On the upper Assouad spectrum

ALEX RUTAR

ABSTRACT. The goal of this note is to provide a simplified proof of the following fact: if *E* is a non-empty metric space with $\dim_{qA} E < \infty$, then for $0 \le \theta < 1$,

$$\overline{\dim}_{\mathbf{A}}^{\theta} E = \sup_{0 \le \lambda \le \theta} \dim_{\mathbf{A}}^{\lambda} E.$$

In fact, we will see that this is an immediate consequence of an asymptotic Lipschitz property of a two-scale branching function associated with the set E.

This result was previously proven in [FHH+19] under the additional assumption that *E* is a subset of Euclidean space, with a more difficult proof.

1. UPPER ASSOUAD SPECTRUM

Let *E* be a non-empty metric space. Throughout, for $\delta > 0$, $B(x, \delta)$ denotes the open ball with radius δ and $N_{\delta}(F)$ denotes the least number of open balls of radius δ required to cover a set $F \subset E$.

A two-scale branching function. Before we state the definition of the (upper) Assouad spectrum, we first introduce the *two-scale branching function* associated with *E*. It is the function β defined for $0 \le u \le v$ by

$$\beta(u, v) = \log \sup_{x \in E} N_{2^{-u}}(B(x, 2^{-v})).$$

Here, the base of the logarithm is 2.

We begin with some basic properties of the function β .

Lemma 1.1. Let *E* have two-scale branching function β . Then:

(i) $\beta(u, u) = 0$ for all $u \ge 0$.

- (ii) $\beta(u, v)$ is increasing in u and decreasing in v.
- (iii) For all $0 \le v \le w \le u$,

(1.1)
$$\beta(u,v) \le \beta(u,w) + \beta(w,v).$$

Proof. The fact that $\beta(u, u) = 0$ for $u \ge 0$ is immediate, along with the monotonicity properties. To verify (1.1), let $0 \le v \le w \le u$ be arbitrary. Then to obtain a

cover for $B(x, 2^{-v})$, we first cover with balls of radius 2^{-w} , and then cover each ball in the resulting cover with balls of radius 2^{-u} . Therefore

$$N_{2^{-u}}(B(x,2^{-v})) \le N_{2^{-w}}(B(x,2^{-v})) \cdot \sup_{y \in E} N_{2^{-u}}(B(y,2^{-w})).$$

Taking suprema in *x* and a logarithm, the claim follows.

Assouad spectra and quasi-Assouad dimension. Using the two-scale branching function β , let us recall various definitions associated with the Assouad spectrum. First, the *Assouad spectrum* is defined for $0 \le \theta < 1$ by

$$\dim_{\mathbf{A}}^{\theta} E = \inf \Big\{ s \ge 0 : \exists A \ge 0 \,\forall 0 \le u \text{ s.t. } \beta(u, \theta u) \le A + s(1-\theta)u \Big\}.$$

Similarly, the *upper Assound spectrum* is defined for $0 \le \theta < 1$ by

$$\overline{\dim}_{\mathbf{A}}^{\theta} E = \inf \Big\{ s \ge 0 : \exists A \ge 0 \,\forall 0 \le v \le \theta u \text{ s.t. } \beta(u, v) \le A + s(u - v) \Big\}.$$

Clearly $\overline{\dim}_{A}^{\theta} E \ge \dim_{A}^{\theta} E$, and moreover $\overline{\dim}_{A}^{\theta} E$ is monotonically increasing in θ . The *quasi-Assouad dimension* is the limit at 1:

$$\dim_{\mathrm{qA}} E = \lim_{\theta \nearrow 1} \overline{\dim}_{\mathrm{A}}^{\theta} E.$$

It is standard to rephrase the above definitions in terms of limits of the function β .

Lemma 1.2. Let *E* have two-scale branching function β . Then

$$\dim_{\mathcal{A}}^{\theta} E = \limsup_{u \to \infty} \frac{\beta(u, \theta u)}{u(1 - \theta)}$$

and

$$\overline{\dim}_{A}^{\theta} E = \limsup_{u \to \infty} \sup_{0 \le \lambda \le \theta} \frac{\beta(u, \lambda u)}{u(1 - \lambda)}.$$

We can now see that the result claimed in the abstract is simply a justification of the change of the order of the limit in the definition of $\overline{\dim}_{A}^{\theta} E$. In order to justify this operation, we will prove that the functions $\beta(u, v)$ are uniformly Lipschitz in the variable v up to a sub-linear error term in u.

An asymptotic Lipschitz property. Now let us assume in addition that the quasi-Assouad dimension of *E* is finite. We prove that the function β satisfies an approximate Lipschitz property.

Lemma 1.3. Let *E* have two-scale branching function β , and suppose $\alpha = \dim_{qA} E < \infty$. Then for all $0 \le v \le u$,

$$\beta(u, v) \le \alpha(u - v) + o(u).$$

Proof. It suffices to show for all $\varepsilon > 0$ there is a constant $C_{\varepsilon} \ge 1$ such that for all $0 < r \le R < 1$,

(1.2)
$$\sup_{x \in E} N_r(B(x,R)) \le C_{\varepsilon} r^{-\varepsilon} \left(\frac{R}{r}\right)^{\alpha}.$$

Let $\theta < 1$ be sufficiently large so that $(1 - \theta)(\alpha + \varepsilon) \le \varepsilon$. We consider two cases depending on the value of R. If $R \ge r^{\theta}$, then by definition of the quasi-Assouad dimension there is a constant C_{ε} (depending on E, θ , and ε) so that

$$N_r(B(x,R)) \le C_{\varepsilon} \left(\frac{R}{r}\right)^{\alpha+\varepsilon} \le C_{\varepsilon} r^{-\varepsilon} \left(\frac{R}{r}\right)^{\alpha}$$

In the second inequality we just use that R < 1. Otherwise, if $R \leq r^{\theta}$, since $B(x, R) \subset B(x, r^{\theta})$,

$$N_r(B(x,R)) \le N_r(B(x,r^{\theta})) \le C_{\varepsilon} \left(\frac{r^{\theta}}{r}\right)^{\alpha+\varepsilon} \le C_{\varepsilon} r^{-(1-\theta)(\alpha+\varepsilon)} \le C_{\varepsilon} r^{-\varepsilon} \left(\frac{R}{r}\right)^{\alpha}$$

where the last line follows since $(R/r)^{\alpha} \ge 1$. Since $x \in E$ was arbitrary, the claim in (1.2) follows.

Taking logarithms and substituting the definition of β , the desired claim follows.

Using the subadditivity property (1.1), we can convert Lemma 1.3 into an asymptotic Lipschitz property in the second argument of β .

Corollary 1.4. Let *E* have two-scale branching function β , and suppose $\alpha = \dim_{qA} E < \infty$. Then for all $0 \le w \le v \le u$,

$$0 \le \beta(u, w) - \beta(u, v) \le \alpha(v - w) + o(u).$$

Proof. By monotonicity, $\beta(u, w) \ge \beta(u, v)$. Then by (1.1) followed by Lemma 1.3,

$$\beta(u, w) - \beta(u, v) \le \beta(w, v) \le \alpha(v - w) + o(u)$$

as claimed.

Upper Assouad spectra from Assouad spectra. Now, we prove that we can recover the upper Assouad spectrum from the Assouad spectrum.

Theorem 1.5. Let *E* be a non-empty metric space with $\dim_{qA} E < \infty$. Then for $0 \le \theta < 1$,

$$\overline{\dim}_{\mathbf{A}}^{\theta} E = \sup_{0 \le \lambda \le \theta} \dim_{\mathbf{A}}^{\lambda} E.$$

Proof. Recalling Lemma 1.2, get an increasing sequence $0 < u_n \to \infty$ and $\lambda_n \in [0, \theta]$ such that $\lambda_n \to \lambda \in [0, \theta]$ and

$$\overline{\dim}_{\mathbf{A}}^{\theta} E = \lim_{n \to \infty} \frac{\beta(u_n, \lambda_n u_n)}{u_n(1 - \lambda_n)}.$$

Then by Corollary 1.4, for $n \in \mathbb{N}$,

(1.3)
$$|\beta(u_n,\lambda_n u_n) - \beta(u_n,\lambda)| \le \alpha u_n |\lambda_n - \lambda| + o(u_n).$$

Since $\theta < 1$, $(1 - \lambda_n)^{-1} \rightarrow (1 - \lambda)^{-1}$, so

$$\lim_{n \to \infty} \left| \frac{\beta(u_n, \lambda_n u_n)}{u_n(1 - \lambda_n)} - \frac{\beta(u_n, \lambda)}{u_n(1 - \lambda)} \right| = 0.$$

Therefore $\dim_{A}^{\lambda} E \geq \overline{\dim}_{A}^{\theta} E$ as required.

ACKNOWLEDGEMENTS

The author thanks Vilma Orgoványi for interesting discussions around the contents of this note.

References

[FHH+19] J. M. Fraser, K. E. Hare, K. G. Hare, S. Troscheit, and H. Yu. *The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra*. Ann. Acad. Sci. Fenn., Math. 44 (2019), 379–387. zbl:1410.28008.

Alex Rutar

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland Email: alex@rutar.org