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ABSTRACT. Let K be a planar self-affine set. Assuming a weak domina-
tion condition on the matrix parts, we prove for all backward Furstenberg
directions V that

max
E∈Tan(K)

max
x∈π

V ⊥ (E)
dimH(π

−1
V ⊥(x) ∩ E) = dimAK − dimA πV ⊥(K).

Here, Tan(K) denotes the space of weak tangents of K. Unlike previous work
on this topic, we require no separation or irreducibility assumptions.

From this we obtain two applications. Firstly, if the strong separation
condition holds, then there exists a V ∈ XF so that

max
x∈π

V ⊥ (K)
dimH(π

−1
V ⊥(x) ∩K) = dimAK − dimA πV ⊥(K).

Secondly, if the IFS is irreducible (but with no assumptions on separation),
then either dimAK < 1 and the conformal Assouad dimension of K is 0, or
dimAK ≥ 1 and K is minimal for conformal Assouad dimension.

Our key innovation is a certain amplification argument for slices of weak
tangents via pigeonholing arguments.
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1. INTRODUCTION

Since the seminal work of Marstrand [Mar54], geometric properties of projections
and slices of sets has been a fundamental and highly active research topic in fractal
geometry. Marstrand gave upper bounds for typical slices (in the sense of the
Lebesgue measure on the space of directions) of planar Borel sets and showed
that the Hausdorff dimensions of typical projections are as large possible. These
results have since been extended to higher dimensions and stronger results have
been established under various structural assumptions, see for example [BHR19;
DOW24; Mat95; OS23; RW23+; Shm19; Wu19].

One caveat in Marstrand’s theorems is that the sets of directions where the
results hold are not explicit and bounding the dimensions of concrete slices and
projections has remained a difficult problem. In this context, the study of slices of
planar self-affine sets has received much attention recently; for instance, we refer
the reader to [ABK24; BKR21; BKY21+; FJ17; FR24; Mac11]. It turns out that there
is a natural connection between the Assouad dimension, see §1.1, of self-affine sets,
and the dimensions of their slices and projections in certain directions called the
(backward) Furstenberg directions. These directions, which we denote by XF , are
essentially the ones in which deep iterates of the maps in the IFS are contracting
as much as possible, see §3 for a precise definition. In general, it is expected that
for self-affine sets K there is a direction V ∈ XF , such that

(1.1) dimAK = dimA πV ⊥(K) + max
x∈π

V ⊥ (K)
dimA(π

−1
V ⊥(x) ∩K),

where dimAK denotes the Assouad dimension of K and πV ⊥ is the orthogonal
projection along the direction V . This question was originally motivated in the
case of diagonal matrices by Mackay [Mac11], and for more general self-affine sets
by the work of Bárány–Käenmäki–Rossi [BKR21]. This also appears as a question
explicitly in [Fra20, Question 17.5.1]. Equation (1.1) can be interpreted as a kind
of stability under projections: the largest fibre stores the dimension lost in the
projection. With this motivation we call self-affine sets satisfying (1.1) fibre stable.

Fibre stability has been established for various self-affine sets under a number
of assumptions; for attractors of affine IFSs where each Ai is a diagonal matrix
see [Fra14; FJ17; FR24; Mac11], and for more general self-affine sets see [ABK24;
BKR21; BKY21+]. In all of these works (with the exception of [Fra14] concerning
Barański carpets), domination of the matrix parts of the IFS, see §3.1, has played a
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crucial role. Domination imposes a structure on the action of the matrix parts of
the IFS on real projective space RP1 which is useful when analysing the directions
in XF . Moreover, in all previous results, the authors have assumed that either
the projections have Hausdorff dimension 1 (as follows from an irreducibility
assumption on the matrix parts if the set has Hausdorff dimension at least 1)
[ABK24; BKR21; BKY21+], or are very well-behaved [Fra14; FJ17; FR24; Mac11]. In
particular, until the present work, [Fra20, Question 17.5.1] was still open in its full
generality for dominated self-affine sets satisfying the strong separation condition,
even in the special case when all of the matrices are diagonal.

Our main result in this paper is a slicing theorem for dominated planar self-
affine sets with no separation assumptions and no assumptions on the geometry of
the projections. In fact, for our purposes a slightly weaker variant of domination
suffices: we say that an affine IFS is weakly dominated if the matrix parts of the
IFS can be decomposed into two subcollections, one of which is dominated and
the other one of which consists of similarity maps which preserve the invariant
directions, see Theorem 3.3 for the precise definition. Our proof technique is
entirely self-contained and combines some basic geometric properties of matrix
semigroups with pigeonholing arguments to obtain a type of amplification result
for large slices. Most notably, we do not depend on the deep work of [BHR19;
Shm19], which has played a critical role in previous work. Our results establish
fibre stability for weakly dominated self-affine sets satisfying the strong separation
condition in the plane and give the lower bound in (1.1) for the Assouad dimension
with no separation assumptions. We believe that the techniques in this paper will
prove useful beyond the weakly dominated case.

1.1. Large weak tangents and Assouad dimension. Before stating our results
let us set up some notation and recall some properties of the Assouad dimension.
The Assouad dimension of a bounded set F ⊂ Rd is the number

dimA F = inf
{
s ≥ 0: ∃C > 0, such that ∀0 < r ≤ R ≤ 1, x ∈ F

Nr(F ∩B(x,R)) ≤ C

(
R

r

)s }
,

where Nr(E) denotes the smallest number of open balls of radius r required to
cover the set E ⊂ Rd. We note that at various points in the article we use alternate
definitions, where Nr(E) is replaced by the cardinality of the largest r-separated
subset of E or the dyadic covering number of E at a scale 2−n ≈ r. Making these
modifications does not affect the value of the Assouad dimension.

The Assouad dimensions of compact sets are closely related to the notion of
a weak tangent. For a closed set F , we denote by K(F ) the set of all non-empty
compact subsets of F equipped with the Hausdorff metric dH. We then say that a set
E ∈ K(B(0, 1)) is a microset of F if there exists a sequence (xn)

∞
n=1 ⊂ F and scales

(rn)
∞
n=1 with 0 < rn ≤ 1 such that

E = lim
n→∞

r−1n (F − xn) ∩B(0, 1).

Moreover, we say that E is a weak tangent of F if, in addition, limn→∞ rn = 0. We



4 ROOPE ANTTILA & ALEX RUTAR

denote the set of all microsets of F by GF , and the set of all weak tangents of F by
Tan(F ). In general, Tan(F ) ⊂ GF ⊂ K(B(0, 1)). We emphasize here that we do not
permit rotations in our definition of a weak tangent.

A key observation is that the largest microset of a set exhibits substantially
more regularity than the original set. The proof of the following proposition is due
to Furstenberg, but the explicit connection to Assouad dimension was first made
in [KOR17] and the amplification to Hausdorff content was noted in [KR23+].

Proposition 1.1 ([Fur08]). Let F ⊂ Rd be a compact set with η = dimA F . Then
dimHA ≤ η for all E ∈ GF . Moreover, there is an E ∈ Tan(F ) such thatHη

∞(E) ≥ 1.

The main point is that a maximal microset of F has dimHE = dimAE = dimA F ,
which is a substantially gain in regularity over the original set.

1.2. Main results. Recall that an affine iterated function system (IFS) is a finite
collection (Ti)i∈I of contracting invertible affine maps on R2, that is Ti(x) = Aix+bi,
for each i ∈ I , whereAi is an invertible 2×2 matrix with ∥Ai∥ < 1 and bi ∈ R2. The
attractor of the IFS, which is also called the self-affine set, is the unique non-empty
and compact set K, which satisfies

K =
⋃
i∈I

Ti(K).

Overlaps between distinct images Ti(K) often cause problems when studying
the geometry of self-affine sets, so it is a common practice to impose various
separation conditions on the IFSs. The most common one is the strong separation
condition, which we say that the IFS (Ti)i∈I satisfies if Ti(K) ∩ Tj(K) = ∅ for all
i ̸= j. We note that the vast majority of results concerning the dimension theory of
self-affine sets involves some form of separation condition.

Let RP1 denote the real projective space of one dimensional subspaces of R2. For
V,W ∈ RP1 with V ̸= W , we denote by πW

V : R2 → V the projection onto V along
W , which is the unique linear map satisfying im(πW

V ) = V and ker(πW
V ) = W such

that πW
V (v) = v for all v ∈ V . If W is not specified, then πV : R2 → V denotes the

orthogonal projection onto V .
Our first result is a general slicing theorem for weak tangents, which surpris-

ingly seems to have not been noticed before (in the context of self-affine sets) even
though it is a straightforward consequence of Furstenberg’s dimension conser-
vation result [Fur08, Theorem 6.1]. The result also has a short elementary proof
which we give in §2 to keep the paper self-contained.

Proposition A. Let F ⊂ R2 be an arbitrary non-empty compact set, and let W ∈ RP1

be arbitrary. Then there exists an E ∈ Tan(F ) and x ∈ πW (E) such that

dimH(π
−1
W (x) ∩ E) ≥ max{dimA F − dimA πW (F ), 0}.

The maximum is relevant since the Assouad dimension can in fact increase under
projection, even for self-similar sets: see, for instance, [Fra14, §3.1]. In general,
it can happen for all directions W that there exists a weak tangent E such that
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dimA πW (F ) + dimH(π
−1
W (x) ∩ E) substantially exceeds the Assouad dimension of

F . As a simple example consider the following. For each W ∈ RP1, let CW =
(W ∪W⊥)∩B(0, 1) denote the “plus”-shaped set containing the origin oriented in
direction W . Let (Wn)

∞
n=1 ⊂ RP1 be dense, and define the set

C =
∞⋃
n=1

2−(n+1) · CWn + (2−n, 0).

Then dimAC = dimHC = 1, but for all W ∈ RP1, there exists E ∈ Tan(F ), such
that dimA πW (C) + dimH π

−1
W (0) ∩ E = 2. Moreover, one cannot hope to improve

Theorem A to slices of the original set; easy counterexamples are already given by
function graphs of dimension strictly larger than 1.

On the other hand, for self-affine sets we can say a lot more. The following is
the main result of this paper.

Theorem B. Let (Ti)i∈I be a weakly dominated self-affine IFS with attractor K. Then
the map V 7→ dimA πV ⊥(K) takes constant value η ≤ dimAK on XF . Moreover, for all
V ∈ XF ,

dimAK − η = max
E∈Tan(K)

max
x∈π

V ⊥ (E)
dimH(π

−1
V ⊥(x) ∩ E)

≥ max
x∈π

V ⊥ (K)
dimA(π

−1
V ⊥(x) ∩K)

If in addition (Ti)i∈I satisfies the strong separation condition, then

dimAK − η = max
V ∈XF

max
x∈π

V ⊥ (K)
dimH(πV ⊥(x)−1 ∩K).

The proof of this result is split into multiple parts: Theorems 4.1, 5.1, 5.2 and 5.4.
Also, for a reader only interested in the special case when the matrices are all
diagonal, we give a condensed proof in §A.

Let us make a few comments on Theorem B.
1. We require no assumptions concerning the projections of the self-affine set

or irreducibility of the matrix parts. Most notably, our results also hold (and
are new in this generality) for reducible self-affine sets, such as self-affine
carpets satisfying the weak domination hypothesis.

2. The conclusion concerning slices of weak tangents holds uniformly over all
directions: rather than the maximal value being attained at some direction
in XF , the maximum is attained in all directions in XF simultaneously. For
slices of the set itself, except for trivial reasons (for instance in the carpet case
when XF is a singleton), it seems that there is no reason for this to be the case;
see the proof of Theorem 5.4. However, since there are not many tools to
give non-trivial upper bounds for dimensions of all slices of a self-affine set
in a given direction, coming up with counterexamples seems to be difficult.

3. The results concerning slices of weak tangents and upper bounds on slices
of K hold with no separation assumptions at all; the planar separation is
only required to “pull back” slices of the weak tangent to the original set (see
Theorem 5.4 for the short proof).
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4. A somewhat weaker variant of the strong separation condition called the
weak bounded neighbourhood condition suffices; see Theorem 5.3.

In particular, this result substantially generalizes all previously known results
concerning slices in backwards Furstenberg directions [ABK24; BKR21; BKY21+;
FJ17; FR24; Mac11] and establishes fibre stability for weakly dominated and
strongly separated self-affine sets.

Since the value dimAK − η in the statement of Theorem B is a fixed number
depending only on K, Theorem B in fact is a general statement concerning slices
of sets which a priori has nothing to do with the Assouad dimension of the set:
assuming the strong separation condition,

max
V ∈XF

max
x∈π

V ⊥(K)

dimH(π
−1
V ⊥(x) ∩K)

= max
V ∈XF

lim sup
r→0

supz∈πV (K) logNr(π
−1
V

(
B(z, r)

)
∩ F )

log(1/r)

= max
V ∈XF

max
x∈π

V ⊥(K)

dimA(π
−1
V ⊥(x) ∩K).

The additional equivalence involving tubes follows by regularity of the space of
weak tangents; see Theorem 5.6. This equivalence is new even in the special case
when XF is a singleton.

Let us also emphasize that the value η is the constant value of the Assouad
dimension, rather than the Hausdorff dimension, of the relevant projections. In
[ABK24; BKR21; BKY21+], this formula was written with Hausdorff dimension,
but in those cases the assumptions implied that dimH πV ⊥(K) = 1 for all V ∈ XF .
Indeed, the following example follows from [FR24, Theorem 2.13], using a similar
construction as used in [FR24, §2.5] except with non-trivial fibres to guarantee that
there is a symbolic slice with Assouad dimension 1.

Proposition 1.2 ([FR24]). Let ε > 0 be arbitrary. Then there is a planar dominated
self-affine set K with dimAK = 2 such that for all V ∈ XF and x ∈ πV ⊥(K),
dimB πV ⊥(K) ≤ ε and dimB(π

−1
V ⊥(x) ∩K) ≤ ε.

This example also shows that in general, the separation assumption is needed
for the second part of Theorem B to hold as stated. However, we are unsure
whether or not the separation assumption is needed for the result to hold for the
Assouad dimension of slices instead of Hausdorff dimension. More precisely, we
ask the following question.

Question 1.3. Let (Ti)i∈I be a weakly dominated self-affine IFS with attractor K and let
η be the constant value of the map V 7→ dimA πV ⊥(K) on XF . Is it true that

dimAK − η = max
V ∈XF

max
x∈π

V ⊥ (K)
dimA(π

−1
V ⊥(x) ∩K)?

To conclude the introduction, let us note two direct applications of Theorem B.
First, we are able to complete a partial result due to Fraser & Jordan concerning
certain self-affine carpets with no grid structure. Let 0 < α < β < 1 and consider
the self-affine system defined by maps Ti(x, y) = (βx, αy)+(bi, ai) for 0 ≤ bi ≤ 1−β
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and 0 ≤ ai ≤ 1− α, and let ν denote the uniform self-similar measure associated
with the projected IFS defined by maps (βx+ bi)i∈I . Finally, let s = dim∞ ν denote
the Frostman dimension of ν. The following result generalizes [FJ17, Theorem 2.2];
for the proof, along with more careful exposition, see §5.2.

Corollary C. Let K be the self-affine set corresponding to the IFS (Ti)i∈I defined above,
with parameters 0 < α < β < 1. Assume moreover that the Ti((0, 1)2) ∩ Tj((0, 1)2) = ∅
for all i ̸= j. Let s denote the Frostman dimension of ν. Then

dimAK = dimA π(K) +
logmβs

log(1/α)
.

Finally, we note an application to conformal Assouad dimension, which follows
from Theorem B combined with a strong projection theorem for Assouad dimen-
sion due to Orponen [Orp21]. We recall that the conformal Assouad dimension is
defined by

CdimAX := inf {dimA f(X) : f is a quasisymmetry} .

We refer the reader to §5.3 for more background. Also, recall that a self-affine set
is irreducible if no linear subspace in RP1 is preserved by all of the linear parts of
the affine maps in the IFS. Unlike similar results which have previously appeared
(such as [BKR21, Theorem 3.2] and [KOR17, Theorem B]), we require no separation
assumptions either in the plane or in the projection. The proof can be found in
§5.3.

Corollary D. Let K be a weakly dominated and irreducible self-affine set. If dimAK < 1,
then CdimAK = 0, and if dimAK ≥ 1, then dimAK = CdimAK.

1.3. Outline of paper. In §2, we establish some preliminaries concerning mi-
crosets and weak tangents, and in particular in Theorem 2.3 we give a short proof
of the discretized variant of Furstenberg’s microset existence argument. We also
give the self-contained proof of Theorem A. Next, in §3 we establish some prelimi-
naries concerning weak domination; the results stated here are relatively standard
and are mostly drawn either from [BKM20] or recent papers concerning self-affine
sets.

The heart of the paper is §4, where we establish the main slicing result for
weak tangents, stated in Theorem 4.1. The key innovation is a combination of
Theorem 2.3 to show the existence of microsets with large covering numbers
across arbitrary sequences of scales with a delicate pigeonholing argument to find
a collection of well-aligned copies of approximations of maximal weak tangents of
projections inside the self-affine set. Using the self-affine structure, this configura-
tion, which is a subset of a thin tube in the direction of the slice, can be pushed to
a product-like structure inside some well chosen cylinder. This approach is made
formal in Theorem 4.9; a more precise (but still informal) discussion of the proof
can also be found immediately preceding Theorem 4.9.

We note for the reader only interested in the special case of Theorem B for
diagonal matrices, since the geometry of the matrix semigroup is very simple in
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this case, §3 and §4.1 can be skipped entirely and a condensed proof can be found
in §A.

Finally, in §5, we complete the remaining minor components of the proof of
Theorem B. We then discuss the application to certain diagonal self-affine sets and
prove Theorem C, and the application to the conformal Assouad dimension of
weakly dominated and irreducible self-affine sets with no separation assumptions,
and prove Theorem D.

1.4. Notation. We use ⟨·, ·⟩ to denote the standard dot product on R2.
For a linear subspace V of R2 and a linear map T : V → R2, we denote by ∥T∥

the operator norm of T , that is

∥T∥ = max
v∈V \{0}

∥Tv∥
∥v∥

,

where ∥ · ∥ is the standard Euclidean norm on R2 Given a subspace V ⊂ R2, and a
2× 2 matrix A, which we interpret as a linear map from R2 to itself, we denote the
restriction of A to V by A|V : V → R2.

We will sometimes make use of the following asymptotic notation. Given a
set A and functions f, g : A→ R we write f ≳ g, if there is a constant C, such that
f(a) ≥ Cg(a), for all a ∈ A.

2. AMPLIFYING DIMENSION AND SLICING WEAK TANGENTS

In this section, we introduce the techniques we use to bound the Assouad di-
mension from below, the most important of which is a discretized variant of
Furstenberg’s well known construction for measures to show the existence of
microsets with uniformly large branching over arbitrarily long sequences of scales.
This construction plays a crucial role in the proofs of our main results, and enables
us to give a short and self-contained proof of Theorem A.

Let us start by introducing some basic notation concerning dyadic cubes. Fix
d ∈ N. Let D =

⋃∞
n=0Dn denote the set of closed dyadic cubes, where Dn denotes

the subset of dyadic cubes with side-length 2−n. Given Q ∈ D, let: ψQ : Q→ [0, 1]d

denote the unique surjective homothety mapping Q to [0, 1]d. For n ∈ N, and a
bounded set K ⊂ Rd we let Nn denote the level n dyadic covering number of K,
that is

Nn(K) = # {Q ∈ Dn : Q ∩K ̸= ∅} .

We note that the covering numbers have the property that for any Q ∈ Dm and
n ∈ N,

Nm+n(K ∩Q) = Nn(ψQ(K ∩Q)) = Nn(ψQ(K) ∩Q0).

This simple property will be used throughout the rest of the paper without further
reference.
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2.1. Coarse microsets. Let K1, K2 ⊂ Rd be a non-empty compact set. Let pH
denote the one-sided Hausdorff metric

pH(K1;K2) = inf{δ ≥ 0 : K1 ⊂ K
(δ)
2 }.

Here, K(δ)
2 denotes the open δ-neighbourhood of K2.

Now let K be a non-empty compact set. We say that a non-empty compact set
E is a coarse microset of K if there is a sequence of expansion ratios λn ≥ 1, points
xn ∈ K, and a bi-Lipschitz map f : Rd → Rd such that

lim
n→∞

pH
(
f(E);λn(K − xn)

)
= 0.

The following lemma is standard.

Lemma 2.1. Let K ⊂ Rd be non-empty and compact. Then dimAK ≥ dimAE for any
coarse microset E of K.

In order to lower bound the Assouad dimension of a coarse microset, we also
note the following standard lemma which follows by semi-continuity of dyadic
covering numbers.

Lemma 2.2. Let F ⊂ Rd be non-empty and compact and let (Fn)
∞
n=1 be a sequence of

non-empty compact sets such that

lim
n→∞

dH(F, Fn) = 0.

Suppose moreover that there is an unbounded sequence of natural numbers (mn)
∞
n=1, such

that

Nk(Fn) ≳ 2ks

for all 0 ≤ k ≤ mn. Then dimB F ≥ s.

2.2. Dyadic cubes and weak tangents. We now demonstrate the existence of
minisets with uniformly large branching over arbitrarily large sequences of levels.
This is Furstenberg’s well-known pigeonholing construction for measures; see,
for instance, [BP17, Lemma 2.4.4] or [Fra20, Theorem 5.1.3]. Note that (2.2) is a
Frostman-type condition for the measure on Q which is uniformly distributed on
Q ∩K at level m.

Lemma 2.3. Let K ⊂ [0, 1]d be a non-empty compact set. Let 0 < s < t, ℓ ∈ N, and
k ∈ N with k ≥ ℓ. Suppose there is m ≥ kd

t−s so that

(2.1) Nm(K) ≥ 2mt.

Then there is a 0 ≤ p ≤ m− k and a dyadic cube Q ∈ Dp so that for all 0 ≤ n ≤ ℓ and
Q ⊃ Q′ ∈ Dp+n,

(2.2)
Nm(K ∩Q′)
Nm(K ∩Q)

≤ 2−ns.
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Proof. If Q0 = [0, 1]d satisfies the branching condition (2.2), we are done. Other-
wise, there is 1 ≤ ℓ1 ≤ ℓ and a Q1 ∈ Dℓ1 so that

(2.3) Nm(K ∩Q1) > 2mt2−ℓ1s.

Repeating the above argument for each j ≥ 1 with K ∩ Qj in place of K and
m−ℓ1−· · ·−ℓj in place of m, either there is some count q with ℓ1+ · · ·+ℓq ≤ m−k
such that the dyadic cube Qq ∈ Dℓ1+···+ℓq satisfies the branching condition, or
m ≥ ℓ1+ · · ·+ ℓq > m−k. Suppose for contradiction that the latter situation occurs.
Then

2kd ≥ Nm(K ∩Qk) > 2mt2−(ℓ1+···+ℓk)s ≥ 2m(t−s).

Rearranging, kd > m(t− s) which contradicts the choice of m. □

By pigeonholing, we recover the following slightly weaker version of the conclu-
sion which we find somewhat more convenient to use.

Corollary 2.4. Let K ⊂ [0, 1]d be a non-empty compact set. Let 0 < s < t, ℓ ∈ N, and
k ∈ N with k ≥ ℓ. Suppose there is m ≥ kd

t−s so that

Nm(K) ≥ 2mt.

Then there is a 0 ≤ p ≤ m− k and a dyadic cube Q ∈ Dp so that

Np+n(K ∩Q) ≥ 2ns

for all 0 ≤ n ≤ ℓ.

Combining Theorem 2.4 with the definition of the Assouad dimension yields the
following.

Corollary 2.5. Let K ⊂ [0, 1]d be a non-empty compact set with dimAK = η. Then
there is a sequence of dyadic cubes (Qm)

∞
m=1 ⊂ T with diamQm decreasing to 0 so that

Nn(ψQm(K) ∩Q0) ≥ 2n(η−
1
m)

for all 0 ≤ n ≤ m.

These simple lemmas enable us to give a short and elementary proof of Theo-
rem A which we restate here for convenience.

Restatement (of Theorem A). Let F ⊂ R2 be an arbitrary non-empty compact set,
and let W ∈ RP1 be arbitrary. Then there exists an E ∈ Tan(F ) and x ∈ πW (E) such
that

dimH(π
−1
W (x) ∩ E) ≥ max{dimA F − dimA πW (F ), 0}.
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Proof. The result is clearly true of dimA πW (F ) > dimA F , so we may assume
otherwise. Denote by s = dimA F and η = dimA πW (F ), and let Q0 = [0, 1]2. By
rotating the set F if necessary, we will assume that πW = π is the projection on the
x-axis. Let n ∈ N and take m ≥ 2n2 and by Theorem 2.5 pick Q ∈ D, such that

Nm(ψQ(F ) ∩Q0) ≥ 2m(s− 1
n
).

Let Pm denote the partition of the unit square into congruent tubes of width 2−m

and height one. Note that by the definition of the Assouad dimension, the set
π(ψQ(F ) ∩Q0) intersects at most 2m(η+ 1

n
) dyadic intervals of length 2−m and there-

fore, ψQ(F ∩Q) intersects at most 2m(η+ 1
n
) tubes of width 2−m. By the pigeonhole

principle, there is Pn ∈ Pm, such that

Nm(ψQ(F ) ∩ Pn) ≥ 2m(s−η− 2
n
).

Now apply Theorem 2.4, with t = s− 2
n

, s = t− 1
n

and k = ℓ = n to find a dyadic
cube Qn ∈ Dp for 0 ≤ p ≤ m− n, such that

(2.4) Nk(ψQn(ψQ(F ) ∩ Pn) ∩Q0) ≥ 2k(s−η−
3
n
),

for all 0 ≤ k ≤ n. Note that ψQn(Pn) is a tube of width 2−(m−p) ≤ 2−n, so by passing
to a subsequence, there exist compact sets E ∈ Tan(F ) and A ⊂ E and a point
x ∈ π(E), such that ψQn(ψQ(F )) ∩ Q0 → E and ψQn(ψQ(F ) ∩ Pn) ∩ Q0 → A ⊂
π−1(x) ∩ E. Therefore, by (2.4) and Theorem 2.2,

dimB(π
−1(x) ∩ E) ≥ s− η.

Using Theorem 1.1 to pass again to a weak tangent of π−1(x)∩E yields the desired
result for Hausdorff dimension. □

3. WEAK DOMINATION IN MATRIX SEMIGROUPS

Let M2 denote the space of 2 × 2 real matrices and GL2 denote the group of
invertible matrices in M2. Let I be a finite index set and let A = (Ai)i∈I be a
tuple of matrices in GL2. In the theory of self-affine sets, the action of the matrix
semigroup generated by the tuple of the linear parts of the affine maps in the IFS,
plays an important role. In this section we describe this action in detail for weakly
dominated matrices.

When studying matrix semigroups arising from affine IFSs, it is often useful
to phrase the results with respect to the underlying symbolic space. We call the
symbol ∅ the empty word and let A∅ = Id. For n ∈ N, let In denote the words of
length n generated by I and I∗ =

⋃∞
n=0 In denote the collection of all finite words,

where I0 = {∅}. We call Σ(I) = IN the symbolic space associated with I. If I
is clear from the context, we may drop it from the notation and simply use the
notation Σ for Σ(I). We use the notation i for words in both I∗ and Σ(I), that
is i = i1i2 · · · in and i = i1i2 · · · , respectively. For i ∈ I∗ we denote by |i| the
length of i, which is the unique integer n, such that i ∈ In. For i ∈ Σ(I) and
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n ∈ N, we let i|n := i1i2 · · · in denote the restriction of i onto the first n symbols.
For i = i1i2 · · · in ∈ I∗, we let i− = i1i2 · · · in−1. Given any collection of functions
(Fi)i∈I or real numbers (ai)i∈I , we denote for i ∈ In,

Fi = Fi1 ◦ Fi2 ◦ · · · ◦ Fin ,

ai = ai1ai2 · · · ain .

For a matrix tuple A we let

R(A) = {A ∈ {cAi : c ∈ R and i ∈ I∗} : rank(A) = 1}.

For us, there are two important sets of directions in RP1, namely the sets

YF (A) := {im(A) ∈ RP1 : A ∈ R(A)},
XF (A) := {im(A) ∈ RP1 : A ∈ R(A−1)},

where A−1 := (A−1i )i∈I . We call these sets the forward and backward Furstenberg
directions, respectively. It is immediate from the definitions that YF (A) = XF (A

−1).

3.1. Dominated matrices. Recall that A is dominated if there exist constants
0 < τ < 1 and c > 0 such that

α2(Ai) ≤ cτ |i|α1(Ai),

for all i ∈ I∗. By [BG09], this is equivalent to the existence of a strongly invariant
multicone C ⊂ RP1, meaning that C is a finite union of closed projective intervals
satisfying Ai(C) ⊂ C◦, for all i ∈ I.

The Furstenberg directions for dominated tuples have a useful symbolic repre-
sentation which we describe next. For A ∈ M2, we denote by α1(A) ≥ α2(A) the
singular values of A. Formally, these are the square roots of the non-negative eigen-
values of the positive definite matrix A⊤A, and geometrically, they correspond to
the lengths of the semiaxes of the ellipse A(B(0, 1)). The right singular vectors of A
are eigenvectors η1(A) and η2(A) of A⊤A corresponding to the eigenvalues α1(A)
and α2(A), respectively. If α1(A) > α2(A), which is the case for all matrices in the
semigroup generated by a dominated tuple, then these vectors are unique up to a
change of sign. For i ∈ In, we write←−i = inin−1 . . . i1, and

A−1←−
i

= (A←−
i
)−1 = A−1i1

· · ·A−1in
.

We emphasize that A−1i = A−1in
· · ·A−1i1

denotes the inverse matrix of Ai, so in
general, A−1i ̸= A−1←−

i
. For i ∈ I∗, we let

ϑ1(i) = ⟨Aiη1(Ai)⟩
ϑ2(i) = ⟨A−1←−

i
η1(A

−1
←−
i
)⟩,

where ⟨v⟩ ∈ RP1 denotes the line spanned by v ∈ R2. The geometric interpretation
therefore is that ϑ1(i) and ϑ2(i) are the lines spanned by the longer semiaxis of
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the ellipses Ai(B(0, 1)) and A−1
i
(B(0, 1)), respectively. For i ∈ Σ and k ∈ {1, 2},

we define

ϑk(i) = lim
n→∞

ϑk(i|n),

whenever the limit exists. It turns out that for dominated tuples, the limit always
exists and the convergence is uniform, which means that one can think of ϑ1 and
ϑ2 as projections from the symbolic space to YF (A) and XF (A), respectively. The
proof of the following lemma can be found, for instance, in [ABK24, Lemmas 2.2
and 2.3].

Lemma 3.1. If A is dominated and C ⊂ RP1 is a strongly invariant multicone for A, then
for k ∈ {1, 2}:

1. the limit ϑk(i) = limn→∞ ϑk(i|n) exists for every i ∈ Σ and the convergence is
uniform;

2. the map ϑk(i) : Σ→ RP1 is Hölder continuous;
3. the set ϑk(Σ) is compact and contains the accumulation points of {ϑk(i) : i ∈ I∗};
4. Aiϑ1(j) = ϑ1(ij) and A−1←−

i
ϑ2(j) = ϑ2(ij), for all i ∈ I∗ and j ∈ Σ;

5. YF (A) = ϑ1(Σ) ⊂ C◦ and XF (A) = ϑ2(Σ) ⊂ RP1 \ C.

Another useful property of dominated tuples is that the singular values of the
matrices in the semigroup are determined by restricting the matrices to suitable
subspaces. The next lemma follows from [BKY21+, Lemma 2.8] by observing that
XF (A)

⊥ = YF (A
⊤).

Lemma 3.2. If A is dominated, then there exists a constant D ≥ 1 such that

∥Ai|Y ∥ ≤ α1(Ai) ≤ D∥Ai|Y ∥,

for all i ∈ I∗ and Y ∈ YF (A). Furthermore, if V ∈ XF (A) and i ∈ Σ is such that
V = ϑ2(i), then

D−1∥A←−
i|n
|V ∥ ≤ α2(A←−i|n) ≤ ∥A←−i|n|V ∥,

for all n ∈ N.

3.2. Weakly dominated matrices. For our purposes, a slightly weaker variant
of domination is sufficient. We call a tuple A = (Ai)i∈I strongly conformal if there
exists a conjugation matrix M ∈ GL2 such that for all i ∈ I,

Ai = aiMOiM
−1,

for some 0 < ai < 1 and Oi ∈ O2, where O2 denotes the subgroup of orthogonal
matrices in GL2.

Definition 3.3. We say that A = (Ai)i∈I is weakly dominated if it can be decomposed
into two sets Ae and Ah such that Ae is strongly conformal and Ah is non-empty
and has a strongly invariant multicone C such that AC = C for all A ∈ Ae.
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By a suitable change of coordinates determined by the conjugation matrix M ,
we may assume without loss of generality that each Ai ∈ Ae is of the form aiOi,
for some 0 < ai < 1 and Oi ∈ O2. It was shown in [BKM20, Corollary 2.5]
that domination can be restated in terms almost multiplicativity of the associated
semigroup in the following sense.

Lemma 3.4. A tuple A is either weakly dominated or strongly conformal if and only if
there exists a constant C > 0 such that

C∥Ai∥∥Aj∥ ≤ ∥Aij∥ ≤ ∥Ai∥∥Aj∥,

for all i, j ∈ I∗.

Next we will show that the Furstenberg directions of a weakly dominated tuple
A are determined by a canonical dominated tuple A. The ideas are essentially from
[BKM20], but we rewrite them with somewhat different notation more suitable
for our purposes. For the remainder of this section, fix a weakly dominated tuple
A = (Ai)i∈I and let Ie = {i ∈ I : Ai ∈ Ae} and Ih = {i ∈ I : Ai ∈ Ah}. We define an
equivalence relation on {jii ∈ I∗ : i ∈ Ih, j, i ∈ I∗e} by saying that j1i1i1 ∼ j2i2i2
if and only if Oj1 = Oj2 and Oi1 = Oi2 . We denote the equivalence class of
jii under this equivalence relation by [jii] and the collection of all equivalence
classes by Λ. It follows from [BKM20, Theorem 2.1 and Lemma 3.7] that the sub-
semigroup generated by the set {Oi : i ∈ Ie} is finite and therefore Λ is a finite set.
Note that for any λ = [jii] ∈ Λ the matrix

Aλ := OjAiOi,

is well defined.
Every word i ∈ I∗ \ I∗e can be uniquely decomposed as i = i0i1i2i2 · · · ikik,

for some k ∈ N, where ij ∈ I∗e and ij ∈ Ih, for all j = 0, . . . , k. Therefore, we may
define a mapping i 7→ [i] from I∗ \ I∗e to Λ∗ by setting

[i] = [i0i1i1][∅i2i2] · · · [∅ikik].

Given [i] ∈ I∗ \ I∗e , we set

(3.1)

A[i] := A[i0i1i1]A[∅i2i2] · · ·A[∅ikik]

= Oi0Ai1Oi1Ai2Oi1 · · ·Ai1Oi1

=
1

ai0ai1 · · · aik
Ai

The following lemma is immediate.

Lemma 3.5. For any i ∈ I∗ and any subspace V of R2, we have

αk(Ai)

∥Ai|V ∥
=
αk(A[i])

∥A[i]|V ∥
,

for k = 1, 2.
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Proof. It follows from (3.1) that

α1(A[i]) = ∥A[i]∥ =
1

|ai0ai1 · · · aik |
∥Ai∥ =

1

|ai0ai1 · · · aik |
α1(Ai),

α2(A[i]) =
∥∥A−1[i]

∥∥−1 = 1

|ai0ai1 · · · aik |
∥A−1i ∥−1 =

1

|ai0ai1 · · · aik |
α2(Ai).

and that for any v ∈ R2

∥A[i]v∥ =
1

|ai0ai1 · · · aik |
∥Aiv∥,

so the claim follows by the definition of the operator norm. □

Next we show that that the matrices indexed by [i] for i ∈ I∗ \ I∗e generate the
same semigroup as matrices indexed by Λ∗.

Lemma 3.6. For any λ ∈ Λ∗, there exists i ∈ I∗ \ I∗e such that

A[i] = Aλ

Proof. Let λ = [j1i1i1][j2i2i2] · · · [jkikik] ∈ Λ∗ be arbitrary, and write i =
j1i1i1j2 · · · ik−1jkikik. Then recalling (3.1),

Aλ = A[j1i1i1]A[j2i2i2] · · ·A[jkikik]

= Oj1Ai1Oi1Oj2Ai2Oi2 · · ·OjkAikOik

= Oj1Ai1Oi1j2Ai2Oi2j3 · · ·Oik−1jkAikOik

= A[i].

as claimed. □

Now let

A = (Aλ)λ∈Λ.

The next proposition shows that A is dominated and that the Furstenberg directions
of A are determined by A.

Proposition 3.7. If A is weakly dominated, then A is dominated, YF (A) = YF (A) and
XF (A) = XF (A).

Proof. In the proof of [BKM20, Proposition 2.3] the authors show that the
strongly invariant multicone for Ah is also strongly invariant for A.

We next show that YF (A) = YF (A). Let Y ∈ YF (A) and (by definition) find
a sequence cnAin → A, with cn ∈ R and in ∈ I∗, where A is a rank one linear
map with im(A) = Y . We first observe, for all sufficiently large n, that in ∈
I∗ \ I∗e . Suppose for contradiction that, after passing to a subsequence, in ∈ I∗e
for all n. Then each Ain is a constant multiple of an orthogonal matrix, and
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thus | detAin| = ∥Ain∥2. Moreover, since the operator norm and determinant are
continuous functions from M2 to R,

| detA| = lim
n→∞

| det cnAin| = lim
n→∞

|cn|2| detAin| = lim
n→∞

∥cnAin∥2 = ∥A∥2 > 0.

Therefore A has rank two, which is a contradiction. Now by recalling (3.1), we
may write (

cn

k∏
j=1

aij

)
A[in] = cnAin → A,

so by definition, Y ∈ XF (A).
For the other inclusion, take Y ∈ XF (A) and again find a sequence cnAλn → A,

with cn ∈ R and λn ∈ Λ∗, whereA is a rank one linear map with im(A) = Y . Apply
Theorem 3.6 to find words in ∈ I∗ \ I∗e such that Aλn = A[in] for all n ∈ N. Then
by (3.1),

cn∏k
j=1 aij

Ain = cnA[in] → A,

so Y ∈ YF (A).
Finally, if A is weakly dominated, then so is A−1 and clearly A−1 = A

−1
. There-

fore XF (A) = YF (A
−1) = YF (A

−1
) = XF (A). □

Combining Theorems 3.5 to 3.7 gives the following analogue of Theorem 3.2 for
weakly dominated matrices.

Lemma 3.8. Suppose A is weakly dominated. Then there exists a constant C1 ≥ 1 such
that

∥Ai|Y ∥ ≤ α1(Ai) ≤ C1∥Ai|Y ∥,

for all i ∈ I∗ and Y ∈ YF (A). If V ∈ XF (A), then there exists a sequence in ∈ I∗ such
that AinV ∈ XF (A), and

C−11 ∥Ain|V ∥ ≤ α2(Ain) ≤ ∥Ain|V ∥,

for all n ∈ N. Moreover, we have

lim
n→∞

α2(Ain)

α1(Ain)
= 0.

Proof. The lower bound in the first claim and the upper bound in the second
claim are trivial. Let us start by proving the upper bound in the first claim. Let
i ∈ I∗. If i ∈ I∗e , then the claim is trivial since Ai is a constant multiple of
an orthogonal matrix. Therefore we may assume that i ∈ I∗ \ I∗e . Since A is
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dominated, by the first claim in Theorem 3.2, there exists a constant C ≥ 1 such
that for all [i] ∈ Λ∗,

1 ≤
α1(A[i])

∥A[i]|Y ∥
≤ C,

for all Y ∈ YF (A). Therefore the first claim follows by Theorems 3.5 and 3.7.
On the other hand, by the second claim in Theorem 3.2, for any V ∈ XF (A) =

XF (A) we may choose a word λ ∈ Σ(Λ) such that

C−1 ≤
α2(A←−λ|n)

∥A←−
λ|n
|V ∥
≤ 1,

for all n ∈ N. Apply Theorem 3.6 to find words in ∈ I∗ such that A[in] = A←−
λ|n

for all n ∈ N. The second claim then follows from Theorem 3.1 (4), Theorems 3.5
and 3.7. Finally, since A is dominated,

lim
n→∞

α2(Ain)

α1(Ain)
= lim

n→∞

α2(A[in])

α1(A[in])
= lim

n→∞

α2(A←−λ|n)

α1(A←−λ|n)
= 0,

which is the last claim. □

We recall that a matrix A ∈ M2 has rank one if and only if there are v ∈ im(A) and
w ∈ ker(A) such that A = vw⊤. It is then easy to see that

A =

{
⟨v, w⟩πker(A)

im(A) , if A2 ̸= 0

∥v∥∥w∥Rπker(A)⊥ if A2 = 0,

where R is a rotation by angle π/2; see, for instance, [KN24, Lemma 2.1]. By
[BKM20, Lemma 3.2], for weakly dominated tuples A, if A ∈ R(A) is arbitrary,
then A2 ̸= 0 so in particular A is of the form κπ

ker(A)
im(A) , for some κ ∈ R. Let us record

one final lemma.

Lemma 3.9. For any V ∈ XF (A) there exists κ ∈ R and a sequence jk ∈ I∗ such that
|jk| → ∞ and

Ajk

∥Ajk∥
→ κπV

Y ,

in the topology of uniform convergence, where Y ∈ YF (A).

Proof. Let V ∈ XF (A) and apply Theorem 3.8 to find a sequence in ∈ I∗ such
that

C−11 ∥Ain|V ∥ ≤ α2(Ain) ≤ ∥Ain|V ∥,

for all n ∈ N and

lim
n→∞

α2(Ain)

α1(Ain)
= 0.
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Noting that ∣∣∣∣det Ain

∥Ain∥

∣∣∣∣ = | detAin|
∥Ain∥2

=
α2(A[in])

α1(A[in])
→ 0,

and that ∥Ajk∥−1Ajk ∈ {A ∈ M2 : ∥A∥ = 1}, which is a compact set, by possibly
passing to a subsequence, we find a sequence jk := ink

such that ∥Ajk∥−1Ajk

converges to a rank one matrix A with Y := im(A) ∈ YF (A). Moreover, for any
v ∈ V , we have

∥Ajkv∥
∥Ajk∥

≤ C1

α2(Ajk)

α2(Ajk)
∥v∥ → 0,

so the kernel of the rank one limit map is V and the claim follows. □

4. SLICING SELF-AFFINE SETS

In this section, we study planar affine IFSs (Ti)i∈I , that is for every i ∈ I, Ti(x) =
Aix + bi, for some Ai ∈ GL2 and bi ∈ R2. The attractor of (Ti)i∈I is denoted by
K. We abuse terminology slightly by saying that K is weakly dominated if the
tuple A = (Ai)i∈I of the linear parts of the associated IFS is weakly dominated.
Since in this section A is always the tuple of the linear parts of the IFS, we denote
the forward and backward Furstenberg directions of A simply by XF and YF ,
respectively.

The following result is the main goal of this section, and makes up the majority
of the proof of Theorem B. For the reader less familiar with matrix products, we
have also included a proof of this result for diagonal systems in §A which still
captures the essence of the pigeonholing argument.

Theorem 4.1. Let K be a weakly dominated self-affine set. Then the function V 7→
dimA πV ⊥(K) is constant on XF . Moreover, if η denotes this constant value, then for all
V ∈ XF ,

dimAK = η + sup
E∈Tan(K)

sup
x∈π

V ⊥ (K)

dimA(π
−1
V ⊥(x) ∩ E).

We start the proof with a sequence of geometric lemmas.

4.1. Geometric lemmas. For the remainder of the paper, for V ∈ RP1, we let
eV denote the unique unit vector in V with positive x-coordinate if V is not the
y-axis, and otherwise we let eV = (0, 1). Going forward, for any x ∈ V ∈ RP1 and
W ∈ RP1, we let

xW = ⟨x, eV ⟩eW .

Similarly, for any subset E ⊂ V ∈ RP1 and W ∈ RP1, we let

EW = {xW : x ∈ E},
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that is EW is a similar copy of E on W . If x ∈ V ∈ RP1, then for any 2× 2 matrix
A, we have

Ax = ±∥A|V ∥xAV ,

where the sign is positive if AeV has the same direction as eAV and negative
otherwise. In our arguments, namely in the proof of Theorem 4.1, we only need to
consider the matrices Ai restricted on a direction Y which we fix in the beginning.
Since our arguments rely on pigeonholing and since in any collection of linear
maps, at least one half of the maps have a common sign in the equation above, to
simplify the situation slightly, we will assume without loss of generality that,

Ai|V (x) = ∥A|V ∥xAV

for all i ∈ I∗ and V ∈ RP1.
Using this assumption, we observe that if a planar set is close to a subset E of

a line in R2, then its image is close to a scaled and rotated copy of E.

Lemma 4.2. Let E ⊂ Y ∈ RP1 and let B ⊂ R2. If pH(E;B) < ε, then for any i ∈ I∗,

pH (∥Ai|Y ∥EAiY ;Ai(B)) < ∥Ai∥ε.

Next we see that when restricted to nearby lines in YF , all matrices in the semigroup
generated by A have contraction ratios uniformly close to each other.

Lemma 4.3. If A is weakly dominated, then there exists C2 > 0 such that the following
holds: For all Y1, Y2 ∈ YF and i ∈ I∗, if

sin∡(Y1, Y2) ≤ C2ε,

for some 0 < ε < 1, then ∣∣∣∥Ai|Y1∥ − ∥Ai|Y2∥
∣∣∣ ≤ ε∥Ai|Y1∥.

Proof. Assume without loss of generality that ∥Ai|Y1∥ ≥ ∥Ai|Y2∥. Let C2 =
1

2C1
,

where C1 is the constant of Theorem 3.8. If

sin∡(Y1, Y2) ≤ C2ε,

then it follows that eY2 = eY1 + v, for some v ∈ R2, with ∥v∥ ≤ ε
C1

. By Theorem 3.8

∥A|Y1∥ = ∥AeY1∥ ≤ ∥AeY2∥+ ∥Av∥ ≤ ∥AeY2∥+ ∥A∥∥v∥ ≤ ∥A|Y2∥+ ε∥A|Y1∥,

which gives the claim. □

The following upper bound for the angle between images of lines in YF is immedi-
ate by combining Theorem 3.8 and [BL85, III Lemma 4.2].
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Lemma 4.4. If A is weakly dominated, then there is a constant C3 > 0 such that for all
V,W ∈ YF and i ∈ I∗,

∡(AiV,AiW ) ≤ C3
α2(Ai)

α1(Ai)

The next lemma is a trivial consequence of the fact that there is a unique way to
decompose any x ∈ R2 as the sum of vectors in V,W ∈ RP1 with V ̸= W given by

x = πW
V (x) + πV

W (x).

Lemma 4.5. For all x ∈ R2, V,W ∈ RP1, with V ̸= W and i ∈ I∗, we have

πAiW
AiV

(Aix) = ∥Ai|V ∥πW
V (x)AiV .

Finally, an elementary geometric argument shows that projections along the di-
rections in YF of well separated sets on lines in the directions of XF are well
separated.

Lemma 4.6. Let A ⊂ V ∈ XF be a (1 + 2
sin δ

)r-separated set, where δ = ∡(XF , YF ) > 0,
and for each a ∈ A, let ξ(a) ∈ B(a, 2r) ⊂ R2. Then for any Y ∈ YF , the set

πY
V ({ξ(a) : a ∈ A}),

is r-separated.

Proof. Since A ⊂ V , πY
V (A) = A. Moreover, for any Y ∈ YF and a ∈ A, the

set πY
V (B(a, 2r)) is an interval of width 2(sin∡(V, Y ))−1r ≤ 2(sin δ)−1r centred at a.

Therefore,

|ξ(a)− ξ(b)| ≥
(
1 +

2

sin δ

)
r − 2

sin δ
r = r,

for any a, b ∈ A. □

4.2. Product structure of weak tangents. We are now ready to prove Theorem 4.1.
The main part of the proof is in Theorem 4.9, which gives a slightly stronger result
than just the lower bound in Theorem 4.1, namely that the Assouad dimension is
attained by a coarse microset which is a product set. Before proving this theorem,
let us observe that the map V 7→ dimA πV ⊥(K) is constant on XF .

Proposition 4.7. Let K be a weakly dominated self-affine set. Then

dimA πW⊥(K) = dimA πV ⊥(K)

for all V,W ∈ XF .
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Proof. Let V,W ∈ XF . It suffices to show that

dimA πW⊥(K) ≥ dimA πV ⊥(K).

By Theorem 3.9, there exists a sequence jk ∈ I∗ such that |jk| → ∞, and

Ajk

∥Ajk∥
→ κπV

Y ,

in the topology of uniform convergence, where Y ∈ YF . Note that κπV
Y (K) is

bi-Lipschitz equivalent to πV ⊥(K), so in particular dimA κπ
V
Y (K) = dimA πV ⊥(K).

Thus for any s < dimA πV ⊥(K) and C > 0, we may choose a point x ∈ κπV
Y (K) and

a collection A ⊂ κπV
Y (K) ∩B(x,R) ⊂ Y of 3r-separated points with

#A ≥ C

(
R

r

)s

.

Let δ = ∡(Y,W ) > 0 and take k sufficiently large so that∥∥∥∥ Ajkx

∥Ajk∥
− κπV

Y (x)

∥∥∥∥ < r sin δ

for all x ∈ R2. Therefore, by translating K if necessary we find for each a ∈ A a
point x(a) ∈ K such that

∥x(a)− a∥Ajk∥∥ < r∥Ajk∥ sin δ.

Of course, πW⊥(A) is 3r sin δ-separated and therefore the points

B := {πW⊥(x(a)) : a ∈ A},

form a r∥Ajk∥ sin δ-separated subset of πW⊥(K) ∩B(πW⊥(x), R∥Ajk∥ sin δ) with

#B = #A ≥ C

(
R∥Ajk∥
r∥Ajk∥

)s

.

Since this holds for all C > 0, by the definition of the Assouad dimension, we have

dimA πW⊥(K) ≥ s

and since s < dimA πV ⊥(K) was arbitrary, we are done. □

Remark 4.8. It is possible to calculate the constant value η = dimA πV ⊥(K) in the
proposition above in some situations. If K is a self-affine carpet, then the set XF is
a singleton consisting of the direction with the strongest contraction ratio. In this
case, the projection of the IFS along this direction is a self-similar IFS on the line
and therefore, by [FHO+15], η = dimH π(K) if the projected IFS satisfies the weak
separation condition and η = 1 otherwise.

On the other hand, for general self-affine sets, it is easy to see by using [BKY21+,
Lemma 6.4] that in the absence of a projective separation condition, which is similar
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V ∈ XF

(A) The initial pigeonholed cylinders.

AiV

(B) The image of the configuration.

FIGURE 1. Depiction of the proof of Theorem 4.9. In Figure 1a, we
see the initial pigeonholed collection of cylinders (and large pieces of
the projections) corresponding to an approximation of a slice of a large
weak tangent. In Figure 1b, we see the image of this configuration
under an appropriately chosen affine map after locating an improved
scale with Theorem 2.4.

in spirit to the open set condition, we have that η = 1. Moreover this projective
separation condition is generically, in a topological sense, not satisfied by self-
affine sets satisfying the strong separation condition. Formally, it was shown in
[BKY21+, Theorem 3.6] that for a given collection of linear parts (Ai)i∈I , there is a
residual set—a countable intersection of sets with dense interiors—of translation
vectors (ti)i∈I , such that the IFS (x 7→ Aix + ti)i∈I does not satisfy the projective
open set condition. Characterizing the projections in a similar fashion to the carpet
setting would be of interest but we do not pursue this further in this work.

We now move on to the proof of our main result. Let us begin with an informal
overview of the strategy, see Figure 1 for an illustration. We begin by discretizing
a given slice of a weak tangent in a backward Furstenberg direction, and attach to
each point in the discretized slice a copy of (an approximation of) a weak tangent of
the projection using the self-affine structure. These copies are depicted by the short
lines in the ellipses in Figure 1a. Unfortunately, the individual approximations
of weak tangents of the projection need not line up at all, and since the Assouad
dimension can be substantially larger than the Hausdorff dimension, this will
cause loss in dimension. By pigeonholing (with constants depending on the
resolution of approximation of the large weak tangent of the projection), we can
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find a sub-family which has substantially improved alignment properties (the
dark ellipses in Figure 1a). However, the corresponding component of the slice
corresponding to this pigeonholed sub-family could be substantially smaller at
the original scale. In order to amplify this configuration, we apply the discretized
version Furstenberg’s construction of large microsets (that is, Theorem 2.4) in the
slice to locate a new scale where there is no loss in dimension. Here, it is important
that the initial configuration is a very tall and narrow tube, with eccentricity
sufficiently large depending on the constants in Theorem 2.4 and the resolution of
the weak tangent in the projection so that the pigeonholing and amplification step
do not flatten the tube beyond being a square. Of course, since Theorem 2.4 does
not guarantee a precise scale at which the improved configuration appears, this
amplification process could still result in a very thin tube. Finally, we use the fact
that the slice is in a backwards Furstenberg direction and apply an appropriate
high iteration Ti of the affine maps to squash this tube to a square, see Figure 1b.
Passing to the limit yields a weak tangent with the desired product structure.

Theorem 4.9. Let K be a weakly dominated self-affine set, V,W ∈ XF , E ∈ Tan(K)
and x ∈ πV ⊥(E). Then there are compact sets A,B ∈ R with dimBA = dimA πW⊥(K)
and dimBB = dimA(π

−1
V ⊥(x) ∩ E) such that A×B is a coarse microset of K.

Proof. Let V,W ∈ XF , E ∈ Tan(K) and x ∈ πV ⊥(E). Write

η = dimA πW⊥(K) and β = dimA(π
−1
V ⊥(x) ∩ E).

First, in the same way as shown in Theorem 4.7, we may use Theorem 3.9, to find
a sequence jk ∈ I∗ such that |jk| → ∞ and

lim
k→∞

Ajk

∥Ajk∥
= κπW

Y

for some Y ∈ YF . Moreover, recall that

dimA κπ
W
Y (K) = dimA πW⊥(K) = η.

To simplify notation, let us assume that κ = 1. We begin start by constructing
approximate copies of the thickest parts of πW

Y (K) inside the self-affine set K. Let
m ∈ N. Going forward, most of the choices we make depend on m, but to simplify
notation this dependence is often left implicit.

First, by Theorem 2.5, choose k ∈ N, scales 0 < r = 2−(k+m) < R = 2−k and a
point x ∈ πW

Y (K) such that Pm := πW
Y (K) ∩B(x,R) satisfies

(4.1) Nk+n(Pm) ≥
(

R

2−(k+n)

)η− 1
m

= 2n(η−
1
m
),

for all 0 ≤ n ≤ m. Now choose k ∈ N large enough such that the word j := jk
satisfies ∥∥∥∥ Ajx

∥Aj∥
− πW

Y x

∥∥∥∥ < 1

m
R,
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for all x ∈ R2. Note that Tj(K) − Tj(x) = Aj(K − x), so the previous equation
implies that

(4.2) pH

(
Pm − x
R

;
Tj(K)− Tj(x)
∥Aj∥R

)
≤ 1

m
.

Next, set

M ≥ 8πm3(1− C−11 C−1αmin)

C2∥Aj∥R2 sin δ

where δ = ∡(XF , YF ) and αmin = mini∈I α1(Ai). Using the definition of the As-
souad dimension, find scales 0 < r0 < R0 < 1, with R0 ≥ 2m(m+k)r0, a point
z0 ∈ π−1V ⊥(x)∩E and a finite setA0 ⊂ π−1

V ⊥(x)∩E∩B(z0, R0) of (1+ 2
sin δ

)r0-separated
points, satisfying

#A0 ≥ 4M

(
R0

r0

)β− 1
m

.

Since E ∈ Tan(K), there exists y ∈ K and λ ≥ 1 so that

dH(λ(K − y) ∩B(0, 1), E) ≤ r0
2
.

Choose ℓm,1 ∈ N maximal and ℓm,2 ∈ N minimal, so that

2−ℓm,2 ≤ λ−1r0 ≤ λ−1R0 ≤ 2−ℓm,1 ,

and let r1 = 2−ℓm,2 and R1 = 2−ℓm,1 . Now, since the points in A0 are (1 + 2
sin δ

)r0-
separated, by the choice of ℓm,2, the points in λ−1A0 + y are (1 + 2

sin δ
)r1-separated.

Moreover, for each a ∈ λ−1A0 + y, there exists ξ(a) ∈ K ∩B(a, r1). Let us denote
by A := {ξ(a) : a ∈ λ−1A0 + y}.

For each y ∈ A, let iy ∈ I∗ satisfy α1(Aiy) ≤ r1 < α1(Ai−y
) and y ∈ Tiy(K).

To simplify notation, write xy = Tiyj(x). Since each Tiy(K) has diameter at
most r1 and the set A is a subset of a 2r1-neighbourhood of a line in direction
V , we have diam(πV

Y (
⋃

y∈A Tiy(K))) ≤ 4r1
sin δ

. Additionally, diam(RP1) = π
2

and
C−11 C−1αminr1 ≤ ∥Aiy |Y ∥ ≤ r1, where C and C1 are the constants of Theorem 3.4
and Theorem 3.8, respectively, so by the pigeonhole principle there is a line
Ym ∈ YF , a real number wm ∈ [C−11 C−1αmin, 1] and a subset B0 ⊂ A, satisfying

#B0 ≥
1

M
·#A ≥ 4

(
λ−1R0

λ−1r0

)β− 1
m

≥
(
R1

r1

)β− 1
m

,

such that the following inequalities hold for all y, z ∈ B0:

sin∡(AiyY, Ym) ≤ C2
1

2m
,(4.3) ∥∥πV

Ym
(xy − xz)

∥∥ ≤ ∥Aj∥Rr1
m

,(4.4)
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∣∣∣∥Aiy |Y ∥ − wmr1

∣∣∣ ≤ Rr1
2m

.(4.5)

Here, C2 > 0 is the constant of Theorem 4.3. Since diam(Tiξ(a)(K)) ≤ r1 for any
a ∈ λ−1A0 + y, we have

xξ(a) ∈ B(a, 2r1),

so by applying Theorem 4.6, we see that the set

B := {πYm
V (xy) : y ∈ B0},

is an r1-separated subset of V .
Now, since the choice of r1 and r2 implies that ℓm,2 − ℓm,1 ≥ m(m+ k), we may

apply Theorem 2.4 with s = β − 2
m
, t = β − 1

m
, ℓ = m and k = m + k to obtain a

subcollection Bm of B with Bm ⊂ B(πYm
V (xz), R

′) for some z ∈ B0 and R′ = 2−ℓm

with ℓm,1 ≤ ℓm ≤ ℓm,2 −m− k such that

(4.6) Nℓm+n(Bm) ≥ 2n(β−
2
m
),

for all 0 ≤ n ≤ m.
Next we will construct the coarse microset. By Theorem 3.8, we may choose a

sequence ij ∈ I∗ such that

C−11 ∥Aij |V ∥ ≤ α2(Aij) ≤ ∥Aij |V ∥,

for all j and

∥Aij |V ∥
∥Aij |Ym∥

≤ C2
1

α2(Aij)

α1(Aij)
→ 0.

Therefore, we may choose j to be the smallest number satisfying

∥Aij |V ∥
∥Aij |Ym∥

≤ ∥Aj∥R
r1
R′
,

and note that then by Theorems 3.4 and 3.8

∥Aij |V ∥
∥Aij |Ym∥

≥ (C−11 C−1αmin)
2 ∥Ai|j−1

|V ∥
∥Ai|j−1

|Ym∥
≥ (C−11 C−1αmin)

2∥Aj∥R
r1
R′
.

Therefore, by possibly passing to a subsequence, we may assume that

hm :=
∥Aij |V ∥R′

∥Aj∥R∥Aij |Ym∥r1
→ h,

with h ∈ [(C−11 C−1αmin)
2, 1]. Let us denote Y ′m = AijYm and Yy,m = AijiyY . Theo-

rem 4.4 implies that for all y ∈ A,

(4.7) ∡(Y ′m, Yy,m) ≤ C
α2(Aij)

α1(Aij)
≤ C

∥Aij |V ∥
∥Aij |Ym∥

≤ C∥Aj∥R
r1
R′
≤ C∥Aj∥2−mR.
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In particular, we certainly have sin∡(Y ′m, Yy,m) ≤ 1
m

, for all large enough m. More-
over, by Theorem 3.8, Vm := AijV ∈ XF and therefore, passing to a subsequence if
necessary, we may assume that there are V ′ ∈ XF and Y ′ ∈ YF such that Vm → V ′

and Y ′m → Y ′. Now (4.4) together with Theorem 4.5 shows that∥∥∥∥∥ πVm

Y ′
m
Aij(xy − xz)

∥Aj∥R∥Aij |Ym∥r1

∥∥∥∥∥ =
∥Aij |Ym∥∥πV

Ym
(xy − xz)∥

∥Aj∥R∥Aij |Ym∥r1
≤ 1

m
.

Since x = πVm

Y ′
m
(x) + π

Y ′
m

Vm
(x) for any x ∈ R2, the previous equation gives

(4.8)

∥∥∥∥ Tij(xy)− Tij(xz)∥Aj∥R∥Aij |Ym∥r1
− hm

πYm
V (xy − xz)Vm

R′

∥∥∥∥
=

∥∥∥∥∥Aij(xy − xz)− ∥Aij |V ∥πYm
V (xy − xz)Vm

∥Aj∥R∥Aij |Ym∥r1

∥∥∥∥∥
≤

∥∥∥∥∥ πVm

Y ′
m
Aij(xy − xz)

∥Aj∥R∥Aij |Ym∥r1

∥∥∥∥∥+
∥∥∥∥∥π

Y ′
m

Vm
Aij(xy − xz)− π

Y ′
m

Vm
Aij(xy − xz)

∥Aj∥R∥Aij |Ym∥r1

∥∥∥∥∥
≤ 1

m
.

Since for any A,B ∈ GL2, and Y ∈ RP1 we have ∥AB|Y ∥ = ∥A|BY ∥∥B|Y ∥, by
(4.5) and Theorem 4.3 together with (4.3),

(4.9)

∣∣∣∥Aijiy |Y ∥ − wm∥Aij |Ym∥r1
∣∣∣ = ∣∣∣∥Aij |Yy,m∥∥Ai|y |Y ∥ − wm∥Aij |Ym∥r1

∣∣∣
≤
∣∣∣∥Aij |Yy,m∥ − ∥Aij |Ym∥

∣∣∣∥Ai|y |Y ∥+
∣∣∣∥Ai|y |Y ∥ − wmr1

∣∣∣∥Aij |Ym∥

≤ 1

m
∥Aij |Ym∥r1

and again by passing to a subsequence if necessary, we may assume that wm → w
for some w ∈ [C−11 C−1αmin, 1].

Let now

Am =
(Pm − x)R

R
and Bm =

(Bm − πYm
V (xz))R
R′

and recall that Pm ⊂ B(x,R) and Bm ⊂ B(πYm
V (xz), R

′), so Am × Bm is a compact
subset ofB(0, 1). Therefore, passing to a subsequence, get a compact setA×B such
that Am ×Bm → A×B in the Hausdorff distance. By (4.1), (4.6) and Theorem 2.2,
we see that dimBA ≥ η and dimBB ≥ β.

Finally, let us show that A×B is a coarse microset of K. Let fm : R2 → R2 be
the unique linear map taking the vector (1, 0) to wmeY ′

m
and (0, 1) to hmeVm , and

let f : R2 → R2 be the unique linear map taking the vector (1, 0) to weY ′ and (0, 1)
to heV ′ . Clearly the function f is bi-Lipschitz, fm → f in the topology of uniform
convergence and fm(Am ×Bm)→ f(A×B) in the Hausdorff distance. Moreover,

fm(Am ×Bm) = wm

(Pm − x)Y ′
m

R
+ hm

(Bm − πYm
V (xz))Vm

R′
.
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Therefore, to finish the proof it suffices to show that

(4.10) lim
m→∞

pH

(
fm(Am ×Bm);

Tij(K)− Tij(xz)
∥Ajn∥R∥Aij |Ym∥r1

)
= 0.

Note that for each πYm
V (xy) ∈ Bm,

fm

(
(Pm − x)Y ′

m

R
+
πYm
V (xy − xz)Vm

R′

)
= wm

(Pm − x)Y ′
m

R
+ hm

πYm
V (xy − xz)Vm

R′
.

By combining (4.2) with Theorem 4.2, and recalling that xy = Tiyj(x) and wm ≤ 1,

pH

(
wm

(Pm − x)Yy,m

R
;wm

Tijiyj(K)− Tij(xy)
∥Aj∥R∥Aijiy |Y ∥

)
≤ C1

m
,

and by (4.9),

dH

(
wm

Tijiyj(K)− Tij(xy)
∥Aj∥R∥Aijiy |Y ∥

,
Tijiyj(K)− Tij(xy)
∥Aj∥R∥Aij |Ym∥r1

)
≤ 1

m
.

Since sin∡(Y ′m, Yy,m) ≤ 1
m

and Pm ∈ B(x,R),

dH

(
wm

(Pm − x)Y ′
m

R
,wm

(Pm − x)Yy,m

R

)
≤ 1

m

which together with the previous two inequalities imply that

pH

(
wm

(Pm − x)Y ′
m

R
;
Tijiyj(K)− Tij(xy)
∥Aj∥R∥Aij |Ym∥r1

)
≤ C1 + 2

m
.

Finally by (4.8) we get

pH

(
wm

(P − x)Y ′
m

R
+ hm

πYm
V (xy − xz)Vm

R′
;
Tijiyj(K)− Tij(xz)
∥Aj∥R∥Aij |Ym∥r1

)
≤ C1 + 3

m
.

Since this holds for all y ∈ B, (4.10) follows. □

The main theorem of this section follows immediately.

Proof (of Theorem 4.1). First, recall from Theorem 4.7 that the function V 7→
dimA πV ⊥(K) takes constant value η. Therefore, applying Theorem A, it follows
that for all V ∈ XF , there exists an E ∈ Tan(K) and an x ∈ πV ⊥(E) such that

dimH(π
−1
V ⊥(x) ∩ E) ≥ dimAK − η.

Conversely, by Theorem 4.9, for any V ∈ XF , E ∈ Tan(K), and x ∈ πV ⊥(E), there
are compact sets A,B ∈ R with dimBA = η and dimBB = dimA(π

−1
V ⊥(x) ∩ E) such

that A×B is a coarse microset of K. Therefore by Theorem 2.1,

dimAK ≥ dimAA×B ≥ dimBA×B ≥ dimBA+ dimBB

= η + dimA(π
−1
V ⊥(x) ∩ E),

which gives the lower bound. □
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5. CONSEQUENCES AND EXAMPLES

5.1. Completing the proof of the main result. In this section, we complete the
proof of the main result, Theorem B.

First, let us note the following consequence of Theorem 4.1, using Theorem A.
This establishes the main result concerning Assouad dimension and slices of weak
tangents.

Corollary 5.1. Let K be a weakly dominated self-affine set. Then for any V ∈ XF there
exists F ∈ Tan(K) and x ∈ πV ⊥(F ) such that

dimH(π
−1
V ⊥(x) ∩ F ) = dimA(π

−1
V ⊥(x) ∩ F ) = dimAK − dimA πV ⊥(K).

Proof. Let V ∈ XF and denote by η = supW∈XF
dimA πW⊥(K). Recall that by

Theorem 4.1,

dimAK = η + sup
E∈Tan(K)

sup
V ∈XF

x∈π
V ⊥ (K)

dimA(π
−1(x) ∩ F ).

By Theorem A, there exists F ∈ Tan(K) and x ∈ π(F ) such that

dimH(π
−1
V ⊥(x) ∩ F ) ≥ dimAK − dimA πV ⊥(K).

Moreover, by Theorem 4.7

dimA(π
−1
V ⊥(x)∩F ) ≤ sup

E∈Tan(K)

sup
V ∈XF

x∈π
V ⊥ (K)

dimA(π
−1(x)∩F ) = dimAK−dimA πV ⊥(K),

and the claim follows. □

Finally, we use self-affinity and separation conditions to make conclusions about
slices of the original set.

We first note the following bound, which is a simple corollary of Theorem 4.1,
by the observation that a weak tangent of a slice of a compact set is contained
in a slice of a weak tangent of the set, see e.g. [ABK24, Lemma 4.4] for the short
formal proof. This proves the part of Theorem B concerning the upper bound on
dimensions of slices with no separation conditions.

Corollary 5.2. Let (Ti)i∈I be a weakly dominated self-affine IFS with attractor K. Then
for all W ∈ XF and x ∈ πW⊥(K),

dimA(π
−1
W⊥(x) ∩K) ≤ dimAK − η,

where η is the constant value for the map V 7→ dimA πV ⊥(K).

Finally, we show that this bound can be upgraded to an equality for some slice
under a suitable separation condition which is slightly weaker than the strong
separation condition.
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Definition 5.3. Let K be a self-affine set. For x ∈ K and r > 0, we let

Φ(x, r) = {Ti : α2(Ai) ≤ r < α2(Ai−) and Ti(K) ∩B(x, r) ̸= ∅}.

We say that K satisfies the weak bounded neighbourhood condition (WBNC) if there
exists a constant M ∈ R such that

#Φ(x, r) ≤M,

for all x ∈ K and r > 0.

This following corollary completes the proof of Theorem B.

Corollary 5.4. Suppose (Ti)i∈I is a weakly dominated IFS satisfying the weak bounded
neighbourhood condition with attractor K. Then there exists W ∈ XF and x ∈ π(K)
such that

sup
E∈Tan(K)

sup
V ∈XF

x∈π
V ⊥ (K)

dimA(π
−1
V ⊥(x) ∩ F ) = dimH(π

−1
W⊥(x) ∩K).

In particular,

dimAK = η + max
V ∈XF

x∈π
V ⊥ (K)

dimH(π
−1
V ⊥(x) ∩K),

where η is the constant value for the map V 7→ dimA πV ⊥(K).

Proof. By Theorem 5.1, choose F ∈ Tan(K), V ∈ XF and x ∈ πV ⊥(K) such that

dimH(π
−1
V ⊥(x) ∩ F ) = sup

F∈Tan(K)

sup
V ∈XF

x∈π
V ⊥ (K)

dimA(π
−1(x) ∩ F ).

By [ABK24, Lemma 3.2], there exists a finite index set I such that

F =
⋃
i∈I

Fi,

where each Fi is a compact set, and for each i ∈ I , there exists a linear map
Gi ∈ R(A−1), and a point yi ∈ K such that Gi(Fi) + yi ⊂ K. Let j ∈ I be such that
dimH(π

−1
V ⊥(x)∩Fi) = dimH(π

−1
V ⊥(x)∩F ). If Gj has rank one, then im(Gj) ∈ XF and

kerGj ̸= V and therefore Gj(π
−1
V ⊥(x) ∩ Fi) + yi ⊂ im(Gj) ∩K + yi is bi-Lipschitz

equivalent with π−1
V ⊥(x) ∩ Fi. This gives the lower bound

(5.1) dimH(π
−1
im(Gj)⊥

(yi) ∩K) ≥ dimH(Gj(π
−1
V ⊥(x) ∩ Fi) + yi) ≥ dimH(π

−1
V ⊥(x) ∩ F ).

On the other hand, if rank(Gj) = 2, it follows from [BKM20, Lemma 3.3] that
GjV ∈ XF and since Gj is globally bi-Lipschitz,

dimH(π
−1
(GjV )⊥(Gjx+ yi) ∩K) ≥ dimH(Gj(π

−1
V ⊥(x) ∩ Fi) + yi) ≥ dimH(π

−1
V ⊥(x) ∩ F ),

which gives the claim in this case. □
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5.2. Dimensions of tubes and local dimensions. In Theorem 4.1, we established
a formula for the Assouad dimension of a weakly dominated self-affine set in
terms of the Assouad dimension of slices of weak tangents. We now show that
this also enables us to bound the dimensions of tubes.

We introduce some notation: for V ∈ RP1 and z ∈ πV (R2), we denote the tube
with width 2r through z in direction V by

Tr(V, z) = π−1V

(
B(z, r)

)
.

We then set

∆V (F ) = lim sup
r→0

supz∈πV (K) logNr(Tr(V, z) ∩ F )
log(1/r)

.

Of course, in general,

sup
x∈πV (F )

dimB(π
−1
V (x) ∩ F ) ≤ ∆V (F ).

Conversely, the maximal value of ∆V (E) over all microsets E is always attained
by the Hausdorff dimension of a slice of a weak tangent. Using Theorem 2.3, the
proof is essentially the same as the proof of Theorem A, so we omit the details.

Lemma 5.5. Let F ⊂ R2 be non-empty and compact and let V ∈ RP1 be arbitrary. Write
η = supE∈GF ∆V (E). Then there exists an E0 ∈ Tan(F ) and an x ∈ πV (E0) so that
Hη(π−1V (x) ∩ E0) > 0.

Since for all compact sets F ⊂ R2 we always have (up to rescaling and translation)
F ∈ GF and Tan(F ) ⊂ GF , the following corollary of Theorem B is immediate.

Corollary 5.6. Let (Ti)i∈I be a weakly dominated self-affine IFS with attractor K and
let η denote the constant value of the map V 7→ dimA πV ⊥(K) for V ∈ XF . Then for all
V ∈ XF ,

dimAK − η = max
E∈Tan(K)

∆V ⊥(E) ≥ ∆V ⊥(K).

If in addition (Ti)i∈I satisfies the WBNC, then

dimAK − η = max
V ∈XF

∆V ⊥(K) = max
V ∈XF

max
x∈π

V ⊥ (K)
dimH(π

−1
V ⊥(x) ∩K).

To conclude this section, let us explain how to extend and complete the results of
[FJ17] using Theorem 5.6. Let us begin by recalling the setting and the main result
in [FJ17]. Fix numbers 0 < α < β < 1, and consider the self-affine IFS (Ti)i∈I given
by Ti(x, y) = (βx, αy)+(bi, ai) where 0 ≤ bi ≤ 1−β and 0 ≤ ai ≤ 1−α. We assume
that the IFS satisfies the rectangular open set condition: Ti((0, 1)2) ∩ Tj((0, 1)2) = ∅
for all i ̸= j.

Set m = #I, and let µ be the unique Borel measure satisfying µ(Ti((0, 1)2)) =
m−k for i ∈ Ik. Equivalently, µ is just the self-affine measure on the IFS (Ti)i∈I
with equal probabilities.
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In our notation, XF = {H} is a singleton and πH⊥ = π is the orthogonal
projection onto the x-axis. Moreover, the rectangular open set condition implies
that the IFS satisfies the WBNC. Let (Si(x) = βx+ bi)i∈I denote the corresponding
projected IFS with attractor π(K) and let ν = µ ◦ π−1 denote the pushforward
measure. Note that, in particular, ν(B(z, r)) = µ(Tr(H, z)), for all z ∈ π(K).

We also recall the definition of the Frostman dimension:

dim∞ ν := sup{t ≥ 0 : ∃C > 0 ∀r ∈ (0, 1)∀z ∈ R ν(B(x, r)) ≤ Crt}.

Equivalently, dim∞ ν is the slope of the asymptote of the Lq spectrum at +∞, or
the infimum of lower local dimensions over all points z ∈ supp ν. The following is
a slightly weaker version of the main result of [FJ17].

Theorem 5.7 ([FJ17]). Let K be the self-affine set corresponding to the IFS (Ti)i∈I de-
fined above, with parameters 0 < α < β < 1. Let s denote Frostman dimension of ν.
Then

dimAK ≤ dimA π(K) +
logmβs

log(1/α)
.

Moreover, equality holds if any of the following conditions hold:
(i) dimB π(K) = 1.

(ii) The projected IFS (Si)i∈I satisfies the weak separation condition.
(iii) The projected IFS (Si)i∈I satisfies the exponential separation condition.

Moreover, the conclusion under the assumption of the exponential separation
condition relies on the deep work of Shmerkin [Shm19]; we also refer the reader
to that paper for a precise definition of the exponential separation condition.

We will use Theorem 5.6 to prove that the upper bound for the Assouad
dimension in Theorem 5.7 is in fact always an equality. The result will in fact
follow from the following simple lemma relating the size of tubes with local
dimensions. Similarly to the other notation, let Tr(z) = Tr(H⊥, z) denote the
vertical r-tube passing through x and write ∆(F ) = ∆H⊥(F ).

Lemma 5.8. Let K be the self-affine set corresponding to the IFS (Ti)i∈I defined above,
with parameters 0 < α < β < 1. Let s denote the Frostman dimension of ν. Then

∆(K) =
logmβs

log(1/α)
.

Proof. Let ε > 0 be arbitrary. Suppose z ∈ π(K) and r ∈ (0, 1). Let n ∈ N be
minimal such that αn ≤ r, and let

(5.2) Λn = {i ∈ In : Si(π(K)) ∩B(z, r) ̸= ∅}.

Since the IFS satisfies the rectangular open set condition and αn ≈ r,

Nr(Tr(z) ∩K) ≈ #Λn.
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Now fix some rectangle Ti((0, 1)2) for i ∈ In and note that by the self-affinity of µ,

µ
(
Tr(z) ∩ Ti(K)

)
= m−nµ

(
Trβ−n(T−1i (z))

)
≲ m−n(α/β)n(s−ε).

Therefore

ν(B(z, r)) ≲ Nr(Tr(z) ∩K) ·m−n · (α/β)n(s−ε)

≲ (αn)−(∆(K)+ε) · (αn)
logm

log(1/α) (αn)
(s−ε) log β
log(1/α) (αn)s−ε

= (αn)s−∆(K)+ logmβs

log(1/α)
−2ε−ε log β

log(1/α) .

Since this holds for all z ∈ π(K) and r ∈ (0, 1), by maximality of s,

∆(K) ≥ logmβs

log(1/α)
− 2ε− ε log β

log(1/α)
.

Since ε > 0 was arbitrary, the lower bound on ∆(K) holds.
Now to obtain the upper bound on ∆(K), again let ε > 0 be arbitrary. Fix

z ∈ π(K) and r ∈ (0, 1). As before, let n ∈ N be minimal such that αn ≤ r, and let
Λn be defined as in (5.2). Then for all i ∈ Λn,

Si(K) ⊂ B(z, βn + αn) ⊂ B(z, 2βn).

Therefore, recalling that #Λn ≈ Nr(Tr(z) ∩K),

Nr(Tr(z) ∩K) ≈ #Λn ≤ mnν
(
B(z, 2βn)

)
≲ mnβn(s−ε) ≈

(
1

r

) logmβs−ε

log(1/α)

,

it follows that

∆(K) ≤ logmβs−ε

log(1/α)
.

Since ε > 0 was arbitrary, the desired upper bound holds. □

We finally obtain the desired result.

Restatement (of Theorem C). Let K be the self-affine set corresponding to the IFS
(Ti)i∈I defined above, with parameters 0 < α < β < 1. Let s denote the Frostman
dimension of ν. Then

dimAK = dimA π(K) +
logmβs

log(1/α)
.

Proof. By Theorem 5.6 (recalling that XF is a singleton and the IFS satisfies the
WBNC) and Theorem 5.8,

dimAK − dimA π(K) = ∆(K) =
logmβs

log(1/α)

as claimed. □
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5.3. Dichotomy for the conformal Assouad dimension. To conclude our appli-
cations, we apply our results to calculate the conformal Assouad dimension of
a large class of self-affine sets. Recall that a function f : X → Y between metric
spaces (X, d) and (Y, ρ) is an η-quasisymmetry if

ρ(f(x), f(y))

ρ(f(x), f(z))
≤ η

(
d(x, y)

d(x, z)

)
,

for all x, y, z ∈ X with x ̸= z, where η : [0,∞) → [0,∞) is a homeomorphism.
Quasisymmetries are generalizations of bi-Lipschitz maps which preserve relative
sizes of sets, while allowing sets of widely different sizes to be distorted in different
ways. Unlike bi-Lipschitz maps, quasisymmetries can decrease the Assouad
dimension which gives rise to the conformal Assouad dimension of X ,

CdimAX := inf {dimA f(X) : f is a quasisymmetry} ,

which is of course invariant under quasisymmetries. We say that a set X is
minimal for conformal Assouad dimension if CdimAX = dimAX . We also consider
the conformal Hausdorff dimension, which is the same definition except with
Hausdorff dimension in place of Assouad dimension.

By combining a strong projection theorem for Assouad dimension due to
Orponen with Theorem 4.9, we are able to prove a dichotomy result for the
conformal Assouad dimension for a large class of self-affine sets.

Restatement (of Theorem D). Let K be a weakly dominated and irreducible self-affine
set. If dimAK < 1, then CdimAK = 0, and if dimAK ≥ 1, then K is minimal for
conformal Assouad dimension.

Proof. If dimAK < 1 then [MT10, Corollary 5.1.11] implies that CdimAK = 0.
Assume therefore that dimAK ≥ 1.

Using Theorem 5.1, choose F ∈ Tan(K), V ∈ XF and x ∈ πV ⊥(F ), such that

dimAK = dimA πV ⊥(K) + dimH(π
−1
V ⊥(x) ∩ F ).

Note that if dimA πV ⊥(K) = 1 for any V ∈ XF , since [0, 1] is a weak tangent of
πV ⊥(K), by Theorem 1.1 combined with the Lebesgue density theorem, in this
case the proof of Theorem 4.9 actually shows that there is a compact set B with
dimBB = dimH(π

−1
V ⊥(x)∩F ) such that [0, 1]×B is a coarse microset ofK. Moreover,

applying Theorem 1.1 and passing to a weak tangent again if necessary, we may
assume that dimH

(
[0, 1] × B

)
= dimAK. Since quasisymmetries cannot lower

the Hausdorff dimension of a product of a compact set with an interval [MT10,
Proposition 4.1.11], it follows from [MT10, Proposition 6.1.5], that

CdimAK ≥ CdimH

(
[0, 1]×B

)
= dimH

(
[0, 1]×B

)
= dimAK.

It therefore remains to show that there exists V ∈ XF such that dimA πV ⊥(K) =
1. A theorem of Orponen [Orp21] shows that for any set E with dimAE ≥ 1, we
have

dimH{V ∈ RP1 : dimA πV ⊥(E) < 1} = 0.



34 ROOPE ANTTILA & ALEX RUTAR

It is easy to see (for example using [BKY21+, Lemma 2.7]) that weak domination
combined with irreducibility implies strong irreducibility, from which it follows
that dimHXF > 0 [BL85, Corollary VI.4.2]. This gives the claim. □

For Theorem D to hold as stated, irreducibility is necessary: examples of self-affine
carpets with Assouad dimension greater than 1 but which are not minimal for
conformal Assouad dimension are given in [Mac11]. However, in these examples
the conformal Assouad dimension is 0, and we are not aware of any examples
of self-affine carpets with Assouad dimension greater than one which are not
minimal for the conformal Assouad dimension.
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A. PROOF OF THE SLICING RESULT FOR DIAGONAL SYSTEMS

In this section, we include a proof of Theorem 4.1 for weakly dominated diagonal
self-affine systems.

Let us set up the required notation. Fix a planar IFS (Ti)i∈I where for each i ∈ I
there are ai, bi ∈ (0, 1) and ui, vi ∈ R so that

Ti(x, y) = (aix+ ui, biy + vi).

LetK denote the unique non-empty compact attractor and let {Si(x) = aix+ui}i∈I
denote the projected IFS on the 1st coordinate axis. Let π : R2 → R denote the
orthogonal projection π(x, y) = x: then equivalently Si is the unique map which
satisfies Si ◦ π = π ◦ Ti. Of course, {Si}i∈I is a self-similar IFS with attractor π(K).
We refer to such a system as diagonal. We assume that the IFS is weakly dominated:
in this notation, this means (without loss of generality) that ai ≥ bi for all i ∈ I,
and ai > bi for some i ∈ I.

We now have the following special case of Theorem 4.1.

Theorem A.1. Let (Ti)i∈I be a diagonal weakly dominated IFS with attractor K. Then

dimAK = dimA π(K) + sup
E∈Tan(K)

sup
x∈π(E)

dimA(π
−1(x) ∩ E).
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Proof. We recall by Theorem 1.1 that it suffices to prove the lower bound on
dimAK.

Let E ∈ Tan(K) and x ∈ π(E) be arbitrary. For notational simplicity, write
η = dimA π(K) and β = dimA(π

−1(x) ∩ E). We will show that dimAK ≥ η + β by
constructing a coarse microset G with dimBG ≥ η + β.

First, applying Theorem 2.5, get a sequence of dyadic cubes (Pm)
∞
m=1 with

Pm ∈ Dkm satisfying limm→∞ km =∞ such that

(A.1) N2−n(ψPm(π(K)) ∩ [0, 1]) ≳ 2n(η−
1
m)

for all n ∈ Z with 0 ≤ n ≤ m.
Now, fix an m ∈ N. We begin by pigeonholing a good set of cylinders. Let

M ∈ N be sufficiently large so that

M ≥
(
m2km

)2 · (1− amin) ·
(
8a−1min · diamπ(K)

)
.

First, by definition of the Assouad dimension, get y ∈ π−1(x) ∩ E, 0 < r0 ≤ R0 < 1
with R0 ≥ 2m(m+km) · r0, and a finite set of points A0 ⊂ Ex which are 6r0-separated
with

#A0 ≥ 4M

(
R0

r0

)β− 1
m

.

Since E ∈ Tan(K), there exist z ∈ K and λ ≥ 1 so that

dH
(
λ(K − z) ∩B(0, 1), E

)
≤ r0.

Let ℓm,1 ∈ N∪{0} be maximal and ℓm,2 ∈ N∪{0} be minimal so that

2−ℓm,2 ≤ λ−1r0 ≤ λ−1R0 ≤ 2−ℓm,1 .

Write R = 2−ℓm,1 and r = 2−ℓm,2 . Then for each a ∈ A0, there is a ξ(a) ∈ E such that
d(λ−1a+ z, ξ(a)) ≤ r0λ

−1.
Let A = {ξ(a) : a ∈ A0}. We observe four key properties of A.

1. Since the points in A0 are 6r0-separated, the points in A are 2r-separated.
2. By the condition on R0/r0, we have ℓm,2 − ℓm,1 ≥ m(m+ km).
3. Since β − 1/m ≤ 1,

#A = #A0 ≥ 4M

(
R0

r0

)β− 1
m

≥M

(
R

r

)β− 1
m

.

4. SinceA0 is a subset of a vertical slice, A is a subset of a vertical tube of width
2λ−1r0 ≤ 4r.

Now for each y ∈ A, let iy ∈ I∗ be such that ai ≤ r < ai− and (x, yj) ∈ Ti(K).
Since the points in A are 2r-separated, the images Tiy(K) are disjoint for distinct
y ∈ A. Moreover, writing Siy(x) = u(y)x+ v(y), for all y, z ∈ A, since the points in
A lie in a vertical tube of width 4r,

u(y)

r
∈ [amin, 1] and

∣∣∣∣v(y)− v(z)r

∣∣∣∣ ≤ 4 · a−1min · diamπ(K).
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Thus by the pigeonhole principle and the choice of M , get um ∈ [amin, 1], vm ∈
[0, a−1min · diamπ(K)] and B ⊂ Awhere #B ≥ #A/M such that for all y ∈ B,

(A.2)
∣∣∣∣u(y)r − um

∣∣∣∣ ≤ 1

m2km
and

∣∣∣∣v(y)r − vm
∣∣∣∣ ≤ 1

m2km
.

Since the points in B are 2r-separated, each y ∈ B intersects a distinct vertical
dyadic interval of width 2−ℓm,2 . On the other hand, B intersects at most 2 dyadic
intervals of width 2−ℓm,1 . Thus pigeonholing again, get Em ⊂ B so that

#Em ≥
(
R

r

)β− 1
m

and moreover Em is contained in a single dyadic intervalQ0 of width 2−ℓm,1 . Finally,
since ℓm,2 − ℓm,1 ≥ m(m+ km), by applying Theorem 2.4 to the set ψQ0(Em) ∩ [0, 1]
with s = β − 2/m, t = β − 1/m, ℓ = m, and k = m + km, get a dyadic interval
Qm ∈ Dℓm with ℓm,1 ≤ ℓm ≤ ℓm,2 −m− km such that

(A.3) N2−n (ψQm(Em) ∩ [0, 1]) ≳ 2n(β−
2
m)

for all n ∈ Z with 0 ≤ n ≤ m.
We now construct a coarse microset G with dimBG ≥ η + β. First, for each

m ∈ N, set

gm(x) = r(umx+ vm).

In light of (A.2), one should think of the function gm as an approximation for the
functions Siy for y ∈ Em. Next, we set

Fm = gm(Pm ∩ π(K))× (Qm ∩ Em) and hm = 2−km−ℓm,2 .

Note that gm(Pm) is an interval of width um · hm and Qm is an interval of width
2−ℓm ≥ 2mhm. Since (Ti)i∈I is weakly dominated, get i0 ∈ I such that κ := bi0/ai0 ∈
(0, 1). For each m ∈ N, let jm ∈ Z be maximal such that

κjm2−ℓm ≥ hm.

Observe that limm→∞ jm =∞.
Now passing to a subsequence, we may assume that jm ≥ 0 for all m ∈ N and

that the limits u := limm→∞ um and v := limm→∞ vm exist. Set

Em = T jm
i0

(Fm) and wm = ajmi0 hm.

Of course, Em is contained in the rectangle

∆m = T jm
i0

(gm(Pm)×Qm)

which has width um · wm and height κ−1wm. Let fm denote the orientation-
preserving diagonal affine map satisfying fm(∆m) = [0, 1]2. Passing again to
a subsequence if necessary, we may assume that the limit

(A.4) G = lim
m→∞

gm(Em)
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exists.
We first show that G is a coarse microset of K. Let m ∈ N and fix y ∈ Qm ∩ Em.

Consider the horizontal strips

Xm,y := T jm
i0

(gm(Pm ∩ π(K))× {y}) ,
Ym,y := Sjm

i0
◦ Siy(Pm ∩ π(K))× {T jm

i0
(y)}.

By (A.2),

dH (Xm,y, Ym,y) ≲
1

m
ajmi0 2

−km−ℓm,2 =
1

m
wm.

Moreover, since y ∈ Tiy(K) and the cylinder Tiy(K) has height ≲ aiy ,

dH
(
Ym,y, T

jm
i0
◦ Tiy(K)

)
≲ bjmi0 2

−ℓm,2 ≲ κjmwm.

Since this holds for all y ∈ Qm ∩ Em,

pH
(
Em;T

jm
i0

(K)
)
≲

(
1

m
+ κjm

)
· wm.

Since the rectangle ∆m has height and width approximately wm, it follows that G
is a coarse microset of K.

We now conclude the proof of the lower bound. By (A.1) and (A.3) and the
definition of gm, for all 1 > r ≥ 2−m,

Nr(gm(E)) ≳

(
1

r

)η+β− 3
m

.

Thus by (A.4) and Theorem 2.2, dimBG ≥ η+β, so by Theorem 2.1, dimAK ≥ η+β.
Since E ∈ Tan(K) and x ∈ π(E) were arbitrary, the result follows. □
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