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ABSTRACT. The goal of this note is to provide a simplified proof of the
following fact: if E' is a non-empty metric space with dimqa F < oo, then for
0<0<1,

dimHAE = sup dim} E.
0<A<0
In fact, we will see that this is an immediate consequence of an asymptotic
Lipschitz property of a two-scale branching function associated with the set
L.

This result was previously proven in [ ] under the additional
assumption that F is a subset of Euclidean space, with a more difficult proof.

1. UPPER ASSOUAD SPECTRUM

Let E be a non-empty metric space. Throughout, for 6 > 0, B(z,J) denotes the
open ball with radius § and Ns(F') denotes the least number of open balls of radius
0 required to cover a set F' C E.

A two-scale branching function. Before we state the definition of the (upper)
Assouad spectrum, we first introduce the two-scale branching function associated
with E. It is the function /3 defined for 0 < u < v by

B(u,v) = logsup No-u(B(x,277)).
el

Here, the base of the logarithm is 2.
We begin with some basic properties of the function f.

Lemma 1.1. Let E have two-scale branching function (. Then:
(i) B(u,u) =0 forall u> 0.
(ii) [(u,v) is increasing in w and decreasing in v.
(iii) Forall0 <v <w <,

(1.1) Blu,v) < Blu, w) + Blw,v).

Proof. The fact that 5(u,u) = 0 for v > 0 is immediate, along with the mono-
tonicity properties. To verify (1.1), let 0 < v < w < u be arbitrary. Then to obtain a
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cover for B(z,27"), we first cover with balls of radius 27, and then cover each
ball in the resulting cover with balls of radius 27". Therefore

NQ*“ (B(:B7 2_U)) S NZ*”(B(xv 2—1})) * Sup NQ*“(B(yv 2—w)).

yeR

Taking suprema in = and a logarithm, the claim follows. 0

Assouad spectra and quasi-Assouad dimension. Using the two-scale branching
function 3, let us recall various definitions associated with the Assouad spectrum.
First, the Assouad spectrum is defined for 0 < 6 < 1 by

dimf E = inf{s >0:3JA>0V0 <wus.t fu,0u) < A+ s(1— H)U}
Similarly, the upper Assouad spectrum is defined for 0 < § < 1 by

EQAE = inf{s >0:3A>0V0 <v <fOus.t. f(u,v) < A—l—s(u—v)}.

Clearly dimiE > dimi E, and moreover ﬁiE is monotonically increasing in 6.
The quasi-Assouad dimension is the limit at 1:

. R T
dimga £ = (191;1% dim, E.

It is standard to rephrase the above definitions in terms of limits of the function

3.

Lemma 1.2. Let E have two-scale branching function (. Then

Ou)
dim% E = limsu (u,
A u—>oop U( - 6)
and

Blu, \u)

—9
dim, £ = limsup su .
A u—>oop OS)\PS)@ U(l - )\)

We can now see that the result claimed in the abstract is simply a justification of

the change of the order of the limit in the definition of dimiE . In order to justify
this operation, we will prove that the functions 3(u, v) are uniformly Lipschitz in
the variable v up to a sub-linear error term in u.

An asymptotic Lipschitz property. Now let us assume in addition that the quasi-
Assouad dimension of F is finite. We prove that the function /3 satisfies an approx-
imate Lipschitz property.

Lemma 1.3. Let E have two-scale branching function 3, and suppose o = dimga £ < o0.
Then forall 0 < v <,

Blu,v) < a(u —v) + o(u).
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Proof. It suffices to show for all € > 0 there is a constant C. > 1 such that for all
O<r<R<]l,

(1.2) sup N,.(B(z, R)) < Cor™ (%)O‘

Let # < 1 be sufficiently large so that (1 — 0)(a + ¢) < . We consider two cases
depending on the value of R. If R > r?, then by definition of the quasi-Assouad
dimension there is a constant C. (depending on F, §, and ¢) so that

N,(B(x, R)) < C. (5> <O (5)

r r

In the second inequality we just use that R < 1. Otherwise, if R < 7%, since
B(z,R) C B(z,r%),

r? R

a+te o
N,(B(z, R)) < N.(B(z,7%)) < C. (7) < O~ (1-0ete) < ¢ pme (?>

where the last line follows since (R/r)* > 1. Since z € E was arbitrary, the claim
in (1.2) follows.

Taking logarithms and substituting the definition of 3, the desired claim fol-
lows. O

Using the subadditivity property (1.1), we can convert Lemma 1.3 into an asymp-
totic Lipschitz property in the second argument of /3.
Corollary 1.4. Let E have two-scale branching function [3, and suppose ow = dimgp E <
oo. Then forall 0 < w < v <,
0< ﬁ(u7w) - ﬁ(u,v) < Oé(’l) - w) + O(U)
Proof. By monotonicity, f(u,w) > (u,v). Thenby (1.1) followed by Lemma 1.3,

Blu,w) — B(u,v) < Blw,v) < av —w) + o(u)

as claimed. ]

Upper Assouad spectra from Assouad spectra. Now, we prove that we can
recover the upper Assouad spectrum from the Assouad spectrum.

Theorem 1.5. Let E be a non-empty metric space with dimqa £ < oo. Then for 0 < 6 <
L,

di_meAE = sup dim) E.
0<A<0
Proof. Recalling Lemma 1.2, get an increasing sequence 0 < u, — oo and
An € 10, 6] such that \,, — A\ € [0, 6] and

dimy E = lim —/i “ﬁ A”;”)).
n—00 Upll — Ay
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Then by Corollary 1.4, for n € N,
Since <1, (1 —X,)' = (1 =X} s0

. 6(un7>\nun) 5(“117)‘) _
) wma—n|

Therefore dim?} £ > dimF as required. O
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