $a_{m}=m \cdot \lim \sup _{k \rightarrow \infty} \psi(k, m)$. Applying (1.1),

$$
\begin{aligned}
a_{m+n} & =(m+n) \limsup _{k \rightarrow \infty} \psi(k, m+n) \\
& \leq(m+n) \limsup _{k \rightarrow \infty} \frac{m \psi(k, m)+n \psi(k+m, n)}{m+n} \\
& \leq a_{m}+a_{n} .
\end{aligned}
$$

Thus the sequence $\left(a_{m}\right)_{m=1}^{\infty}$ is subadditive, so the limit of a_{m} / m exists and is equal to $\inf _{m \in \mathbb{N}} a_{m} / m$ by Lemma 1.2. Note that the same argument applies with a supremum in place of the limit supremum.

It remains to verify the second equality. Write

$$
\beta=\lim _{m \rightarrow \infty} \limsup _{k \rightarrow \infty} \psi(k, m) .
$$

The final equality holds trivially if $\beta=-\infty$, so we may assume otherwise. It suffices to show for each $\epsilon>0$ and all m sufficiently large depending on ϵ and all $k \in \mathbb{N}$,

$$
\begin{equation*}
\psi(k, m) \leq \beta+3 \epsilon \tag{1.2}
\end{equation*}
$$

By the definition of β, there is some m_{0} and K so that for all $k \geq K, \psi\left(k, m_{0}\right) \leq \beta+\epsilon$. Let

$$
C=\max \left\{C_{j}: j \in \mathbb{N}, 1 \leq j \leq \max \left\{m_{0}, K\right\}\right\}
$$

Now let $n \in \mathbb{N}$ be arbitrary and write $n=\ell m_{0}+j$ for some $\ell \in \mathbb{N} \cup\{0\}$ and $0 \leq j<m_{0}$. Applying (1.1), there is some $N \in \mathbb{N}$ so that for all $n \geq N$,

$$
\begin{aligned}
\psi(k, n) & \leq \frac{m \sum_{i=0}^{\ell-1} \psi\left(k+i m_{0}, m_{0}\right)+j \psi\left(k+\ell m_{0}, j\right)}{n} \\
& \leq \frac{\ell m_{0}}{n}(\beta+\epsilon)+\frac{j}{n} C \leq \beta+2 \epsilon .
\end{aligned}
$$

Now let $k \in\{1, \ldots, K\}$ and $m \geq N+K$, and set $j=K-k$. Again applying (1.1),

$$
\begin{aligned}
\psi(k, m) & \leq \frac{j \psi(k, j)+(m-j) \psi(K, m-j)}{m} \\
& \leq \frac{j}{m} C+\frac{m-j}{m}(\beta+2 \epsilon) \leq \beta+3 \epsilon
\end{aligned}
$$

for all m sufficiently large since $j \leq K$. This proves (1.2), as required.
1.3. Approximate subadditivity and other variants. Sometimes, it is useful to consider an approximate form of subadditivity.

Definition 1.8. We say that $f:(0, \infty) \rightarrow \mathbb{R}$ is approximately subadditive if there exist constants $c \in \mathbb{R}$ and $r \in(0, \infty)$ such that

$$
f(x+y+r) \leq f(x)+f(y)+c
$$

For example, the following result holds, and the proof is essentially same as Theorem 1.5:

Theorem 1.9. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be approximately subadditive. Then $\lim _{t \rightarrow \infty} f(t) / t$ exists and is equal to $\inf _{t>0} f(t) / t$.

We can also consider types of subadditivity for functions of two variables. This result is motivated by the technique used in [2, Prop. 3.1]:

Theorem 1.10. Let $f:(0, \infty) \times(0,1) \rightarrow \mathbb{R}$ and suppose for any $\epsilon>0$:
(i) There is $\delta>0$ such that whenever $s, t \in(0, \infty)$ have $s / t<\delta$,

$$
f(t+s, 2 \epsilon) \geq f(t, \epsilon)
$$

and
(ii) There are $r \in(0, \infty)$ and $D>0$ such that for any $\epsilon \in(0,1 / 2)$ and $p \in \mathbb{N}$, there exists $N(\epsilon)>0$ so that

$$
f(p(t+r), 2 \epsilon) \geq D^{p}(f(t, \epsilon))^{p}
$$

for any $t \geq N(\epsilon)$.
Then

$$
\lim _{\epsilon \rightarrow 0} \limsup _{t \rightarrow \infty} \frac{\log f(t, \epsilon)}{t}=\lim _{\epsilon \rightarrow 0} \liminf _{t \rightarrow \infty} \frac{\log f(t, \epsilon)}{t}
$$

Proof. Let $\epsilon>0$ be arbitrary and sufficiently small, and set

$$
L:=\limsup _{t \rightarrow \infty} \frac{\log f(t, \epsilon)}{t} \quad M:=\liminf _{t \rightarrow \infty} \frac{\log f(t, 4 \epsilon)}{t} .
$$

It suffices to show that $L \leq M$. Let $t_{0} \geq N(\epsilon)$ be arbitrary and let $t_{0}+r \leq s_{1} \leq s_{2} \leq \cdots$ be a sequence tending to infinity such that

$$
\lim _{n \rightarrow \infty} \frac{\log f\left(s_{n}, 4 \epsilon\right)}{s_{n}}=M
$$

Now for $n \in \mathbb{N}$ sufficiently large, there exists $p_{n} \in \mathbb{N}$ and $0<s \leq t_{0}+r$ such that $s_{n}=p_{n}\left(t_{0}+r\right)+s$ and $s /\left(p_{n}\left(t_{0}+r\right)\right)<\delta$. Applying (i) and then (ii), we have

$$
f\left(s_{n}, 4 \epsilon\right)=f\left(p\left(t_{0}+r\right)+s, 4 \epsilon\right) \geq f\left(p_{n}\left(t_{0}+r\right), 2 \epsilon\right) \geq D^{p_{n}} f\left(t_{0}, \epsilon\right)^{p_{n}}
$$

so that

$$
\frac{\log f\left(s_{n}, 4 \epsilon\right)}{s_{n}} \geq \frac{\log (D)+\log f\left(t_{0}, \epsilon\right)}{s_{n} / p_{n}}
$$

Now, observe that $\lim _{n \rightarrow \infty} s_{n} / p_{n}=t_{0}+r$ so that

$$
\begin{equation*}
M \geq \frac{\log (D)+\log f\left(t_{0}, \epsilon\right)}{t_{0}+r} \tag{1.3}
\end{equation*}
$$

where $t_{0}>0$ is arbitrary.
Moreover, we observe that $\lim _{t \rightarrow \infty} f(t, \epsilon)=\infty$ as a consequence of (ii). Let $\left(t_{n}\right)_{n=1}^{\infty}$ be a sequence tending to infinity with $\lim _{n \rightarrow \infty} \frac{\log f\left(t_{n}, \epsilon\right)}{t_{n}}=L$. Then for each $n \in \mathbb{N}$ with $t_{n} \geq N(\epsilon)$, we have by (1.3)

$$
M \geq \lim _{n \rightarrow \infty} \frac{\log D+\log f\left(t_{n}, \epsilon\right)}{t_{n}+r}=L
$$

as required.

REFERENCES

1. Michael Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228-249. 1
2. De-Jun Feng, Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices, Isr. J. Math. 170 (2009), no. 1, 355-394. 5
3. Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, R.I., 1957.2

University of St Andrews, Mathematical Institute, St Andrews KY16 9SS
Email address: alex@rutar.org

[^0]: 2010 Mathematics Subject Classification. 28A80.

