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ABSTRACT. This work in progress discusses various properties of functions which
satisfy some form of convexity or subadditivity, with a focus on functions satisfying
both.
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1. SUBADDITIVITY

Definition 1.1. Let A be an abelian semigroup (typically R, N, Rd, etc.). We say that
f : A→ R is subadditive if

f(x+ y) ≤ f(x) + f(y)

for all x, y ∈ R.

A natural first example of a subadditive function is a sequence (an)
∞
n=1 ⊂ R sat-

isfying an+m ≤ an + am. As a fundamental illustration of the nice properties of
subadditivity, we have the following result due to Fekete [1]:

Lemma 1.2 (Subadditivity). If (ai)∞i=1 is subadditive, then limn→∞ an/n exists and is equal
to its infimum L := infn≥1 an/n.

Proof. For any ϵ > 0, let n be such that an/n < L+ ϵ and b = max{ai : 1 ≤ i ≤ n}. For
m ≥ n, write m = qn+ r with 0 ≤ r < n. Then from the subadditivity property, we
have

aqn+r ≤ qan + ar ≤ qan + b
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so that
am
m

≤ qan
m

+
b

m

<
qn(L+ ϵ)

m
+

b

m

m→∞−−−→ L+ ϵ

since qn/m→ 1 as m→ ∞. □

1.1. Subadditivity for functions on the positive reals. Here we establish some
conditions which guaratee that a function f : (0,∞) → R is subadditive:

Proposition 1.3. (i) If f(t)/t is decreasing on (0,∞), then f(t) is subadditive.
(ii) If f : (0,∞) → R is concave with lim supt→0 f(t) ≥ 0, then f is subadditive.

Proof. To see (i), we have

f(t1 + t2) = t1
f(t1 + t2)

t1 + t2
+ t2

f(t1 + t2)

t1 + t2
≤ t1

f(t1)

t1
+ t2

f(t2)

t2
= f(t1) + f(t2)

as claimed.
To see (ii), if f(t) is concave, for 0 < a < b, let 0 < t < a be arbitrary and let α be

such that αt+ (1− α)b = a. Then by concavity, we have

f(a) ≥ αf(t) + (1− α)f(b) = αf(t) +
a− αt

b
f(b).

Thus
f(a) ≥ α lim sup

t→0
f(t) + f(b) lim sup

t→0

a− αt

b
≥ a

b
f(b)

so that f(t)/t is decreasing. Then apply (i). □

We can also establish the equivalent statement of Lemma 1.2 for Borel measur-
able functions f : (0,∞) → R. The key technical detail is to establish a continuous
equivalence of the maximum max{ai : 1 ≤ i ≤ n} in the proof of Lemma 1.2.

The proofs of the following lemma and theorem are due to Hille [3]:

Lemma 1.4. Let f : (0,∞) → R be Borel measurable and subadditive. Then f is bounded on
any compact subset of (0,∞).

Proof. Let a ∈ (0,∞) be arbitrary. If t1, t2 ∈ (0,∞) satisfy t1 + t2 = a, then f(a) ≤
f(t1) + f(t2). It follows that, with

Ea := {t : f(t) ≥ f(a)/2, 0 < t < a},
we have (0, a) = Ea ∪ (a− Ea) and therefore m(Ea) ≥ a/2. Suppose for contradiction
f is unbounded on some interval (α, β) with 0 < α < β <∞.

If f is not bounded above on (α, β), then there exists a sequence (tn)
∞
n=1 where each

f(tn) ≥ 2n and (tn)
∞
n=1 → t0 ∈ [α, β]. But now each Etn = {t : f(t) ≥ n, 0 < t < tn} ⊂

[0, β] has m(Etn) ≥ tn/2 ≥ α/2, a contradiction. Thus f is bounded above on any
interval (α, β).
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If f is not bounded below on (α, β), then there exists a sequence (tn)
∞
n=1 where each

f(tn) ≤ −n and (tn)
∞
n=1 → t0 ∈ [α, β]. Let M = sup{f(t) : 2 < t < 5} < ∞. Now

if t′ ∈ (2, 5), we have f(t′ + tn) ≤ f(t′) + f(tn) ≤ M − n. For sufficiently large n,
(t0 + 3, t0 + 4) ⊂ (tn + 2, tn + 5) so for each t ∈ (t0 + 3, t0 + 4), we have f(t) ≤M − n,
a contradiction. Thus f is bounded below on any interval (α, β), and hence bounded
below on any compact subset of (0,∞). □

The previous lemma is the key technical result for the following theorem; the
remaining details of the proof are similar to Lemma 1.2.

Theorem 1.5. Let f : (0,∞) → R be Borel measurable and subadditive. Then

lim
t→∞

f(t)

t
= inf

t>0

f(t)

t
<∞.

Proof. We first assume L := inft>0
f(t)
t
> −∞; the case L = −∞ follows analgously.

For any ϵ > 0, let b > 0 be such that f(b)/b < L+ ϵ. Now for any t ≥ 2b, let n ∈ N and
b ≤ r < 2b such that t = nb+ r. Then

L ≤ f(t)

t
=
f(nb+ r)

t
≤ nf(b) + f(r)

t

≤ n

t
· f(b)

b
+
f(r)

t
.

But r ∈ [b, 2b] and since sup{f(t) : t ∈ [b, 2b]} < ∞ by Lemma 1.4, we have
limt→∞

f(t)
t

≤ L+ ϵ. But ϵ > 0 was arbitrary, so the desired result holds. □

Remark 1.6. Of course, subadditivity is preserved under isomorphism. Let A and B be
abelian semigroups and f : A→ R a subadditive function. If T : A→ B is an isomorphism
of semigroups, then g = T ◦ f ◦T−1 : B → R is also subadditive. For example, submultiplica-
tivity is equivalent to subadditivity by using the map T (x) = − log(x) as a function from
(0, 1) (with multiplication) to (0,∞) (with addition).

1.2. Subadditive functions with multiple arguments. Next, we establish the follow-
ing subadditivity result for a certain family of multivariate functions. Note that we
must a priori assume that our sequence is bounded in the second coordinate.

Lemma 1.7. Suppose {ψ(k,m) : k ∈ N,m ∈ N} is a family of real numbers such that:
(i) For each m ∈ N, there is a Cm ∈ R so that ψ(k,m) ≤ Cm for all k ∈ N.

(ii) For all k,m, n ∈ N,

ψ(k,m+ n) ≤ mψ(k,m) + nψ(k +m,n)

m+ n
.

Then
lim sup
m→∞

lim sup
k→∞

ψ(k,m) = lim
m→∞

lim sup
k→∞

ψ(k,m) = lim
m→∞

sup
k∈N

ψ(k,m)
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Proof. Note that applying (ii) inductively, we obtain for any {mi}ℓi=1 ⊂ N and k ∈ N

(1.1) ψ
(
k,
∑ℓ

i=1mi

)
≤

∑ℓ
i=1miψ

(
k +

∑i−1
j=1mj,mi

)∑ℓ
i=1mi

.

We take the empty sum to be 0.
We establish the first equality. Write am = m · lim supk→∞ ψ(k,m). Applying (1.1),

am+n = (m+ n) lim sup
k→∞

ψ(k,m+ n)

≤ (m+ n) lim sup
k→∞

mψ(k,m) + nψ(k +m,n)

m+ n

≤ am + an.

Thus the sequence (am)
∞
m=1 is subadditive, so the limit of am/m exists and is equal to

infm∈N am/m by Lemma 1.2. Note that the same argument applies with a supremum
in place of the limit supremum.

It remains to verify the second equality. Write

β = lim
m→∞

lim sup
k→∞

ψ(k,m).

The final equality holds trivially if β = −∞, so we may assume otherwise. It suffices
to show for each ϵ > 0 and all m sufficiently large depending on ϵ and all k ∈ N,

(1.2) ψ(k,m) ≤ β + 3ϵ.

By the definition of β, there is some m0 and K so that for all k ≥ K, ψ(k,m0) ≤ β + ϵ.
Let

C = max{Cj : j ∈ N, 1 ≤ j ≤ max{m0, K}}.

Now let n ∈ N be arbitrary and write n = ℓm0+j for some ℓ ∈ N∪{0} and 0 ≤ j < m0.
Applying (1.1), there is some N ∈ N so that for all n ≥ N ,

ψ(k, n) ≤ m
∑ℓ−1

i=0 ψ(k + im0,m0) + jψ(k + ℓm0, j)

n

≤ ℓm0

n
(β + ϵ) +

j

n
C ≤ β + 2ϵ.

Now let k ∈ {1, . . . , K} and m ≥ N +K, and set j = K − k. Again applying (1.1),

ψ(k,m) ≤ jψ(k, j) + (m− j)ψ(K,m− j)

m

≤ j

m
C +

m− j

m
(β + 2ϵ) ≤ β + 3ϵ

for all m sufficiently large since j ≤ K. This proves (1.2), as required. □
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1.3. Approximate subadditivity and other variants. Sometimes, it is useful to con-
sider an approximate form of subadditivity.

Definition 1.8. We say that f : (0,∞) → R is approximately subadditive if there exist
constants c ∈ R and r ∈ (0,∞) such that

f(x+ y + r) ≤ f(x) + f(y) + c

For example, the following result holds, and the proof is essentially same as Theo-
rem 1.5:

Theorem 1.9. Let f : (0,∞) → R be approximately subadditive. Then limt→∞ f(t)/t exists
and is equal to inft>0 f(t)/t.

We can also consider types of subadditivity for functions of two variables. This
result is motivated by the technique used in [2, Prop. 3.1]:

Theorem 1.10. Let f : (0,∞)× (0, 1) → R and suppose for any ϵ > 0:
(i) There is δ > 0 such that whenever s, t ∈ (0,∞) have s/t < δ,

f(t+ s, 2ϵ) ≥ f(t, ϵ),

and
(ii) There are r ∈ (0,∞) and D > 0 such that for any ϵ ∈ (0, 1/2) and p ∈ N, there exists

N(ϵ) > 0 so that
f(p(t+ r), 2ϵ) ≥ Dp(f(t, ϵ))p

for any t ≥ N(ϵ).
Then

lim
ϵ→0

lim sup
t→∞

log f(t, ϵ)

t
= lim

ϵ→0
lim inf
t→∞

log f(t, ϵ)

t
.

Proof. Let ϵ > 0 be arbitrary and sufficiently small, and set

L := lim sup
t→∞

log f(t, ϵ)

t
M := lim inf

t→∞

log f(t, 4ϵ)

t
.

It suffices to show that L ≤M . Let t0 ≥ N(ϵ) be arbitrary and let t0+r ≤ s1 ≤ s2 ≤ · · ·
be a sequence tending to infinity such that

lim
n→∞

log f(sn, 4ϵ)

sn
=M.

Now for n ∈ N sufficiently large, there exists pn ∈ N and 0 < s ≤ t0 + r such that
sn = pn(t0 + r) + s and s/(pn(t0 + r)) < δ. Applying (i) and then (ii), we have

f(sn, 4ϵ) = f(p(t0 + r) + s, 4ϵ) ≥ f(pn(t0 + r), 2ϵ) ≥ Dpnf(t0, ϵ)
pn

so that
log f(sn, 4ϵ)

sn
≥ log(D) + log f(t0, ϵ)

sn/pn
.
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Now, observe that limn→∞ sn/pn = t0 + r so that

(1.3) M ≥ log(D) + log f(t0, ϵ)

t0 + r

where t0 > 0 is arbitrary.
Moreover, we observe that limt→∞ f(t, ϵ) = ∞ as a consequence of (ii). Let (tn)∞n=1

be a sequence tending to infinity with limn→∞
log f(tn,ϵ)

tn
= L. Then for each n ∈ N with

tn ≥ N(ϵ), we have by (1.3)

M ≥ lim
n→∞

logD + log f(tn, ϵ)

tn + r
= L

as required. □
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