Convexity and Subadditivity

ALEX RUTAR

ABSTRACT. This work in progress discusses various properties of functions which satisfy some form of convexity or subadditivity, with a focus on functions satisfying both.

CONTENTS

1.	Subadditivity	1
1.1.	Subadditivity for functions on the positive reals	2
1.2.	Subadditive functions with multiple arguments	3
1.3.	Approximate subadditivity and other variants	5
References		6

1. Subadditivity

Definition 1.1. Let A be an abelian semigroup (typically \mathbb{R} , \mathbb{N} , \mathbb{R}^d , etc.). We say that $f: A \to \mathbb{R}$ is subadditive if

$$f(x+y) \le f(x) + f(y)$$

for all $x, y \in \mathbb{R}$.

A natural first example of a subadditive function is a sequence $(a_n)_{n=1}^{\infty} \subset \mathbb{R}$ satisfying $a_{n+m} \leq a_n + a_m$. As a fundamental illustration of the nice properties of subadditivity, we have the following result due to Fekete [1]:

Lemma 1.2 (Subadditivity). If $(a_i)_{i=1}^{\infty}$ is subadditive, then $\lim_{n\to\infty} a_n/n$ exists and is equal to its infimum $L := \inf_{n\geq 1} a_n/n$.

Proof. For any $\epsilon > 0$, let n be such that $a_n/n < L + \epsilon$ and $b = \max\{a_i : 1 \le i \le n\}$. For $m \ge n$, write m = qn + r with $0 \le r < n$. Then from the subadditivity property, we have

$$a_{qn+r} \le qa_n + a_r \le qa_n + b$$

2010 Mathematics Subject Classification. 28A80. Key words and phrases. convexity, subadditivity.

ALEX RUTAR

so that

2

$$\frac{a_m}{m} \le \frac{qa_n}{m} + \frac{b}{m}$$

$$< \frac{qn(L+\epsilon)}{m} + \frac{b}{m} \xrightarrow{m \to \infty} L + \epsilon$$

since $qn/m \to 1$ as $m \to \infty$.

1.1. **Subadditivity for functions on the positive reals.** Here we establish some conditions which guaratee that a function $f:(0,\infty)\to\mathbb{R}$ is subadditive:

Proposition 1.3. (i) If f(t)/t is decreasing on $(0, \infty)$, then f(t) is subadditive. (ii) If $f: (0, \infty) \to \mathbb{R}$ is concave with $\limsup_{t \to 0} f(t) \ge 0$, then f is subadditive.

Proof. To see (i), we have

$$f(t_1 + t_2) = t_1 \frac{f(t_1 + t_2)}{t_1 + t_2} + t_2 \frac{f(t_1 + t_2)}{t_1 + t_2} \le t_1 \frac{f(t_1)}{t_1} + t_2 \frac{f(t_2)}{t_2} = f(t_1) + f(t_2)$$

as claimed.

To see (ii), if f(t) is concave, for 0 < a < b, let 0 < t < a be arbitrary and let α be such that $\alpha t + (1 - \alpha)b = a$. Then by concavity, we have

$$f(a) \ge \alpha f(t) + (1 - \alpha)f(b) = \alpha f(t) + \frac{a - \alpha t}{b}f(b).$$

Thus

$$f(a) \ge \alpha \limsup_{t \to 0} f(t) + f(b) \limsup_{t \to 0} \frac{a - \alpha t}{b} \ge \frac{a}{b} f(b)$$

so that f(t)/t is decreasing. Then apply (i).

We can also establish the equivalent statement of Lemma 1.2 for Borel measurable functions $f:(0,\infty)\to\mathbb{R}$. The key technical detail is to establish a continuous equivalence of the maximum $\max\{a_i:1\leq i\leq n\}$ in the proof of Lemma 1.2.

The proofs of the following lemma and theorem are due to Hille [3]:

Lemma 1.4. Let $f:(0,\infty)\to\mathbb{R}$ be Borel measurable and subadditive. Then f is bounded on any compact subset of $(0,\infty)$.

Proof. Let $a \in (0, \infty)$ be arbitrary. If $t_1, t_2 \in (0, \infty)$ satisfy $t_1 + t_2 = a$, then $f(a) \le f(t_1) + f(t_2)$. It follows that, with

$$E_a := \{t : f(t) \ge f(a)/2, 0 < t < a\},\$$

we have $(0, a) = E_a \cup (a - E_a)$ and therefore $m(E_a) \ge a/2$. Suppose for contradiction f is unbounded on some interval (α, β) with $0 < \alpha < \beta < \infty$.

If f is not bounded above on (α, β) , then there exists a sequence $(t_n)_{n=1}^{\infty}$ where each $f(t_n) \geq 2n$ and $(t_n)_{n=1}^{\infty} \to t_0 \in [\alpha, \beta]$. But now each $E_{t_n} = \{t : f(t) \geq n, 0 < t < t_n\} \subset [0, \beta]$ has $m(E_{t_n}) \geq t_n/2 \geq \alpha/2$, a contradiction. Thus f is bounded above on any interval (α, β) .

If f is not bounded below on (α, β) , then there exists a sequence $(t_n)_{n=1}^{\infty}$ where each $f(t_n) \leq -n$ and $(t_n)_{n=1}^{\infty} \to t_0 \in [\alpha, \beta]$. Let $M = \sup\{f(t) : 2 < t < 5\} < \infty$. Now if $t' \in (2,5)$, we have $f(t'+t_n) \leq f(t') + f(t_n) \leq M-n$. For sufficiently large n, $(t_0+3,t_0+4) \subset (t_n+2,t_n+5)$ so for each $t \in (t_0+3,t_0+4)$, we have $f(t) \leq M-n$, a contradiction. Thus f is bounded below on any interval (α,β) , and hence bounded below on any compact subset of $(0,\infty)$.

The previous lemma is the key technical result for the following theorem; the remaining details of the proof are similar to Lemma 1.2.

Theorem 1.5. Let $f:(0,\infty)\to\mathbb{R}$ be Borel measurable and subadditive. Then

$$\lim_{t \to \infty} \frac{f(t)}{t} = \inf_{t > 0} \frac{f(t)}{t} < \infty.$$

Proof. We first assume $L := \inf_{t>0} \frac{f(t)}{t} > -\infty$; the case $L = -\infty$ follows analgously. For any $\epsilon > 0$, let b > 0 be such that $f(b)/b < L + \epsilon$. Now for any $t \ge 2b$, let $n \in \mathbb{N}$ and $b \le r < 2b$ such that t = nb + r. Then

$$L \le \frac{f(t)}{t} = \frac{f(nb+r)}{t} \le \frac{nf(b) + f(r)}{t}$$
$$\le \frac{n}{t} \cdot \frac{f(b)}{b} + \frac{f(r)}{t}.$$

But $r \in [b,2b]$ and since $\sup\{f(t): t \in [b,2b]\} < \infty$ by Lemma 1.4, we have $\lim_{t\to\infty}\frac{f(t)}{t} \leq L + \epsilon$. But $\epsilon>0$ was arbitrary, so the desired result holds.

- **Remark 1.6.** Of course, subadditivity is preserved under isomorphism. Let A and B be abelian semigroups and $f: A \to \mathbb{R}$ a subadditive function. If $T: A \to B$ is an isomorphism of semigroups, then $g = T \circ f \circ T^{-1} \colon B \to \mathbb{R}$ is also subadditive. For example, submultiplicativity is equivalent to subadditivity by using the map $T(x) = -\log(x)$ as a function from (0,1) (with multiplication) to $(0,\infty)$ (with addition).
- 1.2. **Subadditive functions with multiple arguments.** Next, we establish the following subadditivity result for a certain family of multivariate functions. Note that we must *a priori* assume that our sequence is bounded in the second coordinate.

Lemma 1.7. *Suppose* $\{\psi(k,m): k \in \mathbb{N}, m \in \mathbb{N}\}$ *is a family of real numbers such that:*

- (i) For each $m \in \mathbb{N}$, there is a $C_m \in \mathbb{R}$ so that $\psi(k, m) \leq C_m$ for all $k \in \mathbb{N}$.
- (ii) For all $k, m, n \in \mathbb{N}$,

$$\psi(k, m+n) \le \frac{m\psi(k, m) + n\psi(k+m, n)}{m+n}.$$

Then

$$\limsup_{m \to \infty} \limsup_{k \to \infty} \psi(k,m) = \lim_{m \to \infty} \limsup_{k \to \infty} \psi(k,m) = \lim_{m \to \infty} \sup_{k \in \mathbb{N}} \psi(k,m)$$

Proof. Note that applying (ii) inductively, we obtain for any $\{m_i\}_{i=1}^{\ell} \subset \mathbb{N}$ and $k \in \mathbb{N}$

(1.1)
$$\psi(k, \sum_{i=1}^{\ell} m_i) \leq \frac{\sum_{i=1}^{\ell} m_i \psi(k + \sum_{j=1}^{i-1} m_j, m_i)}{\sum_{i=1}^{\ell} m_i}.$$

We take the empty sum to be 0.

We establish the first equality. Write $a_m = m \cdot \limsup_{k \to \infty} \psi(k, m)$. Applying (1.1),

$$a_{m+n} = (m+n) \limsup_{k \to \infty} \psi(k, m+n)$$

$$\leq (m+n) \limsup_{k \to \infty} \frac{m\psi(k, m) + n\psi(k+m, n)}{m+n}$$

$$\leq a_m + a_n.$$

Thus the sequence $(a_m)_{m=1}^{\infty}$ is subadditive, so the limit of a_m/m exists and is equal to $\inf_{m\in\mathbb{N}}a_m/m$ by Lemma 1.2. Note that the same argument applies with a supremum in place of the limit supremum.

It remains to verify the second equality. Write

$$\beta = \lim_{m \to \infty} \limsup_{k \to \infty} \psi(k, m).$$

The final equality holds trivially if $\beta = -\infty$, so we may assume otherwise. It suffices to show for each $\epsilon > 0$ and all m sufficiently large depending on ϵ and all $k \in \mathbb{N}$,

$$(1.2) \psi(k,m) \le \beta + 3\epsilon.$$

By the definition of β , there is some m_0 and K so that for all $k \geq K$, $\psi(k, m_0) \leq \beta + \epsilon$. Let

$$C = \max\{C_j : j \in \mathbb{N}, 1 \le j \le \max\{m_0, K\}\}.$$

Now let $n \in \mathbb{N}$ be arbitrary and write $n = \ell m_0 + j$ for some $\ell \in \mathbb{N} \cup \{0\}$ and $0 \le j < m_0$. Applying (1.1), there is some $N \in \mathbb{N}$ so that for all $n \ge N$,

$$\psi(k,n) \leq \frac{m \sum_{i=0}^{\ell-1} \psi(k+im_0,m_0) + j\psi(k+\ell m_0,j)}{n}$$
$$\leq \frac{\ell m_0}{n} (\beta + \epsilon) + \frac{j}{n} C \leq \beta + 2\epsilon.$$

Now let $k \in \{1, ..., K\}$ and $m \ge N + K$, and set j = K - k. Again applying (1.1),

$$\psi(k,m) \le \frac{j\psi(k,j) + (m-j)\psi(K,m-j)}{m}$$
$$\le \frac{j}{m}C + \frac{m-j}{m}(\beta + 2\epsilon) \le \beta + 3\epsilon$$

for all m sufficiently large since $j \leq K$. This proves (1.2), as required.

1.3. **Approximate subadditivity and other variants.** Sometimes, it is useful to consider an approximate form of subadditivity.

Definition 1.8. We say that $f:(0,\infty)\to\mathbb{R}$ is approximately subadditive if there exist constants $c\in\mathbb{R}$ and $r\in(0,\infty)$ such that

$$f(x+y+r) \le f(x) + f(y) + c$$

For example, the following result holds, and the proof is essentially same as Theorem 1.5:

Theorem 1.9. Let $f:(0,\infty)\to\mathbb{R}$ be approximately subadditive. Then $\lim_{t\to\infty} f(t)/t$ exists and is equal to $\inf_{t>0} f(t)/t$.

We can also consider types of subadditivity for functions of two variables. This result is motivated by the technique used in [2, Prop. 3.1]:

Theorem 1.10. Let $f:(0,\infty)\times(0,1)\to\mathbb{R}$ and suppose for any $\epsilon>0$:

(i) There is $\delta > 0$ such that whenever $s, t \in (0, \infty)$ have $s/t < \delta$,

$$f(t+s, 2\epsilon) \ge f(t, \epsilon),$$

and

(ii) There are $r \in (0, \infty)$ and D > 0 such that for any $\epsilon \in (0, 1/2)$ and $p \in \mathbb{N}$, there exists $N(\epsilon) > 0$ so that

$$f(p(t+r), 2\epsilon) \ge D^p(f(t, \epsilon))^p$$

for any $t \geq N(\epsilon)$.

Then

$$\lim_{\epsilon \to 0} \limsup_{t \to \infty} \frac{\log f(t,\epsilon)}{t} = \lim_{\epsilon \to 0} \liminf_{t \to \infty} \frac{\log f(t,\epsilon)}{t}.$$

Proof. Let $\epsilon > 0$ be arbitrary and sufficiently small, and set

$$L := \limsup_{t \to \infty} \frac{\log f(t, \epsilon)}{t} \qquad \qquad M := \liminf_{t \to \infty} \frac{\log f(t, 4\epsilon)}{t}.$$

It suffices to show that $L \leq M$. Let $t_0 \geq N(\epsilon)$ be arbitrary and let $t_0 + r \leq s_1 \leq s_2 \leq \cdots$ be a sequence tending to infinity such that

$$\lim_{n \to \infty} \frac{\log f(s_n, 4\epsilon)}{s_n} = M.$$

Now for $n \in \mathbb{N}$ sufficiently large, there exists $p_n \in \mathbb{N}$ and $0 < s \le t_0 + r$ such that $s_n = p_n(t_0 + r) + s$ and $s/(p_n(t_0 + r)) < \delta$. Applying (i) and then (ii), we have

$$f(s_n, 4\epsilon) = f(p(t_0 + r) + s, 4\epsilon) \ge f(p_n(t_0 + r), 2\epsilon) \ge D^{p_n} f(t_0, \epsilon)^{p_n}$$

so that

$$\frac{\log f(s_n, 4\epsilon)}{s_n} \ge \frac{\log(D) + \log f(t_0, \epsilon)}{s_n/p_n}.$$

6 ALEX RUTAR

Now, observe that $\lim_{n\to\infty} s_n/p_n = t_0 + r$ so that

(1.3)
$$M \ge \frac{\log(D) + \log f(t_0, \epsilon)}{t_0 + r}$$

where $t_0 > 0$ is arbitrary.

Moreover, we observe that $\lim_{t\to\infty} f(t,\epsilon) = \infty$ as a consequence of (ii). Let $(t_n)_{n=1}^{\infty}$ be a sequence tending to infinity with $\lim_{n\to\infty} \frac{\log f(t_n,\epsilon)}{t_n} = L$. Then for each $n\in\mathbb{N}$ with $t_n\geq N(\epsilon)$, we have by (1.3)

$$M \ge \lim_{n \to \infty} \frac{\log D + \log f(t_n, \epsilon)}{t_n + r} = L$$

as required.

REFERENCES

- 1. Michael Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228–249. 1
- 2. De-Jun Feng, Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices, Isr. J. Math. **170** (2009), no. 1, 355–394. 5
- 3. Einar Hille and Ralph S. Phillips, *Functional analysis and semi-groups*, American Mathematical Society, Providence, R.I., 1957. 2

University of St Andrews, Mathematical Institute, St Andrews KY16 9SS *Email address*: alex@rutar.org