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ABSTRACT. We study the Assouad and quasi-Assoaud dimensions of
dominated rectangular self-affine sets in the plane. In contrast to previous
work on the dimension theory of self-affine sets, we assume that the sets
satisfy certain separation conditions on the projection to the principal axis,
but otherwise have arbitrary overlaps in the plane. We introduce and study
regularity properties of a certain symbolic non-autonomous iterated function
system corresponding to “symbolic slices” of the self-affine set. We then es-
tablish dimensional formulas for the self-affine sets in terms of the dimension
of the projection along with the maximal dimension of slices orthogonal to
the projection. Our results are new even in the case when the self-affine set
satisfies the strong separation condition: in fact, as an application, we show
that self-affine sets satisfying the strong separation condition can have distinct
Assouad and quasi-Assouad dimensions, answering a question of the first
named author.
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1. INTRODUCTION

Dimension theory is generally concerned with the scaling properties of subsets
of a metric space. The Assouad dimension is a coarse measurement of scaling, in
that it captures the worst case scaling behaviour across all locations in the set and
across all pairs of scales. This is in contrast to the Hausdorff dimension, which
captures the average scaling of a set at arbitrarily small scales. We also study
the quasi-Assouad dimension, which forces an exponential separation between
the scales considered by the Assouad dimension and therefore lies between the
Hausdorff and Assouad dimensions.

For highly homogeneous sets—such as Ahlfors regular sets—the Hausdorff,
quasi-Assouad, and Assouad dimensions coincide. However, for many dynami-
cally invariant sets, these dimensions can be different. There are two particularly
notable examples. Firstly, self-similar sets in R which satisfy the exponential sep-
aration condition (see Definition 1.2) but not the open set condition have equal
Hausdorff and quasi-Assouad dimension, but Assouad dimension 1 [FY18a]. (The
authors believe that all self-similar sets in R have equal Hausdorff and quasi-
Assouad dimension.) Secondly, for dominated and irreducible planar self-affine
sets satisfying the strong separation condition with Assouad dimension greater
than or equal to 1, it can happen that the Hausdorff dimension and Assouad
dimension are distinct [BKY21+, Example 3.3]. This is different than the case
where the Assouad dimension is less than 1, where the corresponding self-affine
set is Ahlfors regular [BKY21+, Theorem 1.4].

Much work on the dimension theory of planar self-affine sets assumes either
irreducibility and a diophantine property in the plane (for some notable examples,
see [BHR19; BKY21+; HR22]), or allows failure of irreducibility but imposes robust
separation conditions (such as the open set condition) on the self-affine set as
well as its projections [Bar07; Fra14; LG92; Mac11]. In this paper, we break both
of these assumptions and study systems which do not satisfy an irreducibility
hypothesis and also permit large overlaps in the plane. We will introduce a class
of rectangular self-affine sets which satisfy a separation condition which permits
certain large overlaps in the projection, and which otherwise permits arbitrary
overlaps in the plane.

Our main technique to study Assouad-type dimensions of such systems is
through a non-autonomous iterated function system which symbolically encodes
the vertical slices of the self-affine set. The construction and results relating to
the “symbolic slices” are the key technical contribution of this paper, and we
believe that they may be of independent interest. We prove regularity results
for the Assouad-type dimensions of these systems which, when combined with
separation in the projection, allows us to establish dimensional results in the plane.
Our results are new even in the case when the self-affine set satisfies separation
conditions in the plane.

We were originally motivated to study this class of examples by [Fra20, Ques-
tion 17.5.4], which asks whether or not self-affine sets satisfying the strong sepa-
ration condition can have distinct quasi-Assouad and Assouad dimensions. We
answer this question by showing that such a phenomenon is possible.
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1.1. Assouad-type dimensions. Throughout, we work in Rd equipped with the
infinity norm; often, d = 2. The choice of infinity norm is merely for convenience,
since all other equivalent norms give the same values for dimensions. Given a
bounded set F ⊂ Rd, the Assouad dimension of F is the number

dimA F = inf
{
s ≥ 0 : (∃C > 0)(∀0 < r ≤ R ≤ 1)(∀x ∈ F )

Nr(F ∩B(x,R)) ≤ C
(R
r

)s}
where Nr(E) is the least number of balls of radius r required to cover the set E.
The Assouad dimension was brought to the forefront in [Ass77] in the context of
embedding theory, and has since received a large amount of attention in conformal
geometry and fractal geometry. We refer the readers to the books [Fra20; MT10;
Rob11] for more background and details.

Closely related to the Assouad dimension is the quasi-Assouad dimension, intro-
duced by Lü and Xi [LX16], and the Assouad spectrum, introduced by Fraser and
Yu [FY18b]. These notions of dimension impose an exponential gap between the
upper scale R and the lower scale r. Given a set F ⊂ Rd and parameter θ ∈ (0, 1),
the Assouad spectrum of F at θ is

dimθ
A F = inf

{
s : (∃C > 0)(∀0 < δ ≤ 1)(∀x ∈ F )

Nδ1/θ(F ∩B(x, δ)) ≤ C
( δ

δ1/θ

)s}
.

It always holds that dimθ
A F is a uniformly continuous function of θ, so we can de-

fine the quasi-Assouad dimension by dimqA F := limθ→1 dim
θ
A F . Note that this is not

the original definition from [LX16], but is equivalent by [FHH+19, Theorem 2.1].
Moreover, a wide range of behaviour is possible for the Assouad spectrum. A
discussion of the general properties of the Assouad spectrum, and in particular a
complete characterization of possible forms of the Assouad spectrum, is given in
[Rut22+].

The Assouad spectrum and quasi-Assouad dimension are useful to obtain
finer information about the scaling structure of a set in the context of Assouad
dimension. In this note, we study the Assouad and quasi-Assouad dimensions
of rectangular dominated planar self-affine sets. We impose a mild separation
condition in the projection (which allows exact overlaps), but notably we require
no other assumptions on the matrices and allow any overlaps in the plane. This
class of self-affine sets, along with the relevant assumptions, are defined and
discussed in the following section.

1.2. Iterated function systems and separation conditions. Let I be a finite index
set and consider contraction ratios {(αi, βi)}i∈I where 0 < βi < αi < 1 for all i ∈ I.
Fix translations ui, vi ∈ R for each i ∈ I. Then for each i ∈ I, define the map
Ti : R2 → R2 by Ti(x, y) = (αix + ui, βiy + vi). We refer to the family {Ti}i∈I as a
dominated rectangular self-affine iterated function system. Without loss of generality,
we may assume that Ti([0, 1]

2) ⊂ [0, 1]2.
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As usual, let I∗ =
⋃∞

n=0 In and for σ = (i1, . . . , in) ∈ I∗, write

Tσ = Ti1 ◦ · · · ◦ Tin

ασ = αi1 · · ·αin

βσ = βi1 · · · βin .

We also write βmax = max{βi : i ∈ I}, and similarly define βmin, αmax, and αmin.
Let π : R2 → R denote the projection π(x, y) = x. For σ ∈ In, we let Sσ : R → R

denote the unique similarity satisfying Sσ ◦π = π ◦Tσ. We then define the projected
IFS by {Si}i∈I . Observe that Si(x) = αix+ ui for i ∈ I.

We will impose some separation conditions on the IFS {Ti}i∈I by constrain-
ing the projected IFS {Si}i∈I . Fix an IFS {Si}i∈I of similarities with attractor K,
i.e. Si(x) = αix+ ui for αi ∈ (0, 1).

Definition 1.1. For r ∈ (0, 1), let

Λr := {(i1, . . . , in) ∈ I∗ : αi1 · · ·αin ≤ r < αi1 · · ·αin−1}

and

tr := sup
x∈K

#
{
Sσ : σ ∈ Λr, Sσ(K) ∩B(x, r) ̸= ∅

}
.

We say that the IFS {Si}i∈I satisfies the weak separation condition (WSC) if (tr)r>0 is
bounded, and the asymptotically weak separation condition (AWSC) if limr→0

log tr
log r

= 0.
Finally, we say that the IFS satisfies the open set condition (OSC) if it satisfies the
WSC and Sσ ̸= Sτ for all n ∈ N and σ ̸= τ ∈ In

The above definition of the OSC is equivalent to the usual notion with respect to
an open set by [Sch94].

Next, we define the exponential separation condition, which was introduced and
studied in [Hoc14].

Definition 1.2. Fix an IFS of similarities {Si}i∈I . Given words σ, τ ∈ In, let

d(σ, τ) =

{
|Sσ(0)− Sτ (0)| : ασ = ατ

∞ : otherwise.

Let ∆n = minσ ̸=τ∈In d(σ, τ). We say that the IFS {Si}i∈I satisfies the exponential
separation condition (ESC) if lim infn→∞(− log∆n)/n < ∞.

The AWSC holds very generally, as is specified by the following result. This
is [BF21, Theorem 1.3], but follows essentially from Shmerkin’s result on Lq-
dimensions of self-similar sets [Shm19].

Proposition 1.3 ([BF21]). Let {Si}i∈I be an IFS of similarities in R with contraction
ratios {ri}i∈I . Let s denote the unique solution to

∑
i∈I r

s
i = 1. Suppose {Si}i∈I satisfies

the ESC. Then {Si}i∈I satisfies the AWSC if and only if s ≤ 1.

In particular, within many parametrized families of IFSs, if the similarity dimen-
sion in the parametrized family is uniformly bounded above by 1, then the AWSC
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holds outside of a small exceptional set (typically of Hausdorff dimension 0)—
see, for example, [Hoc14, Theorem 1.8]. In general, it is not known if the ESC
assumption can be replaced with the assumption “has no exact overlaps”.

Unlike the ESC, however, the AWSC also permits exact overlaps. For example,
any IFS satisfying the WSC satisfies the AWSC. The AWSC is also known to hold
for explicit examples of IFSs with exact overlaps which do not satisfy the WSC,
such as Bernoulli convolutions with Salem numbers. As another example, it is
known that the IFS {x 7→ x/3, x 7→ x/3 + t, x 7→ x/3 + 2/3} satisfies the AWSC for
all t ∈ (0, 1) by [BF21, Theorem 1.5] and [BF21, Theorem 1.6] with Proposition 1.3.
However, the WSC fails when t is irrational by [Ken97, Theorem 2], since any
self-similar set K satisfying the WSC has positive dimH K-dimensional Hausdorff
measure [Fal89, Theorem 2].

1.3. Symbolic fibre dimensions. Let S denote the semigroup under composition
with generators {Si}i∈I . For f ∈ S, let

Jf = {σ ∈ I∗ : Sσ = f}

and we define the f -fibred IFS {Fσ}σ∈Jf
where Fσ ◦ π = π ◦ Tσ and π : R2 → R is

the projection π(x, y) = y. Note that {Fσ}σ∈Jf
are IFSs of similarities in R for all

f ∈ S.
Let Ω denote the collection of sequences η = (ηn)

∞
n=1 ⊂ S where for each n ∈ N

there is some i ∈ I so that ηn = ηn−1 ◦ Si (writing η0 = id). If S is a free semigroup,
then IN ∼= Ω by the map (in)

∞
n=1 7→ (Si1 , Si1 ◦ Si2 , . . .). Let X ⊂ R be a non-empty

compact set and for η ∈ Ω, set

(1.1) En,η :=
⋃

σ∈Jηn

Fσ(X)

and let Eη = limn→∞En,η with respect to the Hausdorff metric on compact sets. We
will see that the limit exists and does not depend on the choice of X in Lemma 2.6.
Observe that if xη = limn→∞ ηn(0), then {xη} × Eη ⊂ K. In this sense, one can
interpret the space Ω as a symbolic analogue of π(K) and the set Eη as a symbolic
vertical slice of K.

Our main goal is to prove dimension formulas for dimAK and dimθ
A K (for

θ ∈ (0, 1) sufficiently close to 1) in terms of the dimension of the projection and a
symbolic fibre dimension

max
η∈Ω

dimEη

where dim denotes either the Assouad dimension or the Assouad spectrum at
some θ (that the maximum is attained is given in Proposition 2.8).

Note that if S is a free semigroup and the Si-fibred IFSs satisfy the OSC with
respect to (0, 1) for all i ∈ I, then Eη is the attractor of a non-autonomous self-
similar IFS, as introduced and studied in [RU16]. In this situation, it holds that

max
η∈Ω

dimA Eη = max{ai}i∈I
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where ai is the Hausdorff dimension of the attractor of the Si-fibred IFS for i ∈
I. For instance, this is the case for Gatzouras–Lalley carpets (their Assouad
dimensions were originally computed in [Mac11]). However, we emphasize that
we make no assumptions on the overlaps within the fibres. Even under the WSC,
subtle behaviour is possible. For 0 < λ ≤ (3−

√
5)/2 ≈ 0.382, let

Φλ = {x 7→ λx, x 7→ λx+ λ− λ2, x 7→ λx+ (1− λ)}.

Note that Φλ satisfies the WSC [LNR01, Example 2.3] and its attractor has dimen-
sion (log 3+

√
5

2
)/(− log λ) [NW01, Example 5.4] for all such λ. On the other hand,

one can choose λ1 and λ2 arbitrarily small so that the IFS

(1.2) Φ = {f ◦ g : f ∈ Φλ1 , g ∈ Φλ2}

does not satisfy the WSC (see Remark 2.20 for the details). In particular, for λ1, λ2

chosen as above, the IFS with maps

T1(x, y) =
(x
2
, λ1y + (1− λ1)

)
T2(x, y) =

(x
2
+

1

2
, λ2y + (1− λ2)

)
T3(x, y) =

(x
2
, λ1y + λ1 − λ2

1

)
T4(x, y) =

(x
2
+

1

2
, λ2y + λ2 − λ2

2

)
T5(x, y) =

(x
2
, λ1y

)
T6(x, y) =

(x
2
+

1

2
, λ2y

)
has maxη∈Ω dimA Eη = 1 so, by Theorem A below, the Assouad dimension of
the attractor is 2. On the other hand, if λ1 = λ2 = λ, then the attractor is a
product of self-similar sets and has Assouad dimension 1 + (log 3+

√
5

2
)/(− log λ) by

Corollary 2.4.

1.4. Statement and discussion of results. Our first main contribution is the
following formula for the Assouad dimension for a class of IFSs of affinities in
terms of the dimensions of the principal projection and the maximal symbolic
dimension of a fibre. We can also transfer the symbolic dimension of a fibre to the
dimension of a vertical slice.

Theorem A. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor K.
Then

(1.3) dimA K ≥ dimA π(K) + max
η∈Ω

(
dimA Eη

)
.

Moreover, if the projected IFS {Si}i∈I satisfies the WSC, then equality holds in (1.3) and

(1.4) dimA K = dimA π(K) + max
x∈π(K)

dimA

(
π−1(x) ∩K

)
.

The proof of this result is given in Lemma 2.12 and Theorem 2.13, and the fact that
the supremum in (1.3) is always attained as a maximum is given in Proposition 2.8.
The lower bound for the Assouad dimension is given by constructing a particular
weak tangent. To do this, we observe a simple but important tangent regularity
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result for self-similar sets (this is given in Lemma 2.3). As a quick application
of this, we also show that products of compact sets with self-similar sets have
maximal Assouad dimension: see Corollary 2.4.

This also establishes the fibre formula discussed in [Fra20, Question 17.5.1],
for the systems considered in the theorem. We believe this formula to hold more
generally for any genuinely self-affine set, but this general problem seems to be
beyond our current techniques.

We also note the relationship of these results with [FJ17], though that paper
assumes the OSC in the plane, regularity results for the projection to the line, and
the homogeneity assumption that the contraction ratios satisfy αi = α and βi = β
for some constants α, β and all i ∈ I. There, the local dimension plays a similar
role to the symbolic fibre dimension in Theorem A. In certain cases, their results
imply the formula given in (1.4).

Of course, it always holds that dimAK ≤ dimA π(K)+1 since K ⊆ π(K)× [0, 1].
In particular, if dimA Eη can be arbitrarily close to 1, then equality also holds in
(1.3). Moreover, this implies that equality holds in (1.4) as well. This gives the
following immediate application:

Corollary B. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor K.
Suppose maxη∈Ω

(
dimA Eη

)
= 1. Then

dimA K = dimA π(K) + 1 = dimA π(K) + max
x∈π(K)

dimA

(
π−1(x) ∩K

)
.

For dominated rectangular IFSs of affinities in general, one should not expect a
symbolic formula such as (1.3) to hold: see Remark 2.14 for more details.

It is also proven in [FHO+15, Theorem 1.3] that for an IFS of similarities in R
with attractor F , if dimA F < 1, then the IFS satisfies the WSC. Moreover, since
αi > βi for some i ∈ I , by considering compositions of the form Si ◦ · · · ◦Si(K), we
observe that π(K) is always a weak pseudo-tangent for K and so that dimAK ≥
dimA π(K) (see §2.1). (In general, the Assouad dimension of rectangular self-
similar sets in the plane can increase under projection [Fra14, Section 3.1].) In
particular, if dimAK < 1, then π(K) is the attractor of an IFS satisfying the WSC,
which provides the following application:

Corollary C. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor K.
Suppose dimA K < 1. Then

dimA K = dimA π(K) + max
x∈π(K)

dimA

(
π−1(x) ∩K

)
.

Our second main contribution is a formula for the Assouad spectrum for
sufficiently large θ in terms of the principal projection and the maximal symbolic
dimension of a fibre.

Theorem D. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor K.
Then for all maxi∈I

logαi

log βi
≤ θ < 1,

(1.5) dimθ
AK ≥ dimH π(K) + max

η∈Ω

(
dimθ

AEη

)
Moreover, if the projected IFS {Si}i∈I satisfies the AWSC, then equality holds in (1.5).
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This proof is given in Theorem 2.15. The exponential separation of scales in the As-
souad spectrum allows us to ignore sub-exponential errors from the AWSC. This is
in contrast to the Assouad dimension, which is affected by sub-exponential growth
of constants: this is essentially a manifestation in the plane of the dichotomy result
for Assouad dimensions of self-similar sets [FHO+15, Theorem 1.3].

Finally, since it is well-known that sets with arbitrarily small similarity di-
mension satisfying the AWSC but not the WSC exist, we obtain the following
corollary:

Corollary E. For every ϵ > 0, there is an IFS of affinities {Ti}i∈I satisfying the strong
separation condition with attractor K such that dimqA K ≤ ϵ and dimA K ≥ 1.

See §2.5 for an explicit construction accompanied by a detailed discussion. In
particular, this answers [Fra20, Question 17.5.4].

2. PROOFS OF MAIN RESULTS

2.1. Tangents and product sets. Given a set E ⊂ Rd, denote the δ-neighbourhood
of E by

E(δ) = {x ∈ Rd : ∥x− y∥ < δ for some y ∈ E}.

Given non-empty compact sets E and F , define the Hausdorff pseudo-distance by

pH(E,F ) = inf{δ > 0 : E ⊂ F (δ)}

and the Hausdorff distance

dH(E,F ) = max{pH(E,F ), pH(F,E)}.

If X ⊂ Rd is a compact set, the set K(X) of all non-empty compact subsets of X
equipped with the Hausdorff distance dH is a compact metric space.

Given a similarity W : Rd → Rd, we may write

W (x) = γOx+ a

where O ∈ O(Rd) is an orthogonal matrix, γ > 0 is a constant, and a ∈ Rd. We
refer to γ as the scaling ratio of W .

The notion of a weak tangent was introduced in [MT10], with ideas going
back to [KL04]. We also find it convenient to use the slightly modified notion
of a weak pseudo-tangent, which was introduced in [FHO+15]. Let F and F̂ be
compact subsets of Rd. We say that F̂ is a weak pseudo-tangent of F if there exists
a sequence of similarities (Tk)

∞
k=1 with scaling ratios diverging to infinity such

that limk→∞ pH(F̂ , Tk(F )) = 0. Similarly, we say that F̂ is a weak tangent of F if
F̂ is a weak pseudo-tangent and additionally limk→∞ Tk(F ) ∩ B(0, 1) = F̂ in the
Hausdorff distance.

We recall the following result, which is [FHO+15, Proposition 3.7] and also
essentially follows from [MT10, Proposition 6.1.5].
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Lemma 2.1 ([FHO+15; MT10]). If F̂ is a weak pseudo-tangent of F , then dimA F̂ ≤
dimA F .

We also recall the following strong converse, which is given in [KOR17, Proposi-
tion 5.7] (see also [Fra20, Theorem 5.1.3]).

Proposition 2.2 ([KOR17]). Let F ⊂ Rd be closed and non-empty with dimA F = s.
Then there is a compact set E ⊂ Rd such that Hs(E) > 0 and E is a weak tangent of F .

We begin with the following simple, but useful, observation concerning weak
tangents of self-similar sets, which was made by S. Troscheit:

Lemma 2.3. Let {Si}i∈I be an IFS of similarities with attractor K and let s = dimAK.
Then K has a weak pseudo-tangent K̂ with Hs(K̂) > 0 with respect to a sequence of
similarities (Uj)

∞
j=1 with scaling ratios γj satisfying γj ≤ γj+1 ≤ Cγj for some constant

C > 0.

Proof. By Proposition 2.2, with s = dimA K, there is a compact K̂ with Hs(K̂) >

0 and a sequence of similarities (Ûj)
∞
j=1 with scaling ratios γ̂j such that

lim
j→∞

dH(K̂, Ûj(K) ∩B(0, 1)) = 0

and (γ̂j)
∞
j=1 converges monotonically to infinity.

Fix some index i0 ∈ I and consider the similarity Ûj ◦ S−1
i0

, which has scaling
ratio γ̂j · r−1

i0
. Moreover, since Si0(K) ⊂ K,

Ûj ◦ S−1
i0

(K) ⊃ Ûj(K) ∩B(0, 1).

In particular, pH(K̂, Ûj ◦ S−1
i0

(K)) ≤ dH(K̂, Ûj(K) ∩ B(0, 1)). Now for each j ∈ N,
let mj be maximal such that γ̂jr

−mj

i0
< γ̂j+1. Then K̂ is a weak pseudo-tangent of

K with respect to the sequence of similarities

(Û1, Û1 ◦ S−1
i0

, . . . , Û1 ◦ S−m1
i0

, Û2, Û2 ◦ S−1
i0

, . . .),

which satisfy the required properties. □

We note the following quick application:

Corollary 2.4. Let K ⊂ Rd be a self-similar set and let F ⊂ Rℓ be non-empty and
compact. Then dimAK × F = dimAK + dimA F .

Proof. It is well-known (and easy to show) that dimAK×F ≤ dimAK+dimA F .
To obtain the lower bound, we construct an appropriate weak pseudo-tangent.
Applying Proposition 2.2, get a weak tangent F̂ with HdimA F (F̂ ) > 0 for F with
respect to a sequence similarities (Uj)

∞
j=1. Let

Uj(x) = γjOjx+ uj
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for orthogonal matrices Oj . By Lemma 2.3, there is some C > 0 such that K has
a weak pseudo-tangent K̂ with HdimA K(K̂) > 0 with respect to a sequence of
similarities (Φj)

∞
j=1 where

Φj(x) = ηjQjx+ vj

for orthogonal matrices Qj and ηj ≤ ηj+1 ≤ Cηj . In particular, by passing to a
subsequence if necessary, we may assume that ηj ∈ [γj, Cγj].

Then with Ψj : Rd+ℓ → Rd+ℓ given by

Ψj(x,y) = γj

(
Qj 0
0 Oj

)(
x
y

)
+

(
uj

vj

)
,

we observe that there are similarities fj and gj so that

lim
j→∞

pH
(
fj(K̂)× gj(F̂ ),Ψj(K × F )

)
= 0

where fj and gj have scaling ratios in the interval [C−1, C]. Thus passing to a
subsequence and using compactness of the groups of orthogonal matrices O(Rd)

and O(Rℓ), we conclude that there are similarities f and g so that f(K̂)× g(F̂ ) is a
weak pseudo-tangent for K × F . Moreover,

dimH f(K̂)× g(F̂ ) ≥ dimA K + dimA F.

Thus dimA K × F ≥ dimA K + dimA F . □

Remark 2.5. In general, dimAK × F ≥ max{dimAK, dimA F} since the Assouad
dimension is monotonic under inclusion. This is sharp: using a homogeneous
Moran set construction in which the scales at which the sets K and F are large are
complementary, one can construct compact sets K and F with arbitrary Assouad
dimension so that dimA K × F = max{dimA K, dimA F}. Such constructions are
described in [ORS16].

2.2. Symbolic fibres and uniformity of Assouad-type dimensions. Throughout
this section, we fix a dominated rectangular IFS of affinities {Ti}i∈I . We recall that
the notation used in this section is established in §1.3.

We first prove existence of the limits defining the symbolic fibres. For k ∈ N
and η = (ηn)

∞
n=1 ∈ Ω, we write η|k = ηk ◦ η−1

k−1 ∈ S (taking η0 = id).

Lemma 2.6. Let X ⊂ R be compact and non-empty. Then for all η ∈ Ω, writing

(2.1) Ek,η =
⋃

σ∈Jηk

Fσ(X),

the limit Eη = limk→∞ Ek,η exists and is independent of the choice of X . Moreover, there
is a constant C > 0 so that

(2.2) pH(Ek,η, Eη) ≤ Cmax{βσ : σ ∈ Jηk}.
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Proof. Since the maps Fi for i ∈ I are strictly contracting similarities, it is clear
that the convergence does not depend on the choice of X . Thus without loss of
generality, we may take X compact so that Fi(X) ⊂ X for all i ∈ I. Recall that
there is a sequence (Sin)

∞
n=1 with in ∈ I for all n such that η = (Si1 ◦ · · · ◦ Sin)

∞
n=1.

We now define

Ak,n :=
⋃

σ∈Jηk

⋃
(τ1,...,τn):τi∈JSk+i

Fσ ◦ Fτ1 ◦ · · · ◦ Fτn(X) and Ak :=
∞⋂
n=1

Ak,n.

We make a few observations:
• Since Fi(X) ⊂ X for all i ∈ I, the sequence (Ak,n)

∞
n=1 is a nested sequence of

compact sets, so Ak is compact and non-empty.
• If f1, f2 ∈ S, then for any τ1 ∈ Jf1 and τ2 ∈ Jf2 , τ1τ2 ∈ Jf1◦f2 . In particular,

Ak ⊂ Ak+1 for all k ∈ N.
• Since dH(Ek,η, Ak) ≤ (diamX)max{βσ : σ ∈ Jηk}, limk→∞ dH(Ek,η, Ak) = 0.

It follows that limk→∞Ak = limk→∞Ek,η exists and is non-empty, and moreover
for all k ≤ m,

pH(Ek,η, Em,η) ≤ (diamX)max{βσ : σ ∈ Jηk}.

Taking a limit in m yields the claimed (2.2). □

We also observe the following “self-similarity” of symbolic fibres. This observation
is the key feature which allows us to prove uniform bounds in Proposition 2.8.

Lemma 2.7. Let η ∈ Ω be arbitrary and let k ∈ N. Then if η ∈ Ω is defined by
η|n = η|(k + n) for all n ∈ N, if ω ∈ Jηk is arbitrary,

Fω(Eη) ⊂ Eη.

Proof. Let (in)∞n=1 ⊂ I be chosen so that ηn = Si1 ◦ · · · ◦ Sin for all n ∈ N. Note
that ηn = Sik+1

◦ · · · ◦ Sik+n
. Fix ω ∈ Jηk so Sω = ηk. Note that ωσ ∈ Jηk+n

for any
σ ∈ Jηk since Sω ◦ Sσ = (Si1 ◦ · · · ◦ Sik) ◦ (Sik+1

◦ · · · ◦ Sik+n
). Thus if X ⊂ R is

compact and non-empty, for any n ∈ N

Fω(En,η) =
⋃

σ∈Jηk

Fωσ(X)) ⊂
⋃

τ∈Jηk+n

Fτ (X) = En+k,η

where the sets En,η and En,η are defined in (2.1). Passing to the limit in the
Hausdorff distance yields the desired result. □

Our main result in this section is the following uniformity result for the symbolic
fibre Assouad dimensions. We note that self-similarity is important: we essentially
use the idea from Lemma 2.3 to “align” parts of Ω which have large covering
numbers between pairs of scales.

Proposition 2.8. Let

(2.3) s = sup
η∈Ω

dimA Eη.
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Then for every ϵ > 0, there exists Cϵ > 0 such that for all 0 < r ≤ R < 1, η ∈ Ω, and
x ∈ Eη:

(2.4) Nr(B(x,R) ∩ Eη) ≤ Cϵ

(R
r

)s+ϵ

.

Moreover, the supremum in (2.3) is attained as a maximum.

Proof. Suppose for contradiction that there is some ϵ > 0 so that (2.4) fails, and
get sequences (η(n))∞n=1 ⊂ Ω, xn ∈ Eη(n) , (rn)∞n=1, (Rn)

∞
n=1, and (Cn)

∞
n=1 diverging to

infinity so that

(2.5) Nrn(B(xn, Rn) ∩ Eη(n)) ≥ Cn

(Rn

rn

)s+ϵ

for each n ∈ N. For each n, let kn ∈ N be sufficiently large so that

(2.6) dH(Ekn,η(n) , Eη(n)) ≤ rn.

For each n ∈ N, let gn,1, . . . , gn,kn be the similarity maps in {Si}i∈I defining η
(n)
kn

;
that is, for each 1 ≤ j ≤ kn, η(n)j = gn,1 ◦ · · · ◦ gn,j . Then let ξ ∈ Ω be the sequence
corresponding to the sequence of similarity maps

(g1,1, . . . , g1,k1 , g2,1, . . . , g2,k2 , . . .).

Fix n ∈ N, let m = k1 + · · · + kn−1, and let ω ∈ Jξm be arbitrary. Observe that
if ξ ∈ Ω satisfies ξ|j = ξ|(j + m) for all j ∈ N, then Fω(Eξ) ⊂ Eξ by Lemma 2.7.
But now since kn is chosen to satisfy (2.6), we observe that Nrn(B(xn, 2Rn)∩Eξ) ≥
Cn(Rn/rn)

s+ϵ for some xn ∈ Eξ so that

Nβωrn(B(Fω(xn), βωRn) ∩ Eξ) ≥ δCn

(βωRn

βωrn

)s+ϵ

for some fixed constant δ > 0. But Cn diverges to infinity, so dimAEξ ≥ s + ϵ,
contradicting the definition of s.

To see that the supremum in (2.3) is attained as a maximum, we simply observe
that the same argument applied along a sequence s−ϵn where ϵn converges to zero,
rather than the constant sequence s+ ϵ, provides some ξ ∈ Ω so that dimA Eξ ≥ s.□

In fact, a similar proof gives the analogous result for the Assouad spectrum.

Proposition 2.9. Let θ ∈ (0, 1) be arbitrary and let

(2.7) sθ = sup
η∈Ω

dimθ
A Eη.

Then for every ϵ > 0, there exists Cϵ,θ > 0 such that for all 0 < R < 1, η ∈ Ω, and
x ∈ Eη:

NR1/θ(B(x,R) ∩ Eη) ≤ Cϵ,θ

( R

R1/θ

)sθ+ϵ

.

Moreover, the supremum in (2.7) is attained as a maximum.
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Proof. Follow the proof of Proposition 2.8, but now the choice of η(n), rn = R
1/θ
n ,

xn, and Cn must be chosen so that, having taken m = k1 + · · ·+ kn−1 and ω ∈ Jξm ,
that θn converges to θ where θn is defined by

(βωRn)
1/θn = βωR

1/θ
n .

Such a choice is always possible by taking Rn to be sufficiently small relative
to βω. That this indeed gives a lower bound for dimθ

AEξ follows from [GHM21,
Corollary 2.12] (to be precise, this result is for the upper Assouad spectrum, but the
same proof works for the Assouad spectrum). The details of the version for the
Assouad spectrum are also implicit in the proof of [FHH+19, Theorem 2.1]). The
remaining details are identical. □

As a quick application, the same argument allows us to extend Proposition 2.9 to
the upper box dimension as well (alternatively, one may observe that the proof of
[FY18b, Proposition 3.1] is quantitative in the respective constants).

Corollary 2.10. Let s = supη∈Ω dimBEη. Then for every ϵ > 0, there exists Cϵ > 0 such
that for all 0 < R < 1 and η ∈ Ω, NR(Eη) ≤ CϵR

−s−ϵ.

Remark 2.11. Since we can only guarantee that the fibre is large along a sequence
of scales, we do not know if this result can be extended to the lower box dimension.

2.3. Assouad dimension and slices. We now turn our attention to the Assouad
dimensions of dominated rectangular IFSs of affinities.

Lemma 2.12. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor K.
Then

(2.8) sup
x∈π(K)

dimA(π
−1(x) ∩K) ≥ max

η∈Ω

(
dimA Eη

)
.

Moreover, suppose the projected IFS {Sσ}σ∈I satisfies the WSC. Then equality holds in
(2.8) and the supremum is attained as a maximum.

Proof. As observed in §1.3, {xη} × Eη ⊂ K where xη = limn→∞ ηn(0). This
directly gives (2.8).

Now, assume that the projected IFS satisfies the WSC. Let x ∈ K and set
s = dimA(π

−1(x) ∩K). Applying Proposition 2.2, let F ⊂ R with Hs(F ) > 0 be a
weak tangent for π−1(x) ∩K with respect to the sequence of similarities (Uj)

∞
j=1

with scaling ratios γj . Since the projected IFS {Si}i∈I satisfies the WSC,

(2.9) Mr := {Sσ : σ ∈ Λr, x ∈ Sσ(π(K))} satisfies sup
r∈(0,1)

#Mr = M < ∞.

Now for t > 0, fix a packing {B(yn, t)}Ht
n=1 for F with yn ∈ F and Ht maximal.

Since dimB F > s − ϵ, for all t sufficiently small, Ht ≥ (1/t)s−ϵ. Now let j be
sufficiently large so that dH(Uj(π

−1(x)∩K)∩B(0, 1), F ) ≤ t/2 and for all σ ∈ Λγ−1
j

,
βσ ≤ γ−1

j t. Such a choice is possible since βi < αi for all i ∈ I. This implies that



14 FRASER & RUTAR

U−1
j (B(yn, t)) ∩ π−1(x) ∩K ̸= ∅ for all n. In particular, pigeonholing with respect

to Mr, there is some yt ∈ B(0, 1) and ft ∈ Mγ−1
j

so that for any η ∈ Ω with ηk = ft

for some k ∈ N,

Nγ−1
j t

(
Eη ∩B(yt, γ

−1
j /2)

)
≥ Ht

2M
≥ (1/t)s−2ϵ

by (2.9) for all t sufficiently small.
Finally, applying the argument to ϵn converging to zero, get a sequence (tn)

∞
n=1

converging to zero and let ξ ∈ Ω be chosen so that ξkn = ft1 ◦ · · · ◦ ftn for some
kn ∈ N and all n ∈ N. Then the same argument from Proposition 2.8 gives that
dimA Eξ ≥ s − 2ϵn for all n ∈ N, and therefore dimA Eξ ≥ s. In particular, the
supremum is attained as a maximum. □

Now, we prove our main result concerning Assouad dimensions. When the
projected IFS satisfies the WSC, applying Lemma 2.12, this also gives a formula
for the Assouad dimension of a dominated rectangular IFS of affinities in terms of
the Assouad dimension of the projection and the worst-case Assouad dimension
of a fibre.

Theorem 2.13. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor K.
Then

(2.10) dimA K ≥ dimA π(K) + max
η∈Ω

(
dimA Eη

)
.

Moreover, suppose the projected IFS {Si}i∈I satisfies the WSC. Then equality in (2.10)
holds.

Proof. Fix η ∈ Ω: we first show that

(2.11) dimA K ≥ dimA π(K) + dimAEη

by constructing an appropriate weak tangent.
Fix a weak tangent K̂ with positive HdimA π(K)-measure for π(K), and a weak

tangent Ê with positive HdimA Eη -measure for the symbolic fibre Eη. For n ∈ N, let
rn denote the scaling ratio of ηn.

Now let ϵ > 0 be arbitrary. Fix a similarity U : π(K) → R with scaling ratio γ
so that

dH(K̂, U(π(K)) ∩B(0, 1)) ≤ ϵ.

Next, let n0 be sufficiently large so that βσ/ασ < ϵ/γ for all σ ∈ Jηn and all n ≥ n0.
Then fix a similarity V : Eη → R with scaling ratio κ ≥ γ · r−1

n0
so that

dH(Ê, V (Eη) ∩B(0, 1)) ≤ ϵ,

and let n ≥ n0 be such that γ · r−1
n β−1

min ≥ κ ≥ γ · r−1
n . In particular, since π(K) is a

self-similar set, as argued in Lemma 2.3 there is a similarity Vϵ with scaling ratio
γ · r−1

n and a similarity hϵ with scaling ratio in the interval [βmin, 1] so that

dH(Ê, Vϵ(Eη) ∩ hϵ(B(0, 1))) ≤ ϵ.
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Finally, Uϵ = U ◦ η−1
n has scaling ratio γ · r−1

n . In particular, Wϵ : K → B(0, 1) ×
hϵ(B(0, 1)) defined by Wϵ(x, y) = (U ◦ η−1

n (x), Vϵ(y)) is a similarity with scaling
ratio γ · r−1

n .
Thus taking an appropriate sequence (ϵn)

∞
n=1 tending to zero so that the scaling

ratios of the hϵ converge, it follows that K̂ × h(Ê) is a weak pseudo-tangent for K,
for some similarity map h. This gives (2.11) by Lemma 2.1, and therefore (2.10).

We now prove the upper bound assuming the WSC. Let QR denote the collec-
tion of grid-aligned squares with side-length R. By the WSC assumption there is
M ∈ N so that

M = sup
R∈(0,1)

sup
Q∈QR

#{Sσ : ασ ≤ R < ασ− , Sσ(π(K)) ∩ π(Q) ̸= ∅}.

Let

s1 = dimA π(K) and s2 = max
η∈Ω

(
dimAEη

)
and let ϵ > 0 be arbitrary. (Note that π(K) is Ahlfors–David regular since it satisfies
the WSC, so in fact s1 = dimB π(K).) It suffices to show that dimAK ≤ s1 + s2 + 2ϵ.
By Proposition 2.8, there is a constant C > 0 so that for all 0 < r ≤ R < 1, η ∈ Ω,
and x ∈ Eη,

(2.12) Nr(B(x,R) ∩ Eη) ≤ C
(R
r

)s2+ϵ

.

Now fix 0 < r ≤ R < 1 and let Q ∈ QR. Let γ > 1 be chosen so that αγ
i > βi for

all i ∈ I. Let σ ∈ I∗ be such that ασ ≤ R < ασ− and Sσ(π(K)) ∩ π(Q) ̸= ∅: we first
cover

Q ∩
⋃

τ∈I∗:Sτ=Sσ

Tτ (K).

Since dimA π(K) < s1+ ϵ, there is a constant C1 > 0 and a family of balls {Bi}ℓ1i=1 ⊂
R each with radius r so that

π(K ∩Q) ⊂
ℓ1⋃
i=1

Bi and ℓ1 ≤ C1

(R
r

)s1+ϵ

.

Thus by Lemma 2.6 and the choice of γ, there is a constant C > 0 so that

(2.13) pH

( ⋃
τ∈I∗:Sτ=Sσ

Tτ (K), Eη

)
≤ Cmax{βτ : τ ∈ I∗ : Sτ = Sσ} ≤ Cαγ

σ ≤ CRγ.

where η ∈ Ω is any sequence with ηk = Sσ for some k ∈ N. Moreover, it suffices in
the definition of the Assouad dimension to consider scales r ≥ CRγ : by [FY18b,
Proposition 3.7], for any θ ∈ (0, 1), there is a θ′ > 1/γ such that dimθ′

A K ≥ dimθ
A K.

(Alternatively, one can directly apply the covering argument from Theorem 2.15).
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Thus by (2.12) combined with (2.13), there is a constant C2 > 0 and family of balls
{B̂i}ℓ2i=1 ⊂ R each with radius r so that

Q ∩
⋃

τ∈I∗:Sτ=Sσ

Tτ (K) ⊂
ℓ1⋃
i=1

ℓ2⋃
j=1

2Bi × B̂i and ℓ2 ≤ C2

(R
r

)s2+ϵ

where 2Bi is the ball with the same centre as Bi and double the radius. Note that
C1 and C2 depend only on the governing IFS. Thus

Nr(K ∩Q) ≤ 3MC1C2

(R
r

)s1+s2+2ϵ

where 3 is the doubling constant in R, and the result follows. □

Remark 2.14. In general, the WSC assumption here is required. For example,
consider the IFS given by the maps

T1(x, y) = (βx, αy) and T2(x, y) = (βx+ (1− β), αy + (1− α))

where 0 < α ≤ 1/2 < β < 1. Denote the attractor of such a set by K. Such carpets
are often referred to as Przytycki–Urbański sets [PU89].

In [FJ17, Section 2.1], the dimension of such carpets are computed for various
values of α and β. In particular, if 1/β is a Garsia number, i.e. a real algebraic
integer with norm 2 and Galois conjugates lying strictly outside the complex unit
disc, then

dimA K = 1 +
log 2β

− logα
.

However, it is easy to check that the IFS {x 7→ βx, x 7→ βx+ (1− β)} has no exact
overlaps. Thus the lower bound from (2.10) gives the value 1.

2.4. Quasi-Assouad dimension. We now turn our attention to the Assouad
spectrum, for values of θ sufficiently close to 1. In general, for smaller values of
θ, determining a precise formula for the Assouad spectrum seems to be rather
complicated since the Assouad spectrum is highly sensitive to the logarithmic
eccentricity ratios (logαi)/(log βi).

Theorem 2.15. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor K.
Then for all maxi∈I

logαi

log βi
≤ θ < 1,

(2.14) dimθ
AK ≥ dimH π(K) + max

η∈Ω

(
dimθ

AEη

)
Moreover, if the projected IFS {Si}i∈I satisfies the AWSC, then equality in (2.14) holds.

Proof. Let θ0 = maxi∈I
logαi

log βi
and let θ ∈ (θ0, 1) (the result follows at θ0 by

continuity of the Assouad spectrum). This is equivalent to requiring that α1/θ
σ ≥ βσ

for all σ ∈ I∗. Let ϵ > 0: we will first show that, assuming the AWSC,

dimθ
A K ≤ dimB π(K) + max

η∈Ω

(
dimθ

A Eη

)
+ ϵ,
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recalling that π(K) is a self-similar set and therefore has dimH π(K) = dimB π(K).
Let r > 0 be arbitrary and consider a grid-aligned square Q with side-length r.

By the AWSC assumption, for all x ∈ π(K) and r sufficiently small, with

M(x, r) := {Sσ : σ ∈ Λr, Sσ(π(K)) ∩B(x, r) ̸= ∅}

we have supx∈K #M(x, r) ≤
(
r1−1/θ

)ϵ. Moreover, for fixed Sσ ∈ M(x, r), by
Proposition 2.9 for all r sufficiently small (depending only on the IFS) there is a
family of balls {Bi}Ni=1 each with radius r1/θ such that for any η ∈ Ω with ηn = Sσ,
{Bi}Ni=1 is a cover for π(Q) ∩ Eη, and

N ≤
( r

r1/θ

)dimθ
A Eη+ϵ

.

In particular, since θ > θ0, by Lemma 2.6 for all r sufficiently small

(2.15) pH

( ⋃
τ∈I∗:Sτ=Sσ

Tτ (K), Eη

)
≤ r1/θ.

Similarly, let {Ui}Mi=1 be a cover for Sσ(π(K)) where each Ui is a ball with radius
r1/θ so that

M ≤
( r

r1/θ

)dimB π(K)+ϵ

.

Such a cover exists by taking the image under Sσ of a cover for π(K) at scale r1/θ−1.
Therefore by (2.15),

Q ∩
⋃
τ∈I∗
Sτ=Sσ

Tτ ([0, 1]
2) ⊂

N⋃
i=1

M⋃
j=1

2Bi × Uj.

Thus taking a union over M(x, r),

(2.16) Nr1/θ(K ∩Q) ≤ 3
( r

r1/θ

)ϵ( r

r1/θ

)dimθ
A Eη+ϵ( r

r1/θ

)dimB π(K)+ϵ

where 3 is the doubling constant in R, from which the upper bound follows.
To obtain the converse inequality, write α = supη∈Ω dimθ

A Eη, let ϵ > 0, and let
γ ∈ Ω be such that

dimθ
A Eγ ≥ α− ϵ/2.

Then get x ∈ Eγ and r arbitrarily small so that

Nr1/θ

(
B(x, r) ∩ Eγ

)
≥
( r

r1/θ

)α−ϵ

.

Finally, let k ∈ N and τ ∈ Ik be such that γk = Sτ and rαmin ≤ ασ ≤ r. Since
θ > θ0, if r is chosen to be sufficiently small, βσ ≤ r1/θ for all σ ∈ JSτ . Thus for r
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sufficiently small,

Nr1/θ

(
(B(x, r)×B(Sσ(x0), r)) ∩K

)
≥
(
r1/θ

r

)α−ϵ(
r1/θ

r

)dimH π(K)−ϵ

for some fixed x0 ∈ π(K). But ϵ > 0 and r > 0 can be chosen to be arbitrarily small,
so that dimθ

A K ≥ α + dimH π(K), as claimed. □

Remark 2.16. The proof of the lower bound for (2.14) is simpler than the Assouad
dimension lower bound in Theorem 2.13 since the quasi-Assouad dimension only
witnesses the box dimension of π(K), whereas the Assouad dimension picks up
the Assouad dimension of π(K). The box dimension of π(K) always exists, but
we must carefully move tangents for dimA π(K) in Theorem 2.13. This is similar to
the phenomenon in which a self-similar set K in R which satisfies the AWSC but
not the WSC has dimHK = dimqA K but dimAK = 1.

In fact, since any self-similar set in R is the attractor of a dominated rectangular
IFS of affinities, we obtain the following corollary:

Corollary 2.17. Let {Si}i∈I be an IFS of similarities in R satisfying the AWSC with
attractor K. Then dimqA K = dimHK.

This was previously observed under the ESC (see [Fra20, Theorem 7.3.1] and the
discussion which follows it), which is a special case of our result by Proposition 1.3.

Combining Corollary 2.17 with Theorem 2.15, we obtain our main result on
quasi-Assouad dimensions.

Corollary 2.18. Let {Ti}i∈I be a dominated rectangular IFS of affinities with attractor
K. Suppose the projected IFS {Si}i∈I satisfies the AWSC. Then

dimqA K = dimqA π(K) + max
η∈Ω

(
dimqA Eη

)
.

2.5. Distinct Assouad and quasi-Assouad dimensions. Our original motivation
for studying this family of examples was in the context of [Fra20, Question 17.5.4],
which asks whether or not it can happen that dimqA K < dimA K for a self-affine
set K satisfying the strong separation condition.

We show that dimqA K < dimA K is possible: to be precise, for any ϵ > 0, we
construct a self-affine set K satisfying the strong separation condition such that
dimqA K < ϵ and dimAK ≥ 1. First, we observe the following application of
Corollary 2.18:

Corollary 2.19. Let {Ti}i∈I be a dominated rectangular IFS of affinities such that the
projected IFS {Si}i∈I satisfies the ESC with similarity dimension s ≤ 1. Then dimH K =
dimqA K = dimqA π(K).

Proof. Since the projected IFS has no exact overlaps, dimqA Eη = 0 for all η ∈ Ω.
Since s ≤ 1, the projected IFS also satisfies the AWSC by Proposition 1.3. Then
apply Corollary 2.18. □
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In general, the ESC holds for typical parameters for parametrized families of
self-similar sets (see, for example, [Hoc14, Theorem 1.7]), whereas this is not true
for the OSC. In particular, it is well-known that there exist examples which satisfy
the ESC with similarity dimension arbitrarily close to 0, but not the OSC.

Here, we will construct an explicit example of this phenomenon for the conve-
nience of the reader. Let ϵ ∈ (0, 1) be arbitrary and fix N ∈ N with N ≥ 4 so that
(log 3)/(logN) ≤ ϵ. First, for t ∈ (0, 1/N), consider the IFS Φt = {S0, St, S1−1/N}
where Sj(x) =

x
N
+ j for j ∈ {0, t, 1− 1/N}. Observe that if t /∈ Q, then the IFS has

no exact overlaps. Moreover, the same argument as [Hoc14, Theorem 1.6] shows
that the IFS Φt satisfies the ESC for all t /∈ Q.

Suppose Φt satisfies the OSC, i.e. there is an open set U ⊂ (0, 1) such that

U ⊃ S1(U) ∪ St(U) ∪ S1−1/N(U)

disjointly. Then observe that if δ > 0 is a constant such that there is some x with
B(x, δ/2) ⊂ U , then

(2.17) |Sσ(0)− Sτ (0)| ≥
δ

Nn

for all σ ̸= τ ∈ In.
Let C denote the attractor of the IFS {S0, S1−1/N}, i.e. C is the usual Cantor

set with subdivision ratios 1/N . Now let t0 be an irrational number which is
approximated well by left endpoints of the level n intervals of the Cantor set,
i.e. for infinitely many n ∈ N, there are d1, . . . , dn ∈ {0, N − 1} so that∣∣∣t0 − ∑n

i=1 diN
i−1

Nn

∣∣∣ ≤ δn
Nn

with the δn converging to 0. For example, let t0 ∈ (0, 1/N) \Q be a number with
base N representation consisting of arbitrarily long sequences of 0s or (N − 1)s.
Since t0 is not an endpoint of a level n interval for all n ≥ 1, it follows immediately
from (2.17) that Φt0 cannot satisfy the OSC.

Then the attractor K of the IFS

T1(x, y) =
( x

N
,

y

N + 1

)
T2(x, y) =

( x

N
+ t0,

y

N + 1
+

N − 1

2(N + 1)

)
T3(x, y) =

( x

N
+ 1− 1

N
,

y

N + 1
+

N

N + 1

)
satisfies the strong separation condition and has, for N sufficiently large,

dimqA K = dimHK =
log 3

logN
≤ ϵ < 1 ≤ dimA K.

by Corollary 2.19. We recall that dimAK ≥ dimA π(K) since a self-similar image of
π(K) is always contained in some weak tangent of K. See the discussion in the
introduction following Corollary B.
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Remark 2.20. Similar arguments also show that there are arbitrarily small param-
eters 0 < λ1, λ2 ≤ ρ := (3−

√
5)/2 such that the IFS Φ defined in (1.2) fails the WSC.

To see this, let 0 < r < ρ2 be small, fix λ1 ∈ (r/ρ,
√
r), and let λ2 = r/λ1. Observe

that

Φ ⊃ {x 7→ rx, x 7→ rx+ (1− r), x 7→ rx+ λ1 − λ2
1, x 7→ rx+ λ1 − r}.

In particular, if r − λ2
1 is close to a left endpoint b of a level n interval of the IFS

{x 7→ rx, x 7→ rx + 1 − r}, then λ1 − λ2
1 is close to rb + λ1 − r, which is the left

endpoint of a level n + 1 interval of the IFS Φ. Moreover, it is well-known that
if the WSC holds, then there is a constant δ > 0 such that for all f1, . . . , fn and
g1, . . . , gn in Φ, either f1 ◦ · · · ◦ fn(0) = g1 ◦ · · · ◦ gn(0) or

(2.18) |f1 ◦ · · · ◦ fn(0)− g1 ◦ · · · ◦ gn(0)| ≥
δ

rn
.

(see, for example, [Zer96, Theorem 1]). In particular, one may choose λ1 arbitrarily
close to

√
r so that (2.18) fails for any δ > 0 for the IFS Φ. This choice of λ1 also

guarantees that λ2 is arbitrarily close to
√
r, and hence is arbitrarily small as well.
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