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ABSTRACT. We investigate an entertaining recreational math problem
which involves iterated doubling of digits. It turns out that this problem
reduces to counting finite prefixes of a substitution on a finite alphabet.

1. INTRODUCTION: A NUMBER MULTIPLICATION GAME

I was talking to a friend recently and he made an amusing observation: he noticed
an interesting relationship between his phone passcode and a friend’s phone
passcode1. His code was the 6-digit number 485394 and his friend’s code was the
6-digit number 816106. He noticed that you could obtain the second code from
the first by the following procedure: take each digit in the initial code, multiply it
by 2, join the resulting digits together, and then remove all characters except the
first 6. In this situation,

4 8 5 3 9 4 → 8 16 10 6 18 8 → 8 1 6 1 0 6

gives the second code from the first.
So then he wondered: what happens if you repeat this process? Let’s do this

for a number of steps.

0 485394
1 816106
2 162122
3 212424
4 424848
5 848168
6 168162
7 212162
8 424212
9 848424

10 168168
11 212162

After 11 iterations, we see the same number 212162 twice! After this stage, we will
see a repeating pattern consisting of {212162, 424212, 848424, 168168}.

Try this process yourself with another 6-digit number which does not start
with 0. Surprisingly, you will eventually again see exactly the 4 numbers which
we saw above!

1Of course, the original numbers are modified!
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Why does this happen? Can we come up with a good explanation for this
phenomenon? What are the special features of this process which enable such a
thing to happen?

Since there are only finitely many code words, any well-defined process taking
codes to other codes will always be eventually periodic. But the above process
has a special feature: it is defined by some fixed action on individual digits in the
code. It turns out that this property will yield a substantial amount of structure
about the process, which we can use to understand why this phenomenon occurs
in general.

2. MAKING THINGS PRECISE

2.1. Substitutions. A good setting for the above system comes from the language
of substitutions. Let N = {0, 1, 2, . . .} denote the natural numbers starting at zero.
Fix a finite alphabet A; for instance, A might be the set of digits used in a code.

Let’s introduce some language in order to make it easier to discuss some
concepts. For n ∈ N, we let An denote the set of strings of length n on the alphabet
A. We also write A∗ =

⋃∞
n=0 An to denote the set of all finite strings. We let ε

denote the unique string of length zero. Given two strings σ = (a1, . . . , an) and
τ = (b1, . . . , bk), we denote the concatenation στ = (a1, . . . , an, b1, . . . , bk). We denote
the length of σ = (a1, . . . , an) by |σ| = n.

Now fix a function f : A → A∗. The function f extends to a unique function on
A∗ by the rule f(ε) = ε and f(a1 . . . an) = f(a1) · · · f(an).
Example 2.1. In our original example, our finite alphabet is A = {0, 1, . . . , 9}.
Then the function f : A → A∗ is as follows:

a 0 1 2 3 4 5 6 7 8 9
f(a) 0 2 4 6 8 10 12 14 16 18

Now suppose we are given a finite word, say 175231. We then extend the definition
of f on the finite word by applying f to each individual character, and then joining
the results:

f(175231) = f(1)f(7)f(5)f(2)f(3)f(1) = 21410462.

Note that, at this stage, we do not truncate the process: we let the length of the
word increase when we apply the map f .

Observe that if σ and τ are any finite words, then f(στ) = f(σ)f(τ). In fancier
terminology, f is a semigroup homomorphism: the set A∗ is a semigroup equipped
with the operation of concatenation, and the function f : A∗ → A∗ respects con-
catenation. In this specific situation, one often calls the function f a substitution.2

It could happen that f(a) = ε for some a. However, in this situation, we can
effectively ignore all the characters a where f(a) = ε without any loss. Therefore

2Alternatively, we could have started with a substitution g : A∗ → A∗. Then the function g must
satisfy g(ε) = ε (since for any σ ∈ A∗, g(σ) = g(ε)g(σ) which is only satisfied if g(ε) = ε), and if
σ = (a1, . . . , an) is arbitrary, g(σ) = g(a1) · · · g(an) is uniquely determined by its values on A.
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the substitution f is equivalent to the substitution restricted to the subfamily

{a ∈ A : f(a) ̸= ε}.

For the rest of this document, we will assume that |f(a)| ≥ 1 for all a ∈ A.

2.2. Truncated substitutions. We recall that we began with a procedure which
is defined on some finite set of characters A, and then extended it to a procedure
which takes finite words. In the terminology of the previous section, this is the
same as fixing a substitution f : A∗ → A∗. However, we recall that we do not just
want the full action of the process f : in the passcode example, we only cared about
the first 6 digits (and discarded the rest). Let’s formalize this process.

First, we need some more notation again. Given a finite word σ ∈ A∗, a prefix is
a word formed by taking some initial segment of characters. For instance, 1532 is a
prefix of 153204. Given n ∈ N and a word σ ∈ A∗ with |σ| ≥ n, we write [σ]n ∈ An

to denote the (unique) prefix of σ of length n. Since we assumed that |f(a)| ≥ 1
for all a ∈ A, we must have |f(σ)| ≥ |σ|, so f induces a function fm : Am → Am by
the rule

fm(σ) = [f(σ)]m.

We also let fn
m denote the n-fold composition of fm with itself.

Example 2.2. Continuing the original example, with the function f defined in
Example 2.1, the actual process we are interested in is the function f6 : A6 → A6.

Our goal in this document is to (in some form) answer the following question.

Question 2.3. What can one say about the asymptotic behaviour of the orbits (fn
m(σ))

∞
n=1

for some word σ ∈ Am?

First, since Am is a finite set and (fn
m(σ))

∞
n=1 is an infinite sequence, there must be

some n1 and n2 so that fn1
m (σ) = fn2

m (σ). But then for any n ∈ N, this again implies
that fn1+n

m (σ) = fn2+n
m (σ). In other words, (fn

m(σ))
∞
n=1 must be eventually periodic:

there is some k, θ ∈ N and a finite set of words τ1, . . . , τθ so that

fk+ℓθ+i
m (σ) = τi

for all ℓ ∈ N and 0 ≤ i ≤ θ − 1. If θ is chosen to have minimal length, we call θ the
period and the corresponding words (τ1, . . . , τθ) the cycle. We say that two cycles
are equivalent if the cycles are cyclic permutations of the other.

So we now know that for each word σ ∈ A∗, there is a unique period θ and
unique (up to equivalence) cycle (τ1, . . . , τθ). Moreover, suppose some fn

m(σ) = τi
for some n: then the cycle of σ must be determined by (τ1, . . . , τθ). In other words,
for each m ∈ N and σ ∈ Am, the cycle of σ is uniquely determined by any member
of the set Cm(σ) := {τ1, . . . , τθ}. For distinct words σ1 and σ2, either Cm(σ1) = Cm(σ2)
or Cm(σ1) ∩ Cm(σ2) = ∅.
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2.3. Characterizing cycles. We now return to our original substitution f . It
will turn out that there are essentially two meaningful cases to understand the
long-term behaviour of fn

m(σ): either the initial letter of σ eventually grows to
be arbitrarily long (and it completely determines the first m letters of fn(σ)), or
it does not, and it must have some other nice properties. Moreover, we will see
that we can reduce the analysis to the case when the first character of σ is fixed by
some power of f . Let’s do this analysis now.

We say that a symbol a ∈ A is prefix invariant if there is some k ∈ N so that
a is a prefix of fk(a). Note that, by induction, for any j ∈ N, f jk(a) is a prefix of
f (j+1)k(a). We also say that a ∈ A is bounded if (|fn(a)|)∞n=1 is a bounded sequence,
and unbounded otherwise.

Suppose a0 ∈ A is prefix invariant and bounded, and get k so that a0 is a prefix
of fk(a0). But if |fk(a0)| ≥ 2, then for any j ∈ N, we would have |f jk(a0)| ≥ j + 1,
which contradicts boundedness: so in fact fk(a0) = a0.

Otherwise, suppose a0 ∈ A is prefix invariant and unbounded. Equivalently,
there is a k ∈ N so that a0 is a prefix of fk(a0) and moreover |fk(a0)| ≥ 2. Then for
any m ∈ N and σ ∈ Am, if a0 is a prefix of σ, since |fmk(a0)| ≥ m, for any j ∈ N

fmk
m (σ) = [fmk(a0)]m = [f (m+j)k(a0)]m

In other words, the cycle of (fn
m(σ)) is uniquely determined by the first m characters

of fmk(a0).
Finally, what happens if a0 ∈ A is not prefix invariant? Since the sequence

(fn
1 (a0))

∞
n=1 is again eventually periodic, there is some k ∈ N so that the first

character b of fk(a0) is prefix invariant. But then if a0 is not the first character of
f j(b) for some j ∈ N, a0 will never appear again as the first character.

Example 2.4. Again, let’s continue with the substitution f defined in Example 2.1.
What are the possible cases? Firstly, since f(0) = 0, 0 is prefix invariant and
bounded since under iteration, the length does not increase. There are also words
which are prefix invariant and unbounded: f(1) = 2, f(2) = 4, f(4) = 8, and
f(8) = 16. Since |f 4(1)| = 16 has length 2, the characters {1, 2, 4, 8} are all prefix
invariant and unbounded.

What about the remaining characters? Well, f 2(3) = 12, f(5) = 10, f(6) = 12,
f(7) = 14, and f(9) = 18, all of which begin with the digit 1 which is prefix
invariant, and none of the characters are images of 1 under iteration. Thus the
characters {3, 5, 6, 7, 9} are not prefix invariant.

2.4. Putting everything together. Now, fix an m ∈ N and an arbitrary word
σ ∈ Am. Let a0 be the first character of σ. If a0 is not prefix invariant, we observed
that there is some k so that the first character of fk(a0) is prefix invariant. Thus by
considering the word fk

m(σ), we may assume that a0 is prefix invariant.
If a0 is bounded, then there is some k ∈ N so that fk(a0) = a0. Otherwise, a0 is

prefix invariant and unbounded, and fn
m(σ) is fully determined by fn(a0) In other

words, we can write σ = ωη where all the characters in ω are prefix invariant and
bounded, and the first character of η is prefix invariant and unbounded. Moreover,
any cycle is uniquely determined by some choice of ω and the first character of
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η. This gives a complete description of all possible cycles which can appear in
(fn

m(σ))
∞
n=1.

Example 2.5. Let’s complete the analysis started in Example 2.1 in the case m = 6.
Suppose we begin with a 6-digit code. If the code begins with some collection of
0s, then the 0s will remain there forever: this is precisely the contribution from
the bounded prefix invariant characters. Then let’s take the first non-zero digit a0
But there is only one group of unbounded prefix invariant characters: {1, 2, 4, 8}.
If the first non-zero digit does not lie in this group, after at most 5 steps, the first
digit will be a 1. But the digit 1 is fixed under f 4, so by repeatedly iterating this
power of f , the image of 1 will eventually offset all other characters in σ.

Visually, here is a depiction. Let’s suppose we have a word σ = 3∗∗∗∗∗, where
the ∗ are placeholders for any characters which do not matter in the long run.

0 3∗∗∗∗∗
1 6∗∗∗∗∗
2 1∗∗∗∗∗
6 16∗∗∗∗

10 16816∗
11 212162

Since 3 is not prefix invariant, after 2 steps, we arrive at 1 which is prefix invariant.
Then we iterate enough times until the image of 1 is sufficiently long that none
of the other characters matter. At this point, we have arrived at 212162, which is
precisely the same word which we saw appear in the first section, and is one of
the four words in the repeating cycle (of length four).

2.5. Another example: iterated squares. Let’s illustrate the concepts in the pre-
vious sections using the following example. Let A = {0, 1, . . . , 9}, and define
f : A → A∗ so that f(a) is the base-10 encoding of a2. This map is summarized as
follows:

a 0 1 2 3 4 5 6 7 8 9
f(a) 0 1 4 9 16 25 36 49 64 81

Let’s separate the characters in A into the three cases discussed in §§2.3.
• Prefix invariant and bounded: The characters 0 and 1 are prefix invariant and

bounded, since they are fixed points under f .
• Prefix invariant and unbounded: The characters 3, 6, 8, and 9 are all prefix

invariant and unbounded in the same cycle since (fn
1 (3))

∞
n=1 is periodic with

cycle (3, 9, 8, 6).
• Not prefix invariant: The characters 2, 4, 5, and 7 are not prefix invariant

since f 2(2) = 16, f(4) = 16, f 3(5) = 16425, and f 2(7) = 1681 and 1 is prefix
invariant.

Therefore, for any m ∈ N, all the possible cycles of length m are characterized
by words of the form ωη where ω ∈ {0, 1}k and η is the length m − k prefix of
f 4(m−k)(3), for k = 0, . . . ,m. Here, the 4 occurs since the prefix invariant and
unbounded characters form a cycle of length 4.

For fun, here are some of the initial values of fk(3) for some k ∈ N:
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0 3
1 9
2 81
3 641
4 36161
5 9361361
6 8193619361
7 641819361819361
8 36161641819361641819361

12 3616164181936164181936164181936181936181936...

For instance, if σ = 106345 , our word will be eventually periodic with period 4
given by the cycle {103616, 109361, 108193, 106418}.

2.6. A final example illustrating varied behaviour. To conclude, we show that
some more complex behaviour is possible. Consider the substitution defined by

a 0 1 2 3 4 5 6 7 8 9
f(a) 1 2 0 45 5 3 7 69 7 13

Again, let’s separate the characters in A into the three cases.

• Prefix invariant and bounded: The characters 0, 1, and 2 are prefix invariant
and bounded. They form a cycle of length 3.

• Prefix invariant and unbounded: The characters {3, 4, 5} form a prefix invariant
and unbounded cycle of length 3, and the characters {6, 7} form a prefix
invariant and unbounded cycle of length 2.

• Not prefix invariant: The characters 8 and 9 are not prefix invariant since the
first characters of f(8) and f(9) are prefix invariant.

Now, there are multiple cases for the cycle: this happens since the bounded
characters form periods of length 3, and there are unbounded characters form
either a period of length 3 or a period of length 2. Again, for m ∈ N, the possible
cycles of length m are characterized by words of the form ωη where ω ∈ {0, 1, 2}k
and η is the length m− k prefix of either f 3(m−k)(3) or f 2(m−k)(6).

For example, if σ = 1820 , then our word will be eventually periodic with
period 6 = lcm(3, 2) given by

(1713, 2692, 0713, 1692, 2713, 0692).
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