Convexity and Subadditivity
ALEX RUTAR

ABSTRACT. This work in progress discusses various properties of functions which
satisfy some form of convexity or subadditivity, with a focus on functions satisfying
both.
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1. SUBADDITIVITY

Definition 1.1. Let A, B be abelian semigroups. We say that a function f : A — B is
subadditive if

flet+y) < flz)+ f(y)
forall z,y € A.
A natural first example of subadditivity is for a sequence (a,);>; C R satisfying

Upim < Ay + ap,. As a fundamental illustration of the nice properties of subadditivity,
we have the following result due to Fekete [1]:

Lemma 1.2 (Subadditivity). If (a;):2, is subadditive, then lim,, . a,,/n exists and is equal
to its infimum L := inf, >y a,,/n.

Proof. For any € > 0, let n be such that a,,/n < L 4+ € and b = max{a,; : 1 <i < n}. For
m > n, write m = gn + r with 0 < r < n. Then from the subadditivity property, we
have

AgnA-r S qan + Gy S qan + b
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so that
b
P
m m m
n(L + € b mooo
<q< )+— % L+e
m m
since gn/m — 1 as m — oo. O

1.1. Subadditivity for functions on the positive reals. Here we establish some
conditions which guaratee that a function f : (0, c0) — R is subadditive:

Proposition 1.3. (i) If f(t)/t is decreasing on (0, 00), then f(t) is subadditive.
(i) If f : (0,00) — R is concave with lim sup,_,, f(t) > 0, then f is subadditive.

Proof. To see (i), we have

f(t1+752)+t [t +t2) <t1f(t1)+t2f(t2)

t o ty) =t
fltr+1) Yt 2t t, g t

= f(t1) + f(t2)

as claimed.
To see (ii), if f(¢) is concave, for 0 < a < b, let 0 < ¢t < a be arbitrary and let a be
such that ot + (1 — a)b = a. Then by concavity, we have

fla) > af(#) + (1= ) f(b) = af(t) + = 50).
Thus ‘
fla) > alim sup f(&)+ f(0) lim sup uam— %f(b)
so that f(t)/t is decreasing. Then apply (i). O

We can also establish the equivalent statement of Lemma 1.2 for functions f :
(0,00) — R. The key technical detail is to establish a continuous equivalence of the
maximum max{a; : 1 <i < n} in the proof of Lemma 1.2.

The proofs of the following lemma and theorem are due to Hille [3]:

Lemma 1.4. Let f : (0,00) — R be measurable and subadditive. Then f is bounded on any
compact subset of (0, c0).

Proof. Let a € (0,00) be arbitrary. If t1,t, € (0,00) satisfy t; + t; = a, then f(a) <
f(t1) + f(t2). It follows that, with

E,:={t: f(t)> f(a)/2,0 <t < a},

we have (0,a) = E, U (a — E,) and therefore m(E,) > a/2. Suppose for contradiction
f is unbounded on some interval («, ) with 0 < a < 8 < 0.

If f is not bounded above on («, (), then there exists a sequence (,,)5°; where each
f(t,) > 2nand (t,)52, — to € [a, 5]. Butnow each E;,, = {t: f(t) > n,0 <t <t,} C
[0, 8] has m(E},) > t,/2 > a/2, a contradiction. Thus f is bounded above on any
interval (a, ).
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If f is not bounded below on («, /), then there exists a sequence (¢,,);°; where each
f(tn,) < —nand (,)52, — to € [, B]. Let M = sup{f(t) : 2 <t < 5} < oo. Now
if t' € (2,5), we have f(t' +1t,) < f(t')+ f(tn) < M — n. For sufficiently large n,
(to+3,to+4) C (t, +2,t, +5) so for each t € (ty + 3,ty +4), we have f(t) < M —n,
a contradiction. Thus f is bounded below on any interval («, /), and hence bounded
below on any compact subset of (0, c0). O

The previous lemma is the key technical result for the following theorem; the
remaining details of the proof are similar to Lemma 1.2.

Theorem 1.5. Let f : (0,00) — R be measurable and subadditive. Then
lim S inf ol

n—oo t>0 ¢

Proof. We first assume L := inf,- @ > —o0; the case L = —oo follows analgously.

For any € > 0, let b > 0 be such that f(b)/b < L + ¢. Now for any ¢ > 2b, let n € N and
b <r < 2bsuch thatt =nb+ r. Then

F) _ fb+r) _ nf(6)+ ()

< o0

L< =
-t t - t
_n S0 S0
—t b t
But » € [b,20] and since sup{f(t) : t € [b,2b]} < oo by Lemma 1.4, we have
limy oo @ < L + e. But € > 0 was arbitrary, so the desired result holds. O

Remark 1.6. Of course, subadditivity is preserved under isomorphism. Let A, B, C' be abelian
semigroups and f : A — C a subadditive function. If T' : A — B is an isomorphism of
semigroups, then g = T o f o T~ is also subadditive. For example, submultiplicativity is
equivalent to subadditivity by using the map T'(x) = — log(x) as a function from (0, 1) (with
multiplication) to (0, co) (with addition).

1.2. Approximate subadditivity and other variants. Sometimes, it is useful to con-
sider an approximate form of subadditivity.

Definition 1.7. We say that f : (0,00) — R is approximately subadditive if there exist
constants ¢ € R and r € (0, 00) such that

flet+y+r) < f(x)+ fly) +c

For example, the following result holds, and the proof is essentially same as Theo-
rem 1.5:

Theorem 1.8. Let f : (0,00) — R be approximately subadditive. Then lim,_,, f(t)/t exists
and is equal to inf,~q f(t)/t.

We can also consider types of subadditivity for functions of two variables. This
result is motivated by the technique used in [2, Prop. 3.1]:
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Theorem 1.9. Let f : (0,00) x (0,1) — R and suppose for any e > 0 sufficiently small we
have
(i) there exists some & > 0 such that whenever s,t € (0, 00) have s/t < 0,

f(t+s,2¢) > f(t,e),

and
(ii) there exists constants r € (0, 00) and D > 0 such that for any ¢ € (0,1/2) and p € N,
there exists N (e) > 0 so that

flp(t +1),2¢) > DP(f(L,€))”
foranyt > N(e).
Then
log f(t,¢)

1 t
lim lim sup log f(t,€) = lim lim inf —"—"=,
e—~0 4,50 e—0 t—oo t

Proof. Let € > 0 be arbitrary and sufficiently small, and set

! 1 4
L = ]_imsup M M — hmlnf Og fz(f? 6).

t—o0 t—o0
It suffices to show that L < M. Lett, > N(e) be arbitrary and let to+r < s; < 59 < ---
be a sequence tending to infinity such that

1 4

n—o0 Sn

=M.

Now for n € N sufficiently large, there exists p, € Nand 0 < s < ¢y, + 7 such that
Spn = pulto + 1)+ sand s/(p,(to + 7)) < 6. Applying (i) and then (ii), we have
f(sn, 4€) = f(p(to + 1) + 5,4€) = f(pn(to + 1), 2¢) = D" f(to, €)™
so that
log f(sn, 4€) - log(D) + log f(to, e).

Sn - Sn/Pn
Now, observe that lim,,_,. s,/p, = to + r so that
., log(D) + log f(to, )
- to +r

(1.1) M

where ¢, > 0 is arbitrary.
Moreover, we observe that lim;_,, f(t,€) = oo as a consequence of (ii). Let (¢,)7,

be a sequence tending to infinity with lim,,_, ., % = L. Then for each n € N with
t, > N(€), we have by (1.1)

log D +1
M > lim 08D+ log f(tn,€)
n—00 t,+71

=L

as required. O
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