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ABSTRACT. Non-autonomous self-similar sets are a family of compact
sets which are, in some sense, highly homogeneous in space but highly in-
homogeneous in scale. The main purpose of this note is to clarify various
regularity properties and separation conditions relevant for the fine local
scaling properties of these sets. A simple application of our results is a precise
formula for the Assouad dimension of non-autonomous self-similar sets in Rd

satisfying a certain “bounded neighbourhood” condition, which generalizes
earlier work of Li–Li–Miao–Xi and Olsen–Robinson–Sharples. We also see
that the bounded neighbourhood assumption is, in few different senses, as
general as possible.

1. INTRODUCTION

In the study of non-smooth and highly irregular sets, one encounters sets with a
wide variety of structure.

On one hand, one has sets with a substantial amount of structure: perhaps
the most canonical examples of such a set is the middle-thirds Cantor set. Many
generalizations exist, such as conformal or expanding repellers, sets occurring
in complex dynamics, and random sets and often those occurring in models of
physical phenomena.

At the other extreme, we have the class of general compact, or even analytic,
sets. For such sets, one is restricted to only making the most general observations
because of an abundance of counterexamples. Moreover, such general observations
are often very challenging to make and depend on deep properties of the ambient
space.

It turns out that a useful intermediate family of sets are those with inhomo-
geneity in scale, but homogeneity in space. Such sets are commonly referred to in
the literature as Moran sets or attractors of non-autonomous iterated function systems.
Beyond being of interest in their own right, this family of sets has also played an
important role of being sufficiently unstructured to be applicable in a wide variety
of scenarios, while still being sufficiently structured to make the analysis of their
properties convenient. Some examples of applications in which this class of sets is
highly useful include the construction of large non-ergodic measures [FL09], the
dimension theory of non-uniform sets arising in complex dynamics [MU22], and
classification results for dimensions [BR22; Rut22+]. For the authors, this paper
was motivated by applications to slices of self-affine sets.

In this paper, we study non-autonomous self-similar sets in their own right.
Our focus is on coarse notions of dimension: in particular, we focus on the Assouad
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dimension. The Assouad dimension was first introduced in the study of bi-Lipschitz
embeddings of metric spaces [Ass77]. It also previously appeared implicitly in
Furstenberg’s work on dynamics on fractals as the star dimension [Fur70; Fur08].
Especially in recent years, a large amount of attention has been paid to the Assouad
dimension in recent years. We refer the reader to the books [Fra20; MT10; Rob11]
and the many references therein for an introduction to this specific area from a
variety of perspectives.

Our primary goal is to organize the study of non-autonomous self-similar sets
around a few natural definitions, which are relevant in a much broader context.
We hope that with the definitions in mind, for the experienced reader, the proofs
will follow naturally. A consequence of this (re)organization is that we obtain
essentially optimal generalizations of existing results in the literature concerning
the Assouad dimension of non-autonomous self-similar sets, and moreover almost
for free.

Let us begin by introducing our setting more precisely.

1.1. Non-autonomous self-similar sets. The framework that we find most natural
is that of the non-autonomous conformal iterated function system, which was first
introduced in [RU16]. In that paper, under certain regularity assumptions, Rempe-
Gillen & Urbański prove that the Hausdorff and box dimensions are equal and
given by the zero of a certain pressure function.

We specialize slightly and consider only self-similar systems. Generalization
to conformal systems follows without difficulty. For each n ∈ N, let Jn be a finite
index set with #Jn ≥ 2, and let Φn = {Sn,j}j∈Jn be a family of similarity maps
Sn,j : Rd → Rd of the form

Sn,j(x) = rn,jOn,jx+ dn,j

where rn,j ∈ (0, 1) andOn,j is an orthogonal matrix. To avoid degenerate situations,
we assume that associated with the sequence (Φn)

∞
n=1 is an invariant compact set

X ⊂ Rd (that is Sn,j(X) ⊂ X for all n ∈ N and j ∈ Jn) and moreover that

(1.1) lim
n→∞

sup{r1,j1 · · · rn,jn : ji ∈ Ji for each i = 1, . . . , n} = 0.

Under these assumptions, associated with the sequence (Φn)
∞
n=1 is an limit set

K =
∞⋂
n=1

⋃
(j1,...,jn)∈J1×···×Jn

S1,j1 ◦ · · · ◦ Sn,jn(X).

Since X is compact and invariant under any map Sn,j with j ∈ Jn, finiteness of
each Jn implies that K is the intersection of a nested sequence of compact sets
and therefore non-empty and compact. Under these assumptions, the sequence
(Φn)

∞
n=1 is called a non-autonomous iterated function system (IFS) and the limit set K

is called the non-autonomous self-similar set. We say that (Φn)
∞
n=1 is autonomous if

the Φn do not depend on the index set n, and homogeneous if for each n ∈ N, there
is a number rn so that rn,j = rn for all j ∈ Jn.
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We emphasize, at this point, that we require no other technical assumptions
concerning the set X or the contraction ratios rn,j as can be found in [RU16]. We
refer the reader to [RU16, §2] for more detail on this construction in the conformal
setting.

Closely related to our setup is the slightly more general Moran set construction;
see, for instance, [FWW97; KV08]. In the Moran set construction, the placement of
the geometric cylinders is allowed to vary across a given level while still respecting
separation conditions. Our results also hold for this more general class of sets,
but for clarity of notation, we prefer the framework of non-autonomous iterated
function systems.

1.2. Symbolic formulas for dimension. Let n ∈ N and m ∈ N be arbitrary. We
define the pressure ϕn,m : R → R by

ϕn,m(t) =
1

m
log

∑
j1∈Jn

· · ·
∑

jm∈Jn+m−1

m−1∏
k=0

rtn+k,jn+k
.

It is easy to check that ϕn,m is convex, differentiable, and strictly decreasing with
unique zero θ(n,m) ≥ 0. Of course, θ(n,m) is precisely the similarity dimension
of the IFS

Φn+1 ◦ · · · ◦ Φn+m = {f1 ◦ · · · ◦ fm : fi ∈ Φn+i}.

A natural question is the following: when are the dimensions of the limit set K fully
determined by the numbers θ(n,m)? In an ideal world, some notions of dimensions
might be given by the formulas

• dimBK = lim supm→∞ θ(1,m).
• dimHK = lim infm→∞ θ(1,m).
• dimAK = lim supm→∞ supn∈N θ(n,m).

Of course, without more assumptions on the IFS (Φn)
∞
n=1, there is no chance that

any of these formulas can be true. Even in the presence of separation, by taking the
Jn to be very large, we may essentially approximate any compact subset of Rd at
arbitrary precision and at infinitely many scales. With this in mind, assumptions on
non-autonomous self-similar sets might be grouped into the following categories:

• Separation: to ensure that the geometric cylinders S1,i1 ◦ · · · ◦ Sn,in(X) do not
overlap too much.

• Growth rate control: to ensure that the sizes of the index sets Jn do not grow
too quickly, or at all.

• Bounds on scaling rate: to ensure that the contraction ratios rn,in are not too
close to 1, or not too close to 0.

For instance, in [RU16], such a formula is established for Hausdorff dimension
under the assumptions (1) that the open set condition holds with respect to a
relatively “nice” open set; (2) that the index sets have sub-exponential growth
rate; and (3) that the scaling ratios are uniformly bounded away from 1. Through
some examples, they also show that these assumptions are essentially optimal. For
ordinary (autonomous) self-similar sets, of course one is mainly concerned with
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separation, since in this setting one has essentially optimal growth rate control and
bounds on the scaling rate. Such a formula has also previously been established
for the Assouad dimension [LLM+16; ORS16] under the assumptions (1) that
the open set condition holds with respect to a relatively “nice” open set; (2) that
the index sets are uniformly bounded in size; and (3) that the scaling ratios are
uniformly bounded away from 0 and 1.

One of the key observations in this paper is that all of the three assumptions
(separation, growth rate control, and bounds on scaling rate) can instead be
replaced with a single, more general, type of assumption: controlling overlap counts.

1.3. Assouad dimension and the bounded neighbourhood condition. In this
paper, our focus is on notions of dimension which are more sensitive to local
scaling: in particular, we focus on the Assouad dimension

dimAK = inf
{
s : ∃C > 0∀0 < r ≤ R < 1∀x ∈ K

Nr(B(x,R) ∩K) ≤ C
(R
r

)s}
,

where Nr(A) is the least number of closed balls of radius r > 0 needed to cover a
bounded set A ⊂ Rd. Since the Assouad dimension is very sensitive to the local
scaling of the set, we will, in principle, require stronger assumptions than those
that are required for Hausdorff dimension.

First, we need some more notation. Let T =
⋃∞

n=0 Tn denote the set of all
cylinder sets in the infinite product space ∆ =

∏∞
n=1 Jn, where

Tn =

{
[j1, . . . , jn] = {j1} × · · · × {jn} ×

∞∏
k=n+1

Jk : ji ∈ Ji for i = 1, . . . , n

}
.

Note that the unique cylinder in T0 is the set ∆. Given a cylinder Q = [j1, . . . , jn] ∈
T , we write ρ(Q) = r1,j1 · · · rn,jn , and if Q ̸= ∆, we also let Q̂ = [j1, . . . , jn−1]
denote the parent of Q. The valuation ρ induces a metric d on ∆, given by d(x, y) =
inf{ρ(Q) : {x, y} ⊂ Q}.

Since the contraction ratios need not be the same, it is also natural to stratify
the set T by size. For r > 0, we write

T (r) =
{
Q ∈ T \ {∆} : ρ(Q) ≤ r < ρ(Q̂)

}
.

We also denote the natural coding map by π : ∆ → Rd, which is defined by

{π
(
(in)

∞
n=1

)
} =

∞⋂
n=1

S1,i1 ◦ · · · ◦ Sn,in(X).

This function is well-defined by (1.1), and it is easy to see that π is Lipschitz so
that π(∆) = K.

Definition 1.1. Suppose (Φn)
∞
n=1 is a non-autonomous IFS. We define the neigh-

bourhood at x ∈ K and r > 0 by

N (x, r) := {Q ∈ T (r) : π(Q) ∩B(x, r) ̸= ∅}.
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We then say that the IFS satisfies the bounded neighbourhood condition if

lim sup
r→0

sup
x∈K

#N (x, r) <∞.

Actually, the bounded neighbourhood condition is almost equivalent to saying
that the coding map π is bi-Lipschitz. The correct generalization of a bi-Lipschitz
function to make such a statement precise can be found in §2.1 and, in particular,
Proposition 2.5.

Our main result is the following, which generalizes previously known results
[LLM+16; ORS16].

Theorem A. Suppose (Φn)
∞
n=1 is a non-autonomous IFS satisfying the bounded neigh-

bourhood condition and K is the non-autonomous self-similar set. Then

(1.2) dimAK = lim
m→∞

sup
n∈N

θ(n,m) = lim
m→∞

lim sup
n→∞

θ(n,m) = inf
m∈N

lim sup
n→∞

θ(n,m)

Note that one cannot replace the bounded neighbourhood assumption with any
unbounded growth of the local covering numbers; see Example 4.5.

Actually, Theorem A is a consequence of three simple, but in our opinion
conceptually useful, observations.

1. The bounded neighbourhood condition holds if and only if the coding map π
is bi-Lipschitz decomposable (see Definition 2.1), which is a generalization of the
bi-Lipschitz assumption which in some sense avoids topological obstructions.
This enables the reduction to the symbolic space.

2. The limits in (1.2) exist since the function θ has certain weak quasiconvexity
and semi-continuity properties, which generalize the more usual notion of
subadditivity. We call this property submaximality; see Definition 3.2 for the
definition.

3. It is sufficient to consider only cylinder sets at a fixed level (as opposed
to diameter) as a consequence of a disc-packing formulation of Assouad
dimension, similar to that of the analogous version for box dimension—see,
for example, [BP17, §2.6].

Unlike previous work, the main technical difficulty in the proof of Theorem A is
that we only have very weak control on the contraction rates.

We hope that our proof helps to clarify the various assumptions which are
relevant to the study of non-autonomous self-similar sets, and to unify the various
proofs of somewhat weaker versions of this result present in the literature.

Remark 1.2. In the autonomous case, it is a consequence of [FHO+15, Theo-
rem 1.3] that if dimHK < 1, then (1.2) holds if and only if the bounded neighbour-
hood condition holds. The condition dimHK < 1 is needed to avoid saturation of
non-trivial affine subspaces.

1.4. Other assumptions on non-autonomous IFSs. In this section, we discuss
the difference between the bounded neighbourhood condition with a much more
common assumption: the open set condition.
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Definition 1.3. We say that a non-autonomous IFS satisfies the open set condition if
the invariant compact set X can be chosen to have non-empty interior U = X◦ so
that for each n ∈ N and j ̸= j′ ∈ Jn, we have Sn,j(U) ∩ Sn,j′(U) = ∅. We moreover
say that it satisfies the cone condition if

inf
x∈X

inf
r∈(0,1)

r−dLd
(
B(x, r) ∩ U

)
> 0.

Here, Ld denotes the usual d-dimensional Lebesgue measure. The cone condition
is typically an implicit global assumption [MU96; RU16] when defining a non-
autonomous IFS, but we intentionally mention it separately here to make it clear
exactly when it is required.

In order to fully explain the distinction between the bounded neighbourhood
condition and the open set condition, we make the following definition. As
explained in §1.2, separation in itself is insufficient to guarantee that the desired
symbolic formulas hold.

Definition 1.4. Given a non-autonomous IFS (Φn)
∞
n=1, we define the geometric

offspring count for r > 0 by

β(r) := sup
Q∈T (r)

#{Q′ ∈ T (r) : Q′ ⊂ Q̂}.

We then say that a non-autonomous IFS has bounded branching if

lim sup
r→0

β(r) <∞.

A reasonable way to think about the set {Q′ ∈ T (r) : Q′ ⊂ Q̂} is the set of
“geometric” siblings of the cylinder Q ∈ T (r), as opposed to the set of children of
the parent of Q.

A simple consequence of bounded branching is that supn∈N #Jn < ∞ (see
Lemma 2.8). If the IFS is homogeneous, then it is also easy to check that these two
conditions are equivalent.

The following lemma summarizes the relationship between these two condi-
tions as well as the bounded neighbourhood condition. It is easy to see that there
is a non-autonomous IFS which satisfies the bounded neighbourhood condition
but not the open set condition; indeed, this will necessarily happen if there are
distinct (i1, . . . , in) and (j1, . . . , jk) such that

S1,i1 ◦ · · · ◦ Sn,in ̸= S1,j1 ◦ · · · ◦ Sk,jk .

If the IFS is autonomous, then it is well-known, see e.g. [KV08, Theorems 3.5 and
5.5], that the bounded neighbourhood condition and the open set condition are
equivalent.

Theorem B. Let (Φn)
∞
n=1 be a non-autonomous IFS. If (Φn)

∞
n=1 satisfies the bounded

neighbourhood condition, then it has bounded branching. On the other hand, if the IFS
satisfies the open set condition, then the bounded neighbourhood condition holds if any of
the following conditions are satisfied:
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(a) The IFS satisfies the cone condition and has bounded branching.
(b) The IFS is homogeneous and has bounded branching.
(c) The IFS has contraction ratios uniformly bounded away from 0: that is, there is a

constant rmin > 0 so that rn,j ≥ rmin for all n ∈ N and j ∈ Jn.

The most important aspect of Theorem B is the statement. Having stated it, the
proof is relatively standard; certainly, the various techniques used in the proof
have appeared in previous papers studying non-autonomous iterated function
systems. The point is that these geometric arguments are only required to establish
the bounded neighbourhood condition, which, by Proposition 2.5, is essentially
equivalent to the reduction to symbolic space and enables one to ignore the
overlapping structure of the IFS.

Finally, to demonstrate necessity of our assumptions, we construct a variety
of explicit examples with various irregular properties. In the first example, we
show that bounding #Jn in the definition of the bounded branching condition is
insufficient: more precisely, for any ε > 0, there exists a non-autonomous IFS with
limit set K ⊂ [0, 1] satisfying the open set condition with respect to the open set
(0, 1) such that

(i) has #Jn = 2 for all n ∈ N,
(ii) has dimAK = 1, and

(iii) has 0 < θ(n,m) ≤ ε for all n,m ∈ N.
In particular, this IFS must be inhomogeneous, or it would satisfy the bounded
neighbourhood condition by Theorem B. The construction can be found in Exam-
ple 4.5.

Next, even under the additional assumption of inhomogeneity, we show that
the Assouad dimension does not only depend on the values θ(n,m). More pre-
cisely, for any sequence (kn)

∞
n=1 with lim supn→∞ kn = ∞ and 0 < s ≤ t ≤ 1,

there exists a non-autonomous IFS with limit set K ⊂ [0, 1] satisfying the open set
condition with respect to the open set (0, 1) such that

(i) has #Jn ≤ kn for all n ∈ N,
(ii) has dimAK = t, and

(iii) has θ(n,m) = s for all n,m ∈ N.
This example can be found in Example 4.6.

It is reasonable that both of these examples could be modified for even greater
flexibility in specifying the values of dimAK and θ(n,m). For instance, it is plausi-
ble that if the open set condition and the cone condition hold, then it necessarily
holds that dimAK ≥ lim supm→∞ supn∈N θ(n,m). We believe that this question,
and similar questions concerning more general symbolic inequalities, would be
relevant directions for subsequent work.

2. REGULARITY OF NON-AUTONOMOUS SELF-SIMILAR SETS

In this section, we establish a variety of regularity conditions concerning non-
autonomous self-similar iterated function systems. In particular, we show that the
bounded neighbourhood condition allows us to ignore the overlapping structure
on non-autonomous self-similar sets. We also study how the bounded neightbour-
hood condition is related to the open set condition and prove Theorem B.
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2.1. Lipschitz decomposable relations. We recall from §1.3 that the limit set K
comes equipped with a Lipschitz coding map π : ∆ → K. It would be convenient
if the map π would preserve Assouad dimension: however, Lipschitz maps may
both decrease and increase Assouad dimension. On the other hand, bi-Lipschitz
maps do preserve Assouad dimension. However, the coding space ∆ is always
totally disconnected, whereas K could be a connected set, so in such a situation
the coding map cannot be bi-Lipschitz.

The following notion is a generalization of a bi-Lipschitz function between
metric spaces. First, given a relation R ⊂ X × Y , its domain is the set

domR =
{
x ∈ X : ({x} × Y ) ∩R ≠ ∅

}
.

The image of a given set A ⊂ X under the relation R is the set

R(A) =
{
y ∈ Y : A× {y} ∩ R ̸= ∅

}
.

We also define the inverse relation R−1 = {(y, x) : (x, y) ∈ R} ⊂ Y ×X .

Definition 2.1. Let (X, d1) and (Y, d2) be non-empty metric spaces and let R ⊂
X × Y be a relation. We say that R is Lipschitz decomposable if domR = X and
there are constants M ∈ N and c > 0 so that for all x ∈ X and r > 0, there are
y1, . . . , yM ∈ Y so that

R(B(x, r)) ⊂
M⋃
i=1

B(yi, cr).

We say that R is bi-Lipschitz decomposable if R and R−1 are both Lipschitz decom-
posable.

If we wish to indicate the dependence on the numbers M and c, we will say that a
relation is (M, c)-Lipschitz decomposable. The following fact is easy to verify.

Lemma 2.2. Let (X, d1) and (Y, d2) be non-empty metric spaces and let R ⊂ X×Y be a
relation. Then R is a c-Lipschitz function if and only if R is (1, c)-Lipschitz decomposable.

In general, pairs of metric spaces which support bi-Lipschitz decomposable
relations will have the same dimensions, for most notions of dimensions defined
using covers. Bi-Lipschitz decomposable maps also preserve (up to a multipli-
cation by uniformly bounded constants) quantities defined in terms of covers,
such as Hausdorff measure. For completeness, we give the elementary proof for
Assouad dimension and leave consideration of other dimensions to the motivated
reader.

Lemma 2.3. Let (X, d1) and (Y, d2) be metric spaces. Suppose there is a bi-Lipschitz
decomposable relation R ⊂ X × Y . Then dimAX = dimA Y .

Proof. Choose M ∈ N and c > 0 such that there exists a (M, c)-bi-Lipschitz
decomposable relation R ⊂ X × Y . Without loss of generality, we may assume
that c ≥ 1.
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Let ε > 0, x ∈ X , and 0 < r ≤ R < c−1 be arbitrary. By the assumption, get
y1, . . . , yM ∈ Y so that

(2.1) R(B(x,R)) = {y ∈ Y : (B(x,R)× {y}) ∩R ≠ ∅} ⊂
M⋃
i=1

B(yi, cR).

For each i = 1, . . . ,M , by definition of the Assouad dimension, get a family of
balls {B(yi,j, c

−1r)}Ni=1 covering B(yi, cR) where

N ≲ε

(
cR

c−1r

)dimA Y+ε

≲

(
R

r

)dimA Y+ε

.

Then for each B(yi,j, c
−1r), since R−1 is also Lipschitz decomposable, there are

balls {B(xi,j,k, r)}Mk=1 so that

(2.2) {x ∈ X : ({x} ×B(yi,j, c
−1r)) ∩R ≠ ∅} ⊂

M⋃
k=1

B(xi,j,k, r).

But (2.1) and (2.2) together imply that the family of balls

{B(xi,j,k, r) : i = 1, . . . ,M ; j = 1, . . . , N ; k = 1, . . . ,M}

is a cover for B(x,R) with cardinality M2N ≲ (R/r)dimA Y+ε. Since ε > 0 was
arbitrary, it follows that dimAX ≤ dimA Y .

Of course, the identical argument applied to the inverse R−1 implies that
dimA Y ≤ dimAX , as required. □

Remark 2.4. We recall that even Lipschitz functions can both decrease and in-
crease Assouad dimension, so we require the full bi-Lipschitz decomposability
assumption to establish either inequality.

It is now straightforward to obtain our result on the Assouad dimension.

Proposition 2.5. Suppose (Φn)
∞
n=1 is a non-autonomous IFS with limit set K and as-

sociated infinite product space ∆. Then (Φn)
∞
n=1 satisfies the bounded neighbourhood

condition if and only if the coding map π is bi-Lipschitz decomposable. In particular, if
either of these equivalent conditions hold, then dimAK = dimA∆.

Proof. First, suppose the IFS satisfies the bounded neighbourhood condition.
Since π : ∆ → K is Lipschitz, it is Lipschitz decomposable. Next, let M be as in the
definition of the bounded neighbourhood condition. Suppose y ∈ K and 0 < r < 1
are arbitrary: then

#{Q ∈ T (r) : π(Q) ∩B(y, r) ̸= ∅} ≤M.

But diamQ ≤ r, so in fact R−1 is (M, 1)-Lipschitz decomposable.
Conversely, suppose π is bi-Lipschitz decomposable and let r > 0 and y ∈ K

be arbitrary. Let M and c be such that π−1 is Lipschitz decomposable. Since Rd
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is doubling, there exists a constant N = N(c) such that we may cover any ball
B(y, r) by N balls of radius c−1r. Now fix some ball B(y, r) and cover it with balls
B(yi, c

−1r) for i = 1, . . . , N . For each i, since π−1 is Lipschitz decomposable, there
exist points {xi,1, . . . , xi,M} ⊂ ∆ such that

π−1(B(yi, c
−1r)) ⊂

M⋃
j=1

B(xi,j, r).

For each xi,j , let Qi,j ∈ T (r) be the unique cylinder containing xi,j . Moreover, since
diam Q̂i,j > r, if x /∈ Qi,j , then d(x, xi,j) > r. Therefore, B(xi,j, r) = Qi,j and

K ∩B(y, r) ⊂ K ∩
N⋃
i=1

B(yi, c
−1r)) ⊂

N⋃
i=1

M⋃
j=1

π(Qi,j).

Since r > 0 and y ∈ K were arbitrary, it follows that the IFS satisfies the bounded
neighbourhood condition with constant N ·M .

In particular, if either of these conditions hold, since bi-Lipschitz decompos-
able maps preserve Assouad dimension by Lemma 2.3, it follows that dimAK =
dimA ∆. □

2.2. Consequences of the bounded neighbourhood condition. In this section,
we discuss some of the implications of the bounded neighbourhood condition.
First, we introduce a local non-degeneracy condition similar to (1.1).

Definition 2.6. We say that the IFS is locally contracting if

lim
m→∞

sup
n∈N

max{rn,j0 · · · rn+m−1,jm−1 : ji ∈ Jn+i for each i = 0, . . . ,m− 1} = 0.

Recall also the definition of bounded branching from Definition 1.4. We then have
the following result. This proves the first part of Theorem B.

Lemma 2.7. Suppose (Φn)
∞
n=1 is a non-autonomous IFS satisfying the bounded neigh-

bourhood condition. Then it has bounded branching and is locally contracting.

Proof. Throughout, let M ∈ N be the constant with respect to which the IFS
satisfies the bounded neighbourhood condition. We first show that the IFS has
bounded branching. Let r > 0 and Q ∈ T (r) be arbitrary and denote the set of
geometric siblings by

S = {Q′ ∈ T (r) : Q′ ⊂ Q̂}.

Next, set r0 = ρ(Q̂) > r, and let r0 > r′ > max{r0/2, r} be arbitrary. Since
diamπ(Q̂) ≤ r0 diamX , there is a constant N ∈ N depending only on diamX so
that π(Q) can be covered by N balls of radius r′, say {B(xi, r

′)}Ni=1. Now, if Q′ ∈ S ,
then Q′ ∈ N (xi, r

′ diamX) for some i since r < r′ < ρ(Q̂). Therefore #S ≤ NM ,
so the IFS has bounded branching.
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Next, suppose for contradiction that the IFS is not locally contracting. Then
there is a δ > 0 so that for all m ∈ N, there is an n ∈ N and (i0, . . . , im−1) ∈
Jn × · · · × Jn+m−1 such that

rn,i0 · · · rn+m−1,im−1 ≥ δ.

Fix m ∈ N and the corresponding n ∈ N and (i0, . . . , im−1) as above; we may more-
over assume that rn,i0 · · · rn+m−1,im−1 is maximal. Also, choose some arbitrary initial
segment (j1, . . . , jn−1), let Q0 = [j1, . . . , jn−1], and let Q = [j1, . . . , jn−1, i0, . . . , im−1].

Write r = ρ(Q). Since #Jk ≥ 2 for all k ∈ N, for each ℓ = 0, . . . ,m− 1, there is
a cylinder

Q′
ℓ = [j1, . . . , jn−1, i0, . . . , i

′
ℓ]

where i′ℓ ̸= iℓ. Moreover, by maximality of the choice of [i0, . . . , im−1], each Q′
ℓ is

either itself an element of T (r) or has some some offspring Qℓ ∈ T (r). In either
case, denote this element by Qℓ. Note that all of the Qℓ are distinct. But now
since δ > 0 is fixed and ρ(Q)/ρ(Q0) ≥ δ, there is a fixed constant Nδ (independent
m) so that the cylinder Q0 can be covered by Nδ balls B(x, r) for x ∈ K. By the
pigeonhole principle, one of these balls must intersect m/Nδ cylinders Qℓ. Since
m ∈ N was arbitrary, this contradicts the bounded neighbourhood condition. □

2.3. Open set condition and bounds on branching and contraction. In this
section, we discuss the difference between the bounded neighbourhood condi-
tion and the open set condition. Recall the definitions of the open set condition
Definition 1.3 and bounded branching Definition 1.4 from the introduction.

We first give the quick proof relating the bounded branching condition with
uniform bounds on #Jn.

Lemma 2.8. If the non-autonomous IFS (Φn)
∞
n=1 satisfies the bounded branching condi-

tion, then supn∈N #Jn < ∞. If in addition the IFS is homogeneous, then the converse
also holds.

Proof. In general, if Q ∈ T (r) and Q′ is a child of Q̂, then Q′ ∈ T (r′) for some
r′ ≥ r, so Q′ has some offspring in T (r) which is distinct from Q. Therefore,
lim supn→∞ #Jn ≤ lim supr→0 β(r) < ∞. Conversely, if the IFS is homogeneous,
then for all r > 0, T (r) = Tk(r) for some k(r) ∈ N so in fact the siblings of Q at scale
r are precisely the children of Q̂. □

The following proposition summarizes the relationship between these two
conditions as well as the bounded neighbourhood condition. In particular, along
with the proof of Lemma 2.7, this completes the proof of Theorem B.

Theorem 2.9. Let (Φn)
∞
n=1 be a non-autonomous IFS satisfying the open set condition.

Then the bounded neighbourhood condition holds if any of the following conditions are
satisfied.

(a) (Φn)
∞
n=1 satisfies the cone condition and has bounded branching.

(b) (Φn)
∞
n=1 is homogeneous and has bounded branching.
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(c) There is a number rmin > 0 so that rn,j ≥ rmin for all n ∈ N.

Proof. Assume that the IFS satisfies the open set condition. For notational
simplicity, given a cylinder Q = [j1, . . . , jn], we write

U(Q) = S1,i1 ◦ · · · ◦ Sn,jn(X
◦).

Let x ∈ K and r > 0 be arbitrary: we need to control the size of N (x, r). We do
this under the three assumptions in order.

First, suppose (a) holds. Let N = supr>0 β(r) be the constant from the bounded
branching assumption, and moreover observe that it follows from the cone condi-
tion that

c := inf
x∈X

inf
r∈(0,diamX)

Ld
(
B(x, r) ∩X◦)
Ld
(
B(x, r)

) > 0.

Write E = {Q̂ : Q ∈ N (x, r)}. Now, let Q ∈ N (x, r) be arbitrary and fix some
yQ ∈ π(Q) ∩B(x, r). Then since yQ ∈ π(Q̂) and ρ(Q) > r,

Ld
(
B(yQ, r) ∩ U(Q̂)

)
≥ c · Ld

(
B(x, r)

)
.

Moreover, the sets U(Q̂) ∩B(yQ, r) ⊂ B(x, 2r) are disjoint for distinct choices of Q̂
by the open set condition, so

c ·#E · Ld
(
B(x, r)

)
≤
∑
Q̂∈E

Ld
(
B(yQ, r) ∩ U(Q̂)

)
≤ Ld

(
B(x, 2r)

)
= 2dLd

(
B(x, r)

)
.

In other words, #E ≤ c−12d so by the bounded branching condition, #N (x, r) ≤
c−12dN .

Next, suppose (b) holds. Let N = supr>0 β(r) be as before and again set
E = {Q̂ : Q ∈ N (x, r)}. Since the IFS is homogeneous, ρ has constant value r0 on
E ; in particular, if Q̂ ∈ E , then Ld

(
U(Q̂)

)
= rd0Ld

(
X◦). Moreover, the sets U(Q̂) are

disjoint and, since π(Q̂) ∩B(x, r0) ̸= ∅, it follows that U(Q̂) ⊂ B(x, 2r0 · diamX).
Therefore

#E · rd0Ld
(
X◦) =∑

Q̂∈E

Ld
(
U(Q̂)

)
≤ Ld

(
B(x, 2r0 · diamX)

)
= (2 · diamX)drd0Ld(B(0, 1)).

Thus #N (x, r) ≤ N · (2 · diamX)dLd(B(0,1))
Ld(X◦)

.

Finally, suppose (c) holds. Now, if Q̂ ∈ E , since rrmin ≤ ρ(Q) ≤ r, π(Q) ⊂
B(x, 2r · diamX), and the U(Q) are disjoint for distinct Q, then

#N (x, r) · (rrmin)
dLd
(
X◦)d ≤ ∑

Q∈N (x,r)

Ld
(
U(Q)

)
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≤ Ld
(
B(x, 2r · diamX)

)
= (2 · diamX)drdLd(B(0, 1)).

We conclude that #N (x, r) ≤ r−d
min(2 diamX)dLd(B(0,1))

Ld(X◦)
.

Since x ∈ K and r > 0 were arbitrary, in any of the cases, it follows that the
bounded neighbourhood condition holds. □

3. CHARACTERIZATIONS OF ASSOUAD DIMENSION

3.1. A disc-packing formulation of Assouad dimension. In this section, we
observe that in the definition of the Assouad dimension one may replace the
exponent associated to localized coverings of balls of the same size by an exponent
coming from localized packings of balls which may have different sizes. This is
essentially the same as the disc-packing formulation for box dimension (see, for
example, [BP17, §2.6]) and the reduction also proceeds by a similar proof. This is
useful since the natural covers appearing from the symbolic representation of K
consist of cylinders which may have very non-uniform diameters when indexed
by length.

First, for a metric space X , x ∈ X , and R ∈ (0, 1), denote the family of all
localized centred packings by

pack(X, x,R) =

{
{B(xi, ri)}i :

0 < ri ≤ R, xi ∈ X,B(xi, ri) ⊂ B(x,R),
B(xi, ri) ∩B(xj, rj) = ∅ for all i ̸= j

}
.

Here the collections may be finite or countably infinite. We now have the following
result.

Proposition 3.1. Let X be a bounded metric space. Then

dimAX = inf
{
α : ∀0 < R < 1 ∀x ∈ X ∀{B(xi, ri)}i ∈ pack(X, x,R)∑

i

rαi ≲α R
α
}
.

Proof. Let t be the right-had side of the claim. That dimAX ≤ t is immediate
by specializing to packings with ri = r for some 0 < r ≤ R, using the equivalence
(up to a constant factor) of covering and packing counts.

We now show the lower bound by pigeonholing. First, for a centred packing
B = {B(xi, ri)}i ∈ pack(X, x,R), we write

Bn =
{
B(x, r) ∈ B : 2−n ≤ r/R < 2n−1

}
.

Now let s < t and r0 > 0 be arbitrary. Then get some x ∈ X , 0 < R < 1, and a
centred packing B as above such that ri ≤ r0 for all i and moreover

Rs ≲s

∑
n

#Bn2
−ns.
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By the pigeonhole principle with respect to the sequence of weights (n−2)∞n=1, since
the weights are summable, there is a γ > 0 depending only on s so that there is
some m ∈ N with Rsγ ≤ #Bmm

22−ms. Taking r0 sufficiently small, #Bm = 0 for
all small m, so that m must be arbitrarily large and therefore dimAK ≥ s. Since
s < t was arbitrary, we are done. □

3.2. Subadditivity and submaximality of covering numbers. In this section, we
study a weaker variant of subadditivity, which we call submaximality. Throughout
this section, we fix a set A = G∩ (0,∞) where G is a non-trivial additive subgroup
of R. For concreteness, one might simply fix A = (0,∞) or A = {κn : n ∈ N} for
some κ > 0.

Definition 3.2. We say that a function g : A→ R∪{−∞} is submaximal if it satisfies
the following two assumption:

(i) For all y, z ∈ A,

g(y + z) ≤ max{g(y), g(z)}.

(ii) For all ε > 0 and a ∈ A, there is an N = N(ε, a) so that for all y ≥ N and
t ≤ a,

g(y + t) ≤ g(y) + ε.

To motivate this definition, we observe the following version of Fekete’s subaddi-
tive lemma.

Lemma 3.3. Let g : A→ R∪{−∞} be submaximal. Then

lim sup
y→∞

g(y) = inf
y∈A

g(y).

Proof. Let ε > 0 and a ∈ A be arbitrary, and let N = N(ε, a) be chosen to satisfy
the conclusion of Definition 3.2 (ii). Let y ≥ N be arbitrary and write y = ℓz + t for
ℓ ∈ N and 0 ≤ t < a. Then applying (ii) followed by (i) ℓ− 1 times,

g(y) = g(ℓa+ t) ≤ g(ℓa) + ε ≤ g(a) + ε.

Thus

lim sup
y→∞

g(y) ≤ g(a) + ε.

But a ∈ A and ε > 0 were arbitrary, so the desired result follows. □

Remark 3.4. The assumptions of Lemma 3.3 are satisfied by the function f(x)/x,
where f : A → R∪{−∞} is any subadditive function bounded from above. The
proof is similar to the proof of Lemma 3.6 below.

Note that assumption Definition 3.2 (i) is not sufficient by itself to guarantee
the existence of the limit limy→∞ g(y). For example, the function g : N → R defined
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by

g(n) =

{
1 : n odd,
0 : n even,

satisfies g(y + z) ≤ max{g(y), g(z)} for all y, z ∈ N but has no limit.

Similarly to before, we say that a function f : A×A→ R∪{−∞} is submaximal
if it satisfies the following two assumptions:

(i) For all x, y, z ∈ A,

f(x, y + z) ≤ max{f(x, y), f(x+ y, z)}.

(ii) For all ε > 0 and a ∈ A, there is an N = N(ε, a) so that for all x, y, t ∈ A with
y ≥ N , t ≤ a, and x ≤ x′ ≤ x+ t,

f(x, y + t) ≤ f(x′, y) + ε.

It is this form that will be essential for us in applications. We note that the
above assumptions are satisfied by the function f(y, x)/x, where f : N∪{0}×N →
R∪{−∞} satisfies the generalized subadditive condition introduced in [Käe04, §2].
In Lemma 3.6, we generalize this observation. But first we acquire the following
two-parameter generalization of Lemma 3.3.

Proposition 3.5. Suppose f : A× A→ R∪{−∞} is submaximal. Then

β := lim sup
y→∞

lim sup
x→∞

f(x, y)

= lim
y→∞

lim sup
x→∞

f(x, y)

= lim
y→∞

sup
x∈A

f(x, y)

= inf
y∈A

sup
x∈A

f(x, y).

Moreover, if B ⊂ A is of the form B = {κn : n ∈ N} for some κ > 0, then

β = lim
y→∞
y∈B

sup
x∈B

f(x, y).

Proof. We assume that β > −∞: the proof for β = −∞ is similar (and substan-
tially easier). Write g(y) = lim supx→∞ f(x, y). We first show that g is submaximal,
so that β = limy→∞ g(y). First,

g(y1 + y2) = lim sup
x→∞

f(x, y1 + y2)

≤ lim sup
x→∞

max{f(x, y1), f(x+ y1, y2)}

≤ max{g(y1), g(y2)}.
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Moreover, if ε > 0 and a ∈ A are arbitrary, taking N to satisfy the conclusions of
(ii) and y, t ∈ A with t ≤ a and y ≥ N ,

g(y + t) = lim sup
x→∞

f(x, y + t) ≤ lim sup
x→∞

f(x, y) + ε = g(y) + ε.

The same argument with respect to the function y 7→ supx∈A f(x, y) gives that

lim sup
y→∞

sup
x∈A

f(x, y) = inf
y∈A

sup
x∈A

f(x, y).

To complete the proof of the various equalities involving β, it remains to show
that

(3.1) inf
y∈A

sup
x∈A

f(x, y) ≤ β.

Let ε > 0 be arbitrary. By definition of β, there are y0 and K so that for all x ≥ K,
f(x, y0) ≤ β + ε. Let N1 = N(ε, y0) be chosen to satisfy the conclusions of (ii) and
let y ∈ A with y ≥ N1 be arbitrary. Write y = ℓy0 + t for some ℓ ∈ N and 0 ≤ t < y0.
Then by (i), for all x ≥ K and y ≥ N1,

(3.2)

f(x, y) = f(x, ℓy0 + t) ≤ f(x, ℓy0) + ε

≤ max
i=0,...,ℓ−1

f(x+ iy0, y0) + ε

≤ β + 2ε.

Now letN2 = N(ε,K) be chosen to satisfy the conclusions of (ii). Let x ∈ (0, K)∩A
and y ≥ max{N1 + K,N2}. Then since y ≥ N2 and (3.2) (which applies since
y + x−K ≥ N1), for all x ∈ A,

f(x, y) ≤ f(K, y + x−K) + ε ≤ β + 3ε.

Since ε > 0 was arbitrary, this proves (3.1).
Finally, suppose B ⊂ A is of the form B = {κn : n ∈ N} for some κ > 0. First,

note that since B ⊂ A,

β ≥ lim
y→∞
y∈B

sup
x∈B

f(x, y)

and moreover the limit exists as proven above. Conversely, let (x, y) ∈ A × A
be arbitrary with y ≥ 2κ and get (x0, y0) ∈ B × B such that x ≤ x0 < x + κ and
x+ y − κ < x0 + y0 ≤ x+ y. Let ε > 0 be arbitrary and let N = N(ε, κ) satisfy the
conclusion of (ii). Then for y ≥ N , applying (ii) twice,

f(x0, y0) ≥ f(x, y)− 2ε.

Since ε > 0 and (x, y) ∈ A× A were arbitrary, it follows that

lim sup
y0→∞
y0∈B

sup
x0∈B

f(x0, y0) ≥ lim sup
y→∞

sup
x∈A

f(x, y) = β

as required. □



REGULARITY OF NON-AUTONOMOUS SELF-SIMILAR SETS 17

Finally, we show that the hypotheses of Proposition 3.5 are satisfied by functions
satisfying a two-parameter version of subadditivity.

Lemma 3.6. Suppose f : A×A→ {−∞}∪R is any function such that for all x, y, z ∈ A,

(3.3) f(x, y + z) ≤ yf(x, y) + zf(x+ y, z)

y + z
.

Then:
(i) For all x, y, z ∈ A,

f(x, y + z) ≤ max{f(x, y), f(x+ y, z)}.

(ii) Suppose moreover that f is bounded from above by some constant C > 0. Then for
all ε > 0 and x, y, t ∈ A with t ≤ εC−1y and x ≤ x′ ≤ x+ t,

f(x, y + t) ≤ f(x′, y) + ε.

In particular, f is submaximal.

Proof. Of course, (i) is immediate. To see (ii), let C ∈ R be such that f(x, y) ≤ C
for all x, y ∈ A. Let ε > 0. Then for all x, y, t ∈ A with t ≤ εC−1y and x ≤ x′ ≤ x+ t,
applying (3.3) twice,

f(x, y + t) ≤ (x′ − x)f(x, x′ − x) + (y + t+ x− x′)f(x′, y + t+ x− x′)

y + t

≤ (x′ − x)f(x, x′ − x) + yf(x′, y) + (t+ x− x′)f(x′ + y, t+ x− x′)

y + t

≤ y

y + t
f(x′, y) +

tC

y + t

≤ f(x′, y) + ε

as claimed. □

To motivate why the hypotheses of Proposition 3.5 and Lemma 3.6 are related
to dimensions, we present the observation that the Assouad dimension can be
reformulated in a way reminiscent of a notion of dimension studied by Larman
[Lar67]. Let X be a bounded doubling metric space and for δ ∈ (0, 1) and r ∈ (0, 1),
write

ψ(r, δ) = sup
x∈X

Nrδ

(
B(x, r) ∩K

)
and then set

Ψ(r, δ) =
logψ(r, δ)

log(1/δ)
.

One can think of Ψ(r, δ) is the best guess for the Assouad dimension of X at scales
0 < rδ < δ < 1. This heuristic is made precise in the following result.
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Corollary 3.7. Let X be a bounded doubling metric space. Then

(3.4) dimAX = lim sup
δ→0

lim sup
r→0

Ψ(r, δ) = lim
δ→0

sup
r∈(0,1)

Ψ(r, δ).

Proof. Since X is doubling, there is an M ≥ 0 so that Ψ(r, δ) ∈ [0,M ]. Moreover,
given r, δ1, δ2 ∈ (0, 1), by covering balls B(x, rδ1) by balls of radius rδ1δ2,

ψ(r, δ1δ2) ≤ ψ(r, δ1)ψ(rδ1, δ2)

and therefore

Ψ(r, δ1δ2) =
logψ(r, δ1δ2)

log(1/δ1δ2)

≤ logψ(r, δ1) + logψ(rδ1, δ2)

log(1/δ1δ2)

=
log(1/δ1)Ψ(r, δ1) + log(1/δ2)Ψ(rδ1, δ2)

log(1/δ1) + log(1/δ2)
.

Thus with the change of coordinate g(x, y) = (e−x, e−y), the second equality in (3.4)
follows by applying Lemma 3.6 and Proposition 3.5 to the function Ψ ◦ g.

To see the first equality in (3.4), it is a direct consequence of the definition of
the Assouad dimension that

lim sup
δ→0

lim sup
r→0

Ψ(r, δ) ≤ dimAK

and that there are sequences (δn)∞n=1 and (rn)
∞
n=1 with limn→∞ δn = 0 such that

lim
δ→0

sup
r∈(0,1)

Ψ(r, δ) ≥ lim sup
n→∞

Ψ(rn, δn) ≥ dimAK,

as required. □

4. ASSOUAD DIMENSION OF NON-AUTONOMOUS SELF-SIMILAR

SETS

In this section, using the results in §2 and §3, we show that the zero θ(n,m) of the
pressure is submaximal and prove Theorem A.

4.1. Regularity of the numbers θ(n,m). Recall the definition of the pressure
functions ϕn,m for n,m ∈ N in §1.2. In particular, these functions are convex,
differentiable, strictly decreasing, and have unique zero θ(n,m). We begin with a
upper bound on the derivative of the pressure function at its unique zero.

Lemma 4.1. Let (Φn)
∞
n=1 be a locally contracting non-autonomous IFS. Then there is an

M ∈ N and a constant c > 0 so that for all m ≥M ,

ϕ′
n,m(θ(n,m)) ≤ −c.
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Proof. Since the IFS is locally contracting, there is an M ∈ N and a δ ∈ (0, 1) so
that for all n ∈ N, and (j0, . . . , jM−1) ∈ Jn × · · · × Jn+M−1, we have

rn,j0 · · · rn+m−1,jm−1 ≤ δ.

Then for m ≥M , write m = ℓM + j for ℓ ∈ N and we compute

ϕ′
n,m(θ(n,m)) ≤ 1

m

∑
j0∈Jn

· · ·
∑

jm−1∈Jn+m−1

(rn,j0 · · · rn+m−1,jm−1)
θ(n,m) log δℓ

= log(δ) · ℓ

ℓM + j

≤ − log(1/δ)

2M

as claimed. □

Using this, we can now establish submaximality of the function θ(n,m). Actually,
we will prove a somewhat stronger version of the continuity hypothesis.

Lemma 4.2. Let (Φn)
∞
n=1 be a non-autonomous IFS. Then for all n,m, k ∈ N,

θ(n,m+ k) ≤ max{θ(n,m), θ(n+m, k)}.

Suppose moreover that the IFS satisfies the bounded neighbourhood condition. Then
there is a constant C > 0 and an M ∈ N so that for all n,m, k ∈ N with m ≥ M and
n ≤ n′ ≤ n+ k

θ(n,m+ k)− θ(n′,m) ≤ C
k

m
.

In particular, the function θ(n,m) is submaximal.

Proof. Let n,m, k be arbitrary. Writing s = max{θ(n,m), θ(n+m, k)}, observe
that

1 =
∑
j0∈Jn

· · ·
∑

jm+k−1∈Jn+m+k−1

(
m−1∏
ℓ=0

rn+ℓ,jℓ

)θ(n,m)(m+k−1∏
ℓ=m

rn+ℓ,jℓ

)θ(n+m,ℓ)

≥
∑
j0∈Jn

· · ·
∑

jm+k−1∈Jn+m+k−1

(
m+k−1∏
ℓ=0

rn+ℓ,jℓ

)s

= exp
(
(m+ k) · ϕn,m+k(s)

)
.

Since ϕn,m+k(θ(n,m + k)) = 0 and ϕn,m+k is strictly decreasing, it follows that
θ(n,m+ k) ≤ s, which is (i).

We now proceed with the continuity bounds. First, since the bounded neigh-
bourhood condition implies bounded branching by Lemma 2.7, there is an N ∈ N
so that #Jn ≤ N for all n ∈ N. Now let n,m ∈ N be arbitrary. To begin, observe
that

ϕn,m+1(θ(n,m))
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=
1

m+ 1
log

∑
j0∈Jn

· · ·
∑

jm−1∈Jn+m−1

∑
i∈Jn+m

r
θ(n,m)
n,j0

· · · rθ(n,m)
n+m−1,jm−1

· rθ(n,m)
n+m,i

=
1

m+ 1
log

∑
i∈Jn+m

r
θ(n,m)
n+m,i

≤ logN

m+ 1
.

Similarly,

ϕn,m+1(θ(n+ 1,m)) =
1

m+ 1
log
∑
i∈Jn

r
θ(n,m)
n,i ≤ logN

m+ 1
.

Next, since the bounded neighbourhood condition implies that the IFS is locally
contracting by Lemma 2.7, applying Lemma 4.1, get a constant c > 0 and M ∈ N
so that for all m ≥ M , ϕ′

n,m+1(θ(n,m + 1)) ≤ −c < 0. Since ϕn,m+1 is convex,
differentiable, and strictly decreasing, since ϕn,m+1 ≤ (logN)/(m+ 1),

min{θ(n,m), θ(n+ 1,m)} ≥ θ(n,m+ 1)− c
logN

2m
.

Applying this 1-step bounds k times for general n,m, k ∈ N with m ≥ M yields
the desired result. □

4.2. Proof of the Assouad dimension formula. Finally, we establish our main
formula for the Assouad dimension of the non-autonomous self-similar set K.

Theorem 4.3. Let (Φn)
∞
n=1 be a non-autonomous IFS satisfying the bounded neighbour-

hood condition. Denote the associated non-autonomous self-similar set by K. Then

(4.1) dimAK = lim
m→∞

sup
n∈N

θ(n,m) = lim
m→∞

lim sup
n→∞

θ(n,m) = inf
m∈N

lim sup
n→∞

θ(n,m).

Proof. Recall that the limit in (4.1) exists by Lemma 4.2 and Proposition 3.5,
and moreover

s := lim
m→∞

sup
n∈N

θ(n,m) = lim
m→∞

lim sup
n→∞

θ(n,m) = inf
m∈N

lim sup
n→∞

θ(n,m).

We verify the lower and upper bounds separately.
First, recall from Proposition 2.5 that dimAK = dimA ∆, where ∆ denotes

the infinite product space associated with K. Let ε > 0 be fixed and let M be
sufficiently large so that for all m ≥M , there is an n ∈ N so that

|θ(n,m)− s| ≤ ε.

Now fix a cylinder [j1, . . . , jn] ⊂ ∆ for some (j1, . . . , jn) ∈ J1 × · · · × Jn and write
R = diam([j1, . . . , jn]) = r1,j1 · · · rn,jn . Note that if m ≥M , by definition of θ(n,m)

∑
jn+1∈Jn+1

· · ·
∑

jn+m∈Jn+m

n+m∏
k=1

r
θ(n,m)
k,jk

= Rθ(n,m).
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But the family of cylinders{
[j1, . . . , jn+m] : (jn+1, . . . , jn+m) ∈ Jn+1 × · · · × Jn+m

}
forms a packing of B(x,R). Moreover, since m ≥ M is arbitrary, since the IFS is
locally contracting by Lemma 2.7, the width of each cylinder in this family relative
to [j1, . . . , jn] converges uniformly to 0. Thus by Proposition 3.1, dimAK ≥ s− ε,
so the lower bound follows since ε > 0 was arbitrary.

Conversely, let us upper bound dimAK. Let ε > 0 be arbitrary and let M be
as before, and let m ≥ M . Now let 0 < r ≤ R < 1 and fix a ball B(x,R) ⊂ ∆. By
definition of the metric on ∆, B(x,R) = [j1, . . . , jp] where r1,j1 · · · rp,jp ≤ R. We
inductively build a sequence of covers (Bk)

∞
k=1 for B(x,R) such that each Bk is

composed only of cylinder sets and

(4.2)
∑

[i1,...,iℓ]∈Bk

(r1,i1 · · · rℓ,iℓ)s+ε ≤ Rs+ε.

Begin with B1 = {[j1, . . . , jp]}, which clearly satisfies the requirement. Now sup-
pose we have constructed Bk for some k ∈ N. Let [i1, . . . , iℓ] ∈ Bk be an ar-
bitrary cylinder set. If there exists (j1, . . . , jm) ∈ Jℓ+1 × · · · × Jℓ+m such that
r1,i1 · · · rℓ,iℓrℓ+1,j1 · · · rℓ+m,jm ≤ r, do nothing. Otherwise, replace the cylinder
[i1, . . . , iℓ] with the family of cylinders

{[i1, . . . , iℓ, j1, . . . , jm] : (j1, . . . , jm) ∈ Jℓ+1 × · · · × Jℓ+m}.

The choice of m ≥M and the definition of θ(ℓ,m) ensures that (4.2) holds. Repeat
this process until there are no more cylinders in Bk that can be replaced. That this
process terminates at a finite level k is guaranteed by (1.1).

Since the IFS has bounded branching by Lemma 2.7, there exists a constant
D = supa>0 β(a) <∞ such that

#{Q′ ∈ T (a) : Q′ ⊂ Q̂} ≤ D

for all Q ∈ T (a).
Now, fix some Q0 = [i1, . . . , iℓ] ∈ Bk and choose (j1, . . . , jm) ∈ Jℓ+1×· · ·×Jℓ+m

such that diam([i1, . . . , iℓ, j1, . . . , jm]) ≤ r. Then for each q = 1, . . . ,m, write Qq =
[i1, . . . , iℓ, j1, . . . , jq] and aq = diam(Qq). By the bounded branching condition,
there are at most D cylinders in T (a1) which intersect Q0. Each of these cylinders
can further be covered by at most D many cylinders of T (a2). Since am ≤ r, there
are at most Dm cylinders of T (r) that intersect Q0.

Finally, let Ck denote the set of all cylinders in T (r) which intersect some
Q0 ∈ Bk. Thus replacing each cylinder [i1, . . . , iℓ] ∈ Ck with a ball B(xi1,...,iℓ , r) for
some xi1,...,iℓ ∈ [i1, . . . , iℓ], by (4.2), the corresponding cover has

#Ckrs+ε ≤ Dm#Bkr
s+ε ≤ Dm

∑
[i1,...,iℓ]∈Bk

(r1,i1 · · · rℓ,iℓ)s+ε ≲ Rs+ε.

Since 0 < r ≤ R < 1 and x ∈ K were arbitrary, it follows that dimAK ≤ s+ ε, as
required. □
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4.3. Some examples exhibiting exceptional behaviour. In this section, we give
two examples of non-autonomous IFSs in R with respect to the invariant set
X = [0, 1] with various properties. In order to lower bound the Assouad dimension
in these examples, we find it convenient to use the following lemma. Let pH denote
the one-sided Hausdorff metric on compact subsets of R:

pH(E1;E2) = inf{δ > 0 : dist(x,E1) < δ for all x ∈ E2}.

The following lemma is standard (see, for instance, [MT10, Proposition 6.1.5]).

Lemma 4.4. Let K ⊂ R be compact, and suppose E is a compact set for which there are
numbers λn ≥ 1 and xn ∈ R so that

lim
n→∞

pH(E;λn(K − xn)) = 0.

Then dimAK ≥ dimHE.

We now begin with an example demonstrating that the bounded neighbourhood
condition is necessary. First, for r ∈ (0, 1), set

M(r) = sup
x∈K

#N (x, r).

Then the bounded neighbourhood condition says that lim supr→0M(r) <∞.

Example 4.5. Let ε > 0 be arbitrary and let f(r) be any function which diverges
to infinity as r converges to 0. We first we give an example of an IFS which:

(i) satisfies the open set condition and the cone condition,
(ii) has M(r) ≤ f(r) for all r sufficiently small,

(iii) has #Jn = 2 for all n ∈ N,
(iv) has dimAK = 1, and
(v) has 0 < θ(n,m) ≤ ε for all n,m ∈ N.

Let us first note some of the implications of the above properties. If ε < 1, then
Theorem 4.3 together with (iv) and (v) shows that the bounded neighbourhood
condition fails. By Theorem 2.9, this together with (i) implies that the IFS does not
have bounded branching. Therefore, by Lemma 2.8 and (iii), such an IFS cannot
be homogeneous.

Now, we start with the main observation underlying this example, which is
to exploit inhomogeneity in a way which makes the numbers θ(n,m) very small,
while still allowing large contraction ratios for flexibility in the construction. Given
r1, r2 ∈ (0, 1), set let s(r1, r2) denote the unique solution to the equation

r
s(r1,r2)
1 + r

s(r1,r2)
2 = 1.

Then the following is easy to verify: for any r1 ∈ (0, 1),

(4.3) lim
r2→0

s(r1, r2) = 0.

We now begin the main construction. First, fix a number ℓ ∈ N with ℓ ≥ 2 and
a small number ε > 0: we define IFSs Φj

ℓ,ε for j = 1, . . . , ℓ− 1. First, let r11 = 1− 1/ℓ,
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and applying (4.3) let 0 < r12 < 1− r11 be sufficiently small so that s(r11, r12) ≤ ε, and
define Φ1

ℓ,ε = {S1
1 , S

1
2} by

S1
1(x) = r11x and S1

2(x) = r12x+ r11.

Now suppose we have defined Φj
ℓ,ε for some j ∈ N with j < ℓ − 1. Let rj+1

1 be
chosen so that r11 · · · r

j
1 · r

j+1
1 = 1 − j+1

ℓ
, and let rj+1

2 < 1 − rj+1
1 be chosen so that

s(rj+1
1 , sj+1

2 ) ≤ ε, and define Φj+1
ℓ,ε = {Sj+1

1 , Sj+1
2 } by

Sj+1
1 (x) = rj+1

1 x and Sj+1
2 (x) = rj+1

2 x+ rj+1
1 .

Note for each j = 1, . . . , ℓ− 1 that

(4.4) S1
1 ◦ · · · ◦ S

j−1
1 ◦ Sj

2(0) = r11 · · · r
j−1
1 rj1 = 1− j

ℓ
.

Observe that for every j = 1, . . . , ℓ − 1 the IFS Φj
ℓ,ε = {Sj

1, S
j
2} we have defined

satisfies the open set condition with respect to the interval (0, 1) since rj1 + rj2 < 1
and the similarity dimension satisfies s(rj1, s

j
2) ≤ ε.

Next, for each ℓ ∈ N with ℓ ≥ 2, define the tuple of IFSs

Φℓ =
(
Φ1

ℓ,ε, . . . ,Φ
ℓ−1
ℓ,ε

)
.

Our non-autonomous IFS will be a concatenation of the sequence of tuples of IFSs
(Φℓk)∞k=1, for numbers ℓk with lim supk→∞ ℓk = ∞. We will choose these numbers
in blocks (ℓ1, . . . , ℓmk

) for mk ∈ N. To begin, the IFS Φ1
2,ε satisfies the bounded

neighbourhood condition with some constant N1. Let r1 be such that f(r) ≥ 22 ·N1

for all 0 < r ≤ r1, and choose m1 sufficiently large so that with

(ℓ1, . . . , ℓm1) = (2, . . . , 2)

every cylinder corresponding to a composition from (Φℓ1 , . . . ,Φℓm−1) has contrac-
tion ratio at most r1.

Now suppose we have chosen (ℓ1, . . . , ℓmk
) for some k ∈ N. By Theorem 2.9,

the non-autonomous IFS formed by repeating the maps in (Φℓ1 , . . . ,Φℓmk ) satisfies
the bounded neighbourhood condition with some constantNk. Since f(r) diverges
to infinity, get 0 < rk+1 ≤ rk so that f(r) ≥ Nk2

k+1 for all 0 < r ≤ rk+1. Then let
nk be sufficiently large so that every cylinder corresponding to a composition in
(ℓ1, . . . , ℓmk

)nk has contraction ratio at most rk+1. Then let mk+1 = nkmk + 1 and
define

(ℓ1, . . . , ℓmk+1
) = (ℓ1, . . . , ℓmk

, . . . , ℓ1, . . . , ℓmk
, k + 2).

Let Φ denote the infinite concatenation of (Φℓk)∞k=1 have corresponding function
M(r). For each k ∈ N, since the IFS corresponding to the tuple Φk+2 has 2k+1 maps,
it follows that Nk+1 ≤ Nk2

k+1. Moreover, by construction, for all 0 < rk+1 < r ≤ rk,
M(r) ≤ Nk; and on the other hand, the rk were chosen precisely so that f(r) ≥
Nk−12

k ≥ Nk for all 0 < r ≤ rk. Therefore, M(r) ≤ f(r) for all 0 < r ≤ r1, as
required.
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Moreover, by construction, this non-autonomous IFS satisfies the open set
condition and #Jn = 2 for all n. Let K denote the corresponding limit set.

Observe that 0 ∈ K since 0 is a fixed point of the first map in each component
IFS. Next, for k ∈ N, let fk denote the map corresponding to any cylinder from
(Φℓ1 , . . . ,Φℓmk−1). Since 0 ∈ K, by (4.4), writing ℓ = k + 1 and recalling that ℓmk

= l,{
1

ℓ
, . . . ,

ℓ− 1

ℓ

}
⊂ f−1

ℓ (K) ∩ [0, 1].

Since k ∈ N was arbitrary, by Lemma 4.4, dimAK = 1.
Finally, to verify the condition concerning the numbers θ(n,m), by construction

θ(n, 1) ≤ ε for all n ∈ N, so by Lemma 4.2, θ(n,m) ≤ ε for all n,m.

Next, we give an example which is homogeneous and satisfies the open set condi-
tion and the cone condition for which the Assouad dimension and the symbolic
formula for the Assouad dimension can be specified arbitrarily.

Example 4.6. Let (kn)∞n=1 be an arbitrary sequence with lim supn→∞ kn = ∞. Let
0 < s ≤ t ≤ 1. We give an example of an IFS which:

(i) is homogeneous,
(ii) satisfies the open set condition,

(iii) has #Jn ≤ kn for all n ∈ N,
(iv) has dimAK = t, and
(v) has θ(n,m) = s for all n,m ∈ N.

Observe that if s < t, then Theorem 4.3 together with (iv) and (v) implies that the
bounded neighbourhood condition fails. Alternatively, if lim supn→∞ #Jn = ∞,
then Lemma 2.8 shows that the bounded branching does not hold which, by
Lemma 2.7, implies that the bounded neighbourhood condition fails.

The idea in this construction is to successively approximate a Cantor set of
dimension t at large levels n, using maps with ratios corresponding to a Cantor set
of dimension s. Let r1 be chosen so that log 2/ log(1/r1) = s and let r2 be chosen
so that log 2/ log(1/r2) = t. Also, let Ψ = {S1, S2} denote the Cantor IFS where
S1(x) = r2x and S2(x) = r2x+ (1− r2), and let En denote the set of left endpoints
at level n:

En =
{
Si1 ◦ · · · ◦ Sin(0) : (i1, . . . , in) ∈ {1, 2}n

}
We then denote corresponding maps

Φn = {x 7→ rn1x+ y : y ∈ En}.

Finally, let (mn)
∞
n=1 be a sequence of natural numbers with lim supn→∞mn = ∞,

and 2mn ≤ kn for all n ∈ N. Such a choice is possible since, by assumption,
lim supn→∞ kn = ∞. We then define the non-autonomous IFS

Φ = (Φmn)
∞
n=1.

Since #Jn = 2mn ≤ kn, the growth rate condition is satisfied, and the IFS is
also clearly homogeneous since all of the contraction ratios in Φmn are exactly
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rmn
1 . Moreover, observe that θ(n, 1) = s by choice of r1 for all n ∈ N, so in fact
θ(n,m) = s for all n,m ∈ N.

Let K denote the corresponding limit set: it remains to show that dimAK = t.
First note that 0 ∈ K, since 0 ∈ En for all n ∈ N. Now let M ∈ N be arbitrary
and get n such that mn ≥ M . Let f = f1 ◦ · · · ◦ fn−1 for fj ∈ Ψj . Since 0 ∈ K,
EM ⊂ Emn ⊂ f−1(K) ∩ [0, 1]. But limM→∞EM = E in the Hausdorff metric, where
E is the attractor of the IFS Ψ. Therefore by Lemma 4.4, dimAK ≥ dimHE = t.

Now, we obtain the upper bound. Write ρn = rm1+···+mn
1 . We use a different

covering strategy between different pairs of scales.

1. We first observe between pairs of scales ρn and ρn+k that K has dimension
approximately s. More precisely, let f ∈ Φ1◦· · ·◦Φn and consider the interval
I = f([0, 1]). Then I can be covered by 2mn+1+···+mn+k intervals of side-length
ρn+k, so that

logNρn+k
(K ∩ I)

log(ρn/ρn+k)
≤ (mn+1 + · · ·mn+k) log 2

(mn+1 + · · ·mn+k) log(1/r1)
= s.

But any ball B(x, ρn) can be covered by at most 2 intervals I = f([0, 1]), so

(4.5) Nρn+k
(K ∩B(x, ρn)) ≤ 2

(
ρn
ρn+k

)s

.

2. Next, let ρn ≥ R ≥ r ≥ ρn+1 and consider some interval I = f([0, 1]) where
f ∈ Φ1 ◦ · · · ◦ Φn. Since E is a self-similar set satisfying the strong separation
condition with dimension t, there is a constant C0 > 0 so that

Nr/ρn

(
E ∩B(x,R/ρn)

)
≤ C0

(
R

r

)t

.

Observe moreover that K ∩ f([0, 1]) is contained in a ρn+1-neighbourhood of
f(Emn) ⊂ f(E). But B(x,R) is contained in at most 2 intervals of the form
I = f([0, 1]), so there is a constant C > 0 so that

(4.6) Nr(B(x,R) ∩K) ≤ C

(
R

r

)t

.

Let 0 < r ≤ R < 1 be arbitrary and let x ∈ K. Let n1 ∈ N be maximal so that
ρn1 ≥ R and let n2 ∈ N be maximal so that ρn2 ≥ r. If there is an n such that
ρn ≥ R ≥ r ≥ ρn+1, we are simply done by (4.5). Otherwise, there is a minimal n
and a maximal k so that R ≥ ρn ≥ ρn+k ≥ r. Applying (4.6) to the pairs R ≥ ρn
and ρn+k ≥ r, and (4.5) between ρn ≥ ρn+k yields the bound

Nr

(
B(x,R) ∩K

)
≤ C

(
R

ρn

)t

· 2
(

ρn
ρn+k

)s

· C
(ρn+k

r

)s
≤ 2C2

(
R

r

)t

.

Therefore dimAK ≤ t, as claimed.
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