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ABSTRACT. The goal of this note is to provide a simplified proof of the
following fact: if E is a non-empty metric space with dimqAE < ∞, then for
0 ≤ θ < 1,

dim
θ
AE = sup

0≤λ≤θ
dimλ

AE.

In fact, we will see that this is an immediate consequence of an asymptotic
Lipschitz property of a two-scale branching function associated with the set
E.

This result was previously proven in [FHH+19] under the additional
assumption that E is a subset of Euclidean space, with a more difficult proof.

1. UPPER ASSOUAD SPECTRUM

Let E be a non-empty metric space. Throughout, for δ > 0, B(x, δ) denotes the
open ball with radius δ and Nδ(F ) denotes the least number of open balls of radius
δ required to cover a set F ⊂ E.

A two-scale branching function. Before we state the definition of the (upper)
Assouad spectrum, we first introduce the two-scale branching function associated
with E. It is the function β defined for 0 ≤ u ≤ v by

β(u, v) = log sup
x∈E

N2−u(B(x, 2−v)).

Here, the base of the logarithm is 2.
We begin with some basic properties of the function β.

Lemma 1.1. Let E have two-scale branching function β. Then:
(i) β(u, u) = 0 for all u ≥ 0.

(ii) β(u, v) is increasing in u and decreasing in v.
(iii) For all 0 ≤ v ≤ w ≤ u,

(1.1) β(u, v) ≤ β(u,w) + β(w, v).

Proof. The fact that β(u, u) = 0 for u ≥ 0 is immediate, along with the mono-
tonicity properties. To verify (1.1), let 0 ≤ v ≤ w ≤ u be arbitrary. Then to obtain a
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cover for B(x, 2−v), we first cover with balls of radius 2−w, and then cover each
ball in the resulting cover with balls of radius 2−u. Therefore

N2−u(B(x, 2−v)) ≤ N2−w(B(x, 2−v)) · sup
y∈E

N2−u(B(y, 2−w)).

Taking suprema in x and a logarithm, the claim follows. □

Assouad spectra and quasi-Assouad dimension. Using the two-scale branching
function β, let us recall various definitions associated with the Assouad spectrum.
First, the Assouad spectrum is defined for 0 ≤ θ < 1 by

dimθ
A E = inf

{
s ≥ 0 : ∃A ≥ 0∀0 ≤ u s.t. β(u, θu) ≤ A+ s(1− θ)u

}
.

Similarly, the upper Assouad spectrum is defined for 0 ≤ θ < 1 by

dim
θ

AE = inf
{
s ≥ 0 : ∃A ≥ 0∀0 ≤ v ≤ θu s.t. β(u, v) ≤ A+ s(u− v)

}
.

Clearly dim
θ

AE ≥ dimθ
A E, and moreover dim

θ

AE is monotonically increasing in θ.
The quasi-Assouad dimension is the limit at 1:

dimqA E = lim
θ↗1

dim
θ

AE.

It is standard to rephrase the above definitions in terms of limits of the function
β.

Lemma 1.2. Let E have two-scale branching function β. Then

dimθ
A E = lim sup

u→∞

β(u, θu)

u(1− θ)

and

dim
θ

AE = lim sup
u→∞

sup
0≤λ≤θ

β(u, λu)

u(1− λ)
.

We can now see that the result claimed in the abstract is simply a justification of
the change of the order of the limit in the definition of dim

θ

AE. In order to justify
this operation, we will prove that the functions β(u, v) are uniformly Lipschitz in
the variable v up to a sub-linear error term in u.

An asymptotic Lipschitz property. Now let us assume in addition that the quasi-
Assouad dimension of E is finite. We prove that the function β satisfies an approx-
imate Lipschitz property.

Lemma 1.3. Let E have two-scale branching function β, and suppose α = dimqA E < ∞.
Then for all 0 ≤ v ≤ u,

β(u, v) ≤ α(u− v) + o(u).
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Proof. It suffices to show for all ε > 0 there is a constant Cε ≥ 1 such that for all
0 < r ≤ R < 1,

(1.2) sup
x∈E

Nr(B(x,R)) ≤ Cεr
−ε

(
R

r

)α

.

Let θ < 1 be sufficiently large so that (1 − θ)(α + ε) ≤ ε. We consider two cases
depending on the value of R. If R ≥ rθ, then by definition of the quasi-Assouad
dimension there is a constant Cε (depending on E, θ, and ε) so that

Nr(B(x,R)) ≤ Cε

(
R

r

)α+ε

≤ Cεr
−ε

(
R

r

)α

.

In the second inequality we just use that R < 1. Otherwise, if R ≤ rθ, since
B(x,R) ⊂ B(x, rθ),

Nr(B(x,R)) ≤ Nr(B(x, rθ)) ≤ Cε

(
rθ

r

)α+ε

≤ Cεr
−(1−θ)(α+ε) ≤ Cεr

−ε

(
R

r

)α

where the last line follows since (R/r)α ≥ 1. Since x ∈ E was arbitrary, the claim
in (1.2) follows.

Taking logarithms and substituting the definition of β, the desired claim fol-
lows. □

Using the subadditivity property (1.1), we can convert Lemma 1.3 into an asymp-
totic Lipschitz property in the second argument of β.

Corollary 1.4. Let E have two-scale branching function β, and suppose α = dimqA E <
∞. Then for all 0 ≤ w ≤ v ≤ u,

0 ≤ β(u,w)− β(u, v) ≤ α(v − w) + o(u).

Proof. By monotonicity, β(u,w) ≥ β(u, v). Then by (1.1) followed by Lemma 1.3,

β(u,w)− β(u, v) ≤ β(w, v) ≤ α(v − w) + o(u)

as claimed. □

Upper Assouad spectra from Assouad spectra. Now, we prove that we can
recover the upper Assouad spectrum from the Assouad spectrum.

Theorem 1.5. Let E be a non-empty metric space with dimqA E < ∞. Then for 0 ≤ θ <
1,

dim
θ

AE = sup
0≤λ≤θ

dimλ
AE.

Proof. Recalling Lemma 1.2, get an increasing sequence 0 < un → ∞ and
λn ∈ [0, θ] such that λn → λ ∈ [0, θ] and

dim
θ

AE = lim
n→∞

β(un, λnun)

un(1− λn)
.
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Then by Corollary 1.4, for n ∈ N,

(1.3) |β(un, λnun)− β(un, λ)| ≤ αun|λn − λ|+ o(un).

Since θ < 1, (1− λn)
−1 → (1− λ)−1, so

lim
n→∞

∣∣∣∣β(un, λnun)

un(1− λn)
− β(un, λ)

un(1− λ)

∣∣∣∣ = 0.

Therefore dimλ
AE ≥ dim

θ

AE as required. □
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