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ABSTRACT. We study the fine scaling properties of sets satisfying various
weak forms of invariance. Our focus is on the interrelated concepts of (weak)
tangents, Assouad dimension, and a new localized variant which we call the
pointwise Assouad dimension. For general attractors of possibly overlapping
bi-Lipschitz iterated function systems, we establish that the Assouad dimen-
sion is given by the Hausdorff dimension of a tangent at some point in the
attractor. Under the additional assumption of self-conformality, we moreover
prove that this property holds for a subset of full Hausdorff dimension. We
then turn our attention to an intermediate class of sets: namely planar self-
affine carpets. For Gatzouras–Lalley carpets, we obtain precise information
about tangents which, in particular, shows that points with large tangents
are very abundant. However, already for Barański carpets, we see that more
complex behaviour is possible.
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1. INTRODUCTION

One of the most fundamental concepts at the intersection of analysis and geometry
is the notion of a tangent. For sets exhibiting a high degree of local regularity—
such as manifolds, or rectifiable sets—at almost every point in the set and at
all sufficiently high resolutions, the set looks essentially linear. Moreover, the
concept of a tangent is particularly relevant in the study of a much broader class
of sets: those equipped with some form of dynamical invariance. This relationship
originates in the pioneering work of Furstenberg, where one associates to a set a
certain dynamical system of “zooming in”. Especially in the past two decades,
the study of tangent measures has played an important role in the resolution of
a number of long-standing problems concerning sets which look essentially the
same at all small scales; see, for example, [HS12; HS15; KSS15; Shm19; Wu19].

In contrast, (weak) tangents also play an important role in the geometry of met-
ric spaces. One of the main dimensional quantities in the context of embeddability
properties of metric spaces is the Assouad dimension, first introduced in [Ass77].
It turns out that the Assouad dimension, which bounds the worst-case scaling at
all locations and all small scales, is precisely the maximal Hausdorff dimension
of weak tangents, i.e. sets which are given as a limit of small pieces of enlarged
copies of the original set; see [KOR17]. We refer the reader to the books [Fra20;
MT10; Rob11] for more background and context on the importance of Assouad
dimension in a variety of diverse applications.

In this document, we study the interrelated concepts of tangents and Assouad
dimension, with an emphasis on sets with a weak form of dynamical invariance.
Our motivating examples include attractors of iterated function systems where the
maps are affinities (or even more generally bi-Lipschitz contractions); or the maps
are conformal and there are substantial overlaps. In both of these situations, the
sets exhibit a large amount of local inhomogeneity. As we will see, these classes of
sets exhibits a rich variety of behaviour while still retaining some fundamental
properties.
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(A) Gatzouras–Lalley (B) Barański

FIGURE 1. Some self-embeddable sets, which are attractors of the
iterated function systems depicted in Figure 2.

1.1. Weak tangents, tangents, and pointwise Assouad dimension. Throughout,
we will work in Rd for some d ∈ N, though many of our results hold in the broader
context of bounded doubling metric spaces. We let B(x, r) denote the closed ball
with centre x and radius r.

Now, fix a compact set K ⊂ Rd. We say that a compact set F ⊂ B(0, 1) is a
weak tangent of K ⊂ Rd if there exists a sequence of similarity maps (Tk)∞k=1 with
similarity ratios λk diverging to infinity such that 0 ∈ Tk(K) and

F = lim
k→∞

Tk(K) ∩B(0, 1)

with respect to the Hausdorff metric on compact subsets of B(0, 1). We denote the
set of weak tangents of K by Tan(K). More strongly, we say that F is a tangent of
K at x if F is a weak tangent and the similarity maps Tk are homotheties which
map x to 0; i.e. Tk(y) = λk(y − x). We denote the set of tangents of K at x by
Tan(K, x). We refer the reader to §2.1 for precise definitions.

Closely related to the notion of a weak tangent is the Assouad dimension of K,
which is the dimensional quantity

dimAK = inf
{
s : ∃C > 0∀0 < r ≤ R < 1∀x ∈ K

Nr(B(x,R) ∩K) ≤ C
(R
r

)s}
.

Here, for a general bounded set F , Nr(F ) is the smallest number of closed balls
with radius r required to cover F . It always holds that dimHK ≤ dimBK ≤
dimAK, where dimHK and dimBK denote the Hausdorff and upper box dimen-
sions respectively. In some sense, the Assouad dimension is the largest reasonable
notion of dimension which can be defined using covers. Continuing the analogy
with tangents, we also introduce a localized version of the Assouad dimension
which we call the pointwise Assouad dimension. Given x ∈ K, we set

dimA(K, x) = inf
{
s : ∃C > 0∃ρ > 0∀0 < r ≤ R < ρ

Nr(B(x,R) ∩K) ≤ C
(R
r

)s}
.
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The choice of ρ > 0 in the definition of dimA(K, x) ensures a sensible form
of bi-Lipschitz invariance: if f : K → K ′ is bi-Lipschitz, then dimA(K, x) =
dimA(f(K), f(x)). It is immediate from the definition that

dimA(K, x) ≤ dimAK.

Moreover, if for instance K is Ahlfors–David regular, then dimA(K, x) = dimAK
for all x ∈ K. We note here that an analogous notion of pointwise Assouad
dimension for measures was introduced recently in [Ant22+].

An observation which goes back essentially to Furstenberg, but was observed
explicitly in [KOR17], is that the Assouad dimension is characterized by weak
tangents:

dimAK = max{dimH F : F ∈ Tan(K)}.

Motivated by this relationship, our primary goal in this document is to address
the following questions:

• Does it hold that dimA(K, x) = max{dimH F : F ∈ Tan(K, x)}?
• Is there necessarily an x0 ∈ K so that dimAK = dimH F for some F ∈

Tan(K, x0)? If not, is there an x0 ∈ K so that dimAK = dimA(K, x0)?
• What is the structure of the level set of pointwise Assouad dimension {x ∈
K : dimA(K, x) = α} for some α ≥ 0?

In the following section, we discuss our main results and provide some preliminary
answers which indicate that answers to these questions are, in general, quite subtle.

1.2. Main results and outline of paper. We begin by stating some easy properties
of the pointwise Assouad dimension for general compact sets K ⊂ Rd. Firstly, by
Proposition 2.2,

sup{dimB F : F ∈ Tan(K, x)} ≤ dimA(K, x) ≤ dimAK

for all x ∈ K and, by Proposition 2.8 (ii), there is always an x ∈ K so that
dimBK ≤ dimA(K, x). However, in general one cannot hope for more than this:
an example in [LR15] already has the property that K ⊂ R such that dimAK = 1
but dimA(K, x) = 0 for all x ∈ K (see Example 2.10 for more detail); and moreover,
in Example 2.11, we construct a compact set K ⊂ R with a point x ∈ K so that
dimA(K, x) = 1 but each F ∈ Tan(K, x) consists of at most two points.

However, many commonly studied families of “fractal” sets have a form of
dynamical invariance, which is far from the case for general sets. As a result, it is
of interest to determine general conditions under which the Assouad dimension is
actually attained as the pointwise Assouad dimension at some point. To this end,
we make the following definition.

Definition 1.1. We say that a compact set K is self-embeddable if for each z ∈ K
and 0 < r ≤ diamK, there is a constant a = a(z, r) > 0 and a function f : K →
B(z, r) ∩K so that

(1.1) ar|x− y| ≤ |f(x)− f(y)| ≤ a−1r|x− y|.
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for all x, y ∈ K. We say that K is uniformly self-embeddable if the constant a(z, r)
can be chosen independently of z and r.

The class of self-embeddable sets is very broad and includes, for example, attrac-
tors of every possibly overlapping iterated function system {fi}i∈I , where I is a
finite index set and fi is a strictly contracting bi-Lipschitz map from Rd to Rd.

The class of uniformly self-embeddable sets includes the attractors of finite
overlapping self-conformal iterated function systems. It is perhaps useful to
compare uniform self-embeddability with quasi self-similarity, as introduced by
Falconer [Fal89]. Our assumption is somewhat stronger since we also require the
upper bound to hold in (1.1). This assumption is critical to our work since, in
general, maps satisfying only the lower bound can decrease Assouad dimension.
We also note that uniform self-embeddability is the primary assumption in [AKT20,
Theorem 2.1].

Within this general class of sets, we establish the following result which guar-
antees the existence of at least one large tangent under self-embeddability, and an
abundance of tangents under uniform self-embeddability.

Theorem A. Let K ⊂ Rd be compact and self-embeddable. Then:
(i) dimBK ≤ dimA(K, x) for all x ∈ K.

(ii) There is an x ∈ K and F ∈ Tan(K, x) so that HdimA K(F ) > 0. In particular,
dimH F = dimA(K, x) = dimAK.

If K is uniformly self-embeddable, then there is a constant c > 0 so that

(1.2) dimH{x ∈ K : ∃F ∈ Tan(K, x) with HdimA K(F ) ≥ c} = dimHK.

The proof of Theorem A can be obtained by combining Theorem 2.12, Proposi-
tion 2.13, and Theorem 2.14. As a special case of the result for uniformly self-
embeddable sets, suppose K is the attractor of a finite self-similar IFS in the real
line with Hausdorff dimension s < 1. In this case there is a dichotomy: either
Hs(K) > 0, in which case K is Ahlfors–David regular, or dimAK = 1. In partic-
ular, (1.2) cannot be improved in general to give a set with positive Hausdorff
s-measure.

Beyond being of general interest, we believe this result will be a useful technical
tool in the study of Assouad dimension for general attractors of bi-Lipschitz
invariant sets. For instance, a common technique in studying attractors of iterated
function systems is to relate the underlying geometry to symbolic properties
associated with the coding space. Upper bounding the Hausdorff dimension of
tangents is a priori easier since one may fix in advance a coding for the point. This
is the situation, for example, in [BKR21, Theorem 5.2].

In Theorem A, we have established weak conditions which guarantee the
existence of at least one large tangent, and relatively strong conditions which
guarantee a set of points of full Hausdorff dimension with large tangents. A
natural question to address is the following: to what extent do the results for
uniformly self-embeddable sets extend to more general sets? Moreover, can we
obtain even more precise information for specific families of sets?

With these questions in mind, we now turn our attention to two specific
families of affine iterated function systems in the plane: specifically, the planar
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FIGURE 2. Generating maps associated with a Gatzouras–Lalley and
Barański system. The parameters from the Barański carpet correspond
to the example in Corollary 5.6 with δ = 1/40.

self-affine carpets of Gatzouras–Lalley [LG92] and Barański [Bar07]. Note that these
sets are self-embeddable but (except for some degenerate cases) not uniformly
self-embeddable. We defer precise definitions and notation to §4.1; see Figure 2
for examples of the generating maps in these classes. In the following statement,
let η : R2 → R be the orthogonal projection onto the first coordinate axis and for
x ∈ R2 let ℓx be the vertical line containing x.

Theorem B. Let K be a Gatzouras–Lalley carpet. Then

HdimH K
(
{x ∈ K : dimA(K, x) ̸= dimAK}

)
= 0.

On the other hand, for any dimBK ≤ α ≤ dimAK,

dimH{x ∈ K : dimA(K, x) = α} = dimHK.

Moreover, if η(K) satisfies the SSC, then for any x ∈ K,
(i) max{dimH F : F ∈ Tan(K, x)} = dimB η(K) + dimA ℓx ∩K,

(ii) dimA(K, x) = max{dimBK, dimB η(K) + dimA ℓx ∩K}.

Of course, if α /∈ [dimBK, dimAK], then {x ∈ K : dimA(K, x) = α} = ∅. It follows
immediately from Theorem B that

dimA(K, x) = max{dimH F : F ∈ Tan(K, x)}

if and only if dimA ℓx ∩ K ≥ dimBK − dimB η(K). Moreover, if s = dimHK,
then Hs(K) > 0 and furthermore Hs(K) < ∞ if and only if K is Ahlfors–David
regular (see [LG92]), in which case the results are trivial. We thus see that the
majority of points, from the perspective of Hausdorff s-measure, have tangents
with Hausdorff dimension attaining the Assouad dimension of K. However, we
still have an abundance of points with pointwise Assouad dimension giving any
other reasonable value.
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The proof of Theorem B is obtained by combining Theorem 4.12 and Theo-
rem 4.14. The dimensional results given in (i) and (ii) exhibit a precise version of a
well-known phenomenon: at small scales, properly self-affine sets and measures
look like products of the projection with slices. Note that, in order to obtain (i) and
(ii), the strong separation condition in the projection is required or the pointwise
Assouad dimension could be incorrect along sequences which are “arbitrarily
close together at small scales”. The formula holds for more general Gatzouras–
Lalley carpets if one restricts attention to points where this does not happen (see
Definition 4.3).

For Gatzouras–Lalley carpets with projection onto the first coordinate axis
satisfying the strong separation condition, slices through x are precisely attractors
of a non-autonomous iterated function system corresponding to the sequence of
columns containing the point x (such a phenomenon was exploited in a more
general setting in [FR22+]). In fact, as a pre-requisite to the proof of Theorem B, we
establish a general formula for the Assouad dimension of non-autonomous self-
similar sets satisfying the open set condition and with contraction ratios bounded
uniformly from below. This is given in Theorem 3.7. The proof of Theorem 3.7, and
indeed Theorem B, depends on some general properties of Assouad dimension
which are elementary but may be of independent interest: certain subadditive
regularity properties given in Corollary 3.5, and a reformulation of the Assouad
dimension in terms of disc-packing bounds given in Proposition 3.6.

However, it turns out that the fact that Gatzouras–Lalley carpets have an
abundance of large tangents does not extend to the non-dominated setting.

Theorem C. There exists a Barański carpet K such that

dimH{x ∈ K : dimA(K, x) = dimAK} < dimHK.

In other words, the conclusion of Theorem A for uniformly self-embeddable sets
does not necessarily extend beyond the uniformly self-embeddable case, even in
the at first glance minor generalization consisting only of strictly diagonal self-
affine functions acting in R2. The proof of Theorem C is given in Corollary 5.6,
and it follows from a more general result (Theorem 5.4) describing when Barański
carpets satisfying certain separation conditions have a large number of large
tangents. This result can be found in Theorem 5.4, and it follows from more
general formulas for the pointwise Assouad dimension at points which are coded
by sequences which contract uniformly in one direction; see Proposition 5.3 for a
precise formulation.

1.3. Some variants for future work. Let ϕ : (0, 1) → (0, 1) be a fixed function. We
then define the pointwise ϕ-Assouad dimension, given by

dimϕ
A(K, x) = inf

{
s : ∃C > 0∀0 < r < 1

Nr1+ϕ(r)

(
B(x, r) ∩K

)
≤ Cr−ϕ(r)s

}
.



8 ANTTI KÄENMÄKI & ALEX RUTAR

It is a straightforward to see that

dimϕ
A(K, x) = lim sup

r→0

logNr1+ϕ(r)

(
B(x, r) ∩K

)
ϕ(r) log(1/r)

.

The ϕ-Assouad dimensions are an example of dimension interpolation [Fra21] and
have been studied in detail in [BRT23+; GHM21]. In the specific case that ϕ(R) =
1
θ
−1 for some θ ∈ (0, 1), this corresponds precisely to the Assouad spectrum [FY18]

which (abusing notation) we may denote by dimθ
A(K, x). In general, we expect the

properties of the pointwise Assouad spectrum to be substantially different than
the properties of the pointwise Assouad dimension.

For instance, in particular for Gatzouras–Lalley carpets, as θ → 0 one would
expect to only witness the box dimension at every point in K, and as θ → 1 one
would expect to witness the Hausdorff dimension of a maximal tangent, even
when this quantity may be smaller than box dimension. In particular, it may
happen that limθ→0 dim

θ
A(K, x) > limθ→1 dim

θ
A(K, x). For intermediate values of θ,

since the pointwise Assouad spectrum is determined by exponentially separated
pairs of scales, it is likely that the value would depend in an essential way on the
local dimensions of Bernoulli measures projected onto the first coordinate axis.

One might also consider the dual notion of the pointwise lower dimension, defined
for x ∈ K by

dimL(K, x) = sup
{
s : ∃C > 0∃ρ > 0 ∀0 < r ≤ R < ρ

Nr(B(x,R) ∩K) ≥ C
(R
r

)s}
.

It is established in [FHK+19] that the lower dimension may be analogously charac-
terized as the minimum of Hausdorff dimensions of weak tangents. Therefore, a
natural question is to ask if similar results hold for the pointwise lower dimension
as well. However, the proofs we have given for Theorem A do not immediately
translate to the case of the lower dimension since overlaps may increase dimension.
On the other hand, the results concerning Gatzouras–Lalley carpets in Theorem B
translate directly to the analogous lower dimension counterparts with appropriate
modifications.

Finally, we note that an analogous notion for the pointwise Assouad dimension
of measures was recently introduced in [Ant22+]. It would be interesting to
investigate the relationship between these two notions of pointwise dimension.

1.4. Notation. Throughout, we work in Rd equipped with the usual Euclidean
metric. Write R+ = (0,∞). Given functions f and g, we say that f ≲ g if there is a
constant C > 0 so that f(x) ≤ Cg(x) for all x in the domain of f and g. We write
f ≈ g if f ≲ g and g ≲ f .

2. TANGENTS AND POINTWISE ASSOUAD DIMENSION

2.1. Tangents and weak tangents. To begin this section, we precisely define the
notions of tangent and weak tangent, and establish the fundamental relationship
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between the dimensions of tangents and the pointwise Assouad dimension.
Given a set E ⊂ Rd and δ > 0, we denote the open δ-neighbourhood of E by

E(δ) = {x ∈ Rd : ∃y ∈ E such that |x− y| < δ}.

Now given a non-empty subset X ⊂ Rd, we let K(X) denote the set of non-empty
compact subsets of X equipped with the Hausdorff metric

dH(K1, K2) = max{pH(K1;K2), pH(K2;K1)}

where

pH(K1;K2) = inf{δ > 0 : K1 ⊂ K
(δ)
2 }.

If X is compact, then (K(X), dH) is a compact metric space itself. We also write

dist(E1, E2) = inf{|x− y| : x ∈ E1, y ∈ E2}

for non-empty sets E1, E2 ⊂ Rd.
We say that a set F ∈ K(B(0, 1)) is a weak tangent of K ⊂ Rd if there exists

a sequence of similarity maps (Tk)
∞
k=1 with 0 ∈ Tk(K) and similarity ratios λk

diverging to infinity such that

F = lim
k→∞

Tk(K) ∩B(0, 1)

in K(B(0, 1)). We denote the set of weak tangents of K by Tan(K). A key feature
of the Assouad dimension is that it is characterized by Hausdorff dimensions of
weak tangents. This result is originally from [KOR17, Proposition 5.7]. We refer
the reader to [Fra20, Section 5.1] for more discussion on the context and history of
this result.

Proposition 2.1 ([KOR17]). We have

α := dimAK = max
F∈Tan(K)

dimH F.

Moreover, the maximizing weak tangent F can be chosen so that Hα(F ) > 0.

In a similar flavour, we say that F is a tangent of K at x ∈ K if there exists a
sequence of similarity ratios (λk)∞k=1 diverging to infinity such that

F = lim
k→∞

λk(K − x) ∩B(0, 1)

in K(B(0, 1)). We denote the set of tangents of K at x by Tan(K, x).
Of course, Tan(K, x) ⊂ Tan(K). Unlike in the case for weak tangents, we

require the similarities in the construction of the tangent to in fact be homotheties.
This choice is natural since, for example, a function f : R → R is differentiable at
x if and only if the set of tangents of the graph of f at (x, f(x)) is the singleton
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{B(0, 1) ∩ ℓ} for some non-vertical line ℓ passing through the origin. In prac-
tice, compactness of the group of orthogonal transformations in Rd means this
restriction will not cause any technical difficulties.

We observe that upper box dimensions of tangents provide a lower bound for
the pointwise Assouad dimension.

Proposition 2.2. For any compact set K ⊂ Rd and x ∈ K, dimA(K, x) ≥ dimB F for
any F ∈ Tan(K, x).

Proof. Let α > dimA(K, x) and suppose F ∈ Tan(K, x): we will show that
dimB F ≤ α. First, get C > 0 such that for each 0 < r ≤ R < 1,

Nr(B(x,R) ∩K) ≤ C
(R
r

)α
.

Let δ > 0 be arbitrary, and get a similarity T with similarity ratio λ such that
T (x) = 0 and

dH(T (K) ∩B(0, 1), F ) ≤ δ.

Then there is a uniform constant M > 0 so that

M ·Nδ(F ) ≤ Nδ(T (K) ∩B(0, 1)) = Nδλ(K ∩B(x, λ)) ≤ C
( λ
δλ

)α
= Cδ−α.

In other words, dimB F ≤ α. □

One should not expect equality to hold in general: in Example 2.11, we construct
an example of a compact set K ⊂ R and a point x ∈ K so that dimA(K, x) = 1 but
every F ∈ Tan(K, x) consists of at most 2 points.

2.2. Level sets and measurability. We now make some observations concerning
the multifractal properties of the function x 7→ dimA(K, x). In particular, we are
interested in the following quantities:

A(K,α) = {x ∈ K : dimA(K, x) = α} and φ(α) = dimH A(K,α).

We use the convention that dimH ∅ = −∞. Observe that φ is a bi-Lipschitz
invariant.

Let K(Rd) denote the family of compact subsets of Rd, equipped with the
Hausdorff distance dH. We recall that B(x, r) denotes the closed ball at x with
radius r, and we let B◦(x, r) denote the open ball at x with radius r. Given a
compact set K ⊂ Rd, we let N◦

r (K) denote the minimal number of open sets with
diameter r required to cover K, and Npack

r (K) denote the size of a maximal centred
packing of K by closed balls with radius r. Then, for 0 < r1 ≤ r2, we write

N ◦
r1,r2

(K, x) = N◦
r1
(B(x, r2) ∩K)

Nr1,r2(K, x) = Npack
r1

(B◦(x, r2) ∩K)

The following lemma is standard.
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Lemma 2.3. Fix 0 < r1 ≤ r2. Then:
(i) N ◦

r1,r2
: K(Rd)× Rd → [0, d] is lower semicontinuous.

(ii) Nr1,r2 : K(Rd)× Rd → [0, d] is upper semicontinuous.

We can use this lemma to establish the following fundamental measurability
results.

Proposition 2.4. The following measurability properties hold:
(i) The function (K, x) 7→ dimA(K, x) is Baire class 2.

(ii) A(K,α) is Borel for any compact set K.

Proof. Since Rd is doubling,

dimA(K, x) = inf
{
s : ∃C > 0 ∃M ∈ N ∀M ≤ k ≤ n

N2−n,2−k(K, x) ≤ C2(n−k)s
}
.

Equivalently, we may use N ◦
r1,r2

in place of Nr1,r2 . In particular,

{(K, x) : dimA(K, x) > s} =
∞⋂

C=1

∞⋂
M=1

∞⋃
k=M

∞⋃
n=k

(N ◦
2−n,2−k)

−1(C2(n−k)s,∞).

and

{(K, x) : dimA(K, x) < t} =
⋃

C∈Q∩(0,∞)

∞⋃
M=1

∞⋂
k=M

∞⋂
n=k

(N2−n,2−k)−1(−∞, C2(n−k)t).

Thus {(K, x) : dimA(K, x) ∈ (s, t)} is a Gδσ-set, i.e. it is a countable union of sets
expressible as a countable intersection of open sets, so dimA is Baire class 2.

Of course, the same argument also show that x 7→ dimA(K, x) is Baire class 2
for a fixed compact set K, so that A(K,α) is Gδσ and, in particular, Borel. □

2.3. Tangents and pointwise dimensions of general sets. We now establish
some general results on the existence of tangents for general sets. These results
will also play an important technical role in the following sections: for many
of our applications, it is not enough to have positive Hausdorff α-measure for
α = dimAK, since in general Hausdorff α-measure does not interact well with the
Hausdorff metric on K

(
B(0, 1)

)
.

Recall that the Hausdorff α-content of a set E is given by

Hα
∞(E) = inf

{
∞∑
i=1

(diamUi)
α : E ⊂

∞⋃
i=1

Ui, Ui open

}
.

Of course, Hα
∞(E) ≤ Hα(E) and Hα

∞(E) = 0 if and only if Hα(E) = 0. We recall
(see, e.g. [MM97, Theorem 2.1]) that Hα

∞ is upper semicontinuous on K(B(0, 1)).
Moreover, if 0 < Hα(E) < ∞, then the density theorem for Hausdorff content
implies that Hα-almost every x ∈ E has a tangent with uniformly large Hausdorff
α-content. We use these ideas in the following proofs.

We begin with a straightforward preliminary lemma which is proven, for
example, in [KR16, Lemma 3.11].
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Lemma 2.5. Let K ⊂ Rd be compact. Then Tan(Tan(K)) ⊂ Tan(K).

Proof. First suppose E ∈ Tan(K) and F ∈ Tan(E). Write E = limn→∞ Tn(K) ∩
B(0, 1) and F = limn→∞ Sn(E)∩B(0, 1) for some sequences of similarities (Tn) and
(Sn) with similarity ratios diverging to infinity. For each ϵ > 0, let N be sufficiently
large so that

dH(SN(E) ∩B(0, 1), F ) ≤ ϵ

2
.

Suppose SN has similarity ratio λN , and let M be sufficiently large so that

dH(TM(K) ∩B(0, 1), E) ≤ ϵ

2λN

It follows that

dH(SN ◦ TM(K) ∩B(0, 1), F ) ≤ ϵ.

But ϵ > 0 was arbitrary, as required. □

Now, given a set with positive and finite Hausdorff measure, we can always
find a tangent with large Hausdorff content.

Lemma 2.6. Let K ⊆ Rd be a compact set with 0 < Hα(K) <∞. Then for Hα-almost
every x ∈ K, there is an F ∈ Tan(K, x) such that Hα

∞(F ) ≥ 1.

Proof. By the same proof as [Mat95, Theorem 6.2], for Hα-almost every x ∈ K,
there is a sequence of scales (rn)∞n=1 converging to zero such that

1 ≤ lim
n→∞

r−α
n Hα

∞
(
B(x, rn) ∩K

)
.

Then

Hα
∞
(
r−1
n (K − x) ∩B(0, 1)

)
= r−α

n Hα
∞
(
B(x, rn) ∩K

) n→∞−−−→ 1.

But Hausdorff α-content is upper semicontinuous, so passing to a subsequence if
necessary,

F = lim
n→∞

(
r−1
n (K − x) ∩B(0, 1)

)
satisfies Hα

∞(F ) ≥ 1. □

Of course, we can combine the previous two results to obtain the following im-
provement of Proposition 2.1.

Corollary 2.7. Let K be a compact set with dimAK = α. Then there is a weak tangent
F ∈ Tan(K) with Hα

∞(F ) ≥ 1.

Proof. By Proposition 2.1, there is E ∈ Tan(K) such that Hα(E) > 0. By [Fal90,
Theorem 4.10], there is a compact E ′ ⊂ E such that 0 < Hα(E ′) < ∞. Then
by Lemma 2.6, there is F ′ ∈ Tan(E ′) with Hα

∞(F ′) ≥ 1. But F ′ ⊂ F for some
F ∈ Tan(E), and by Lemma 2.5, F ∈ Tan(K) with Hα

∞(F ) ≥ Hα
∞(F ′) ≥ 1. □
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We now establish bounds on the pointwise Assouad dimension and tangents
for general sets.

Proposition 2.8. Let K ⊂ Rd. Then:
(i) If K is analytic, for any s such that Hs(K) > 0, there is a compact set E ⊂ K

with Hs(E) > 0 so that for each x ∈ E, there is a tangent F ∈ Tan(K, x) with
Hs

∞(F ) ≥ 1.
(ii) If K is compact, there is an x ∈ K such that dimA(K, x) ≥ dimBK.

Proof. The proof of (i) follows directly from Lemma 2.6, recalling that we can
always find a compact subset E ⊂ K such that 0 < Hs(E) <∞ (combine [Mat95,
Theorem 8.19] and [BP17, Corollary B.2.4]).

We now see (ii). Let dimBK = t. We first observe that for any r > 0, there is an
x ∈ K so that dimBB(x, r) ∩K = t. In particular, we may inductively construct a
nested sequence of ballsB(xk, rk) with limk→∞ rk = 0 so that dimBK∩B(xk, rk) = t
for all k ∈ N. Since K is compact, take x = limk→∞ xk ∈ K. We verify that
dimA(K, x) ≥ t. Let C > 0 and ρ > 0 be arbitrary. Since the xk converge to x and
the rk converge to 0, get some k so that B(xk, rk) ⊂ B(x, ρ). Thus for any ϵ > 0 and
r > 0 sufficiently small depending on ϵ,

Nr

(
B(x, ρ) ∩K

)
≥ Nr

(
B(xk, rk) ∩K

)
≥ C

(rk
r

)t−ϵ

.

Thus dimA(K, x) ≥ t. □

Remark 2.9. Note that compactness is essential in Proposition 2.8 (ii) since there
are sets with dimBK = 1 but every point is isolated: consider, for instance, the set
E = {(log n)−1 : n = 2, 3, . . .}. In this case, E = E ∪ {0} and dimA(E, 0) = 1. This
example also shows that (ii) can hold with exactly 1 point.

Finally, we construct some general examples which go some way to showing
that the results for general sets given in this section are sharp.

Example 2.10. In general, the Assouad dimension can only be characterized by
weak tangents rather than by tangents. For example, consider the set K from
[LR15, Example 2.20], defined by

K = {0} ∪
{
2−k + ℓ4−k : k ∈ N, ℓ ∈ {0, 1, . . . , k}

}
Since K contains arithmetic progressions of length k for all k ∈ N, dimAK =
1. However, dimA(K, x) = 0 for all x ∈ K and, therefore, by Proposition 2.2,
dimH F = 0 for all F ∈ Tan(K, x) and x ∈ K.

Example 2.11. We give an example of a compact set K and a point x ∈ K so that
dimA(K, x) = 1 but each F ∈ Tan(K, x) consists of at most finitely many points.

Set ak = 4−k2 and observe that kak+1/ak ≤ 1/k. For each k ∈ N, write ℓk =
⌊2k/k⌋ and set

K = {0} ∪
∞⋃
k=1

{
ak

2k − ℓk
2k

, ak
2k − ℓk − 1

2k
, . . . , ak

}



14 ANTTI KÄENMÄKI & ALEX RUTAR

and consider the point x = 0. First observe for all ϵ > 0 and all k sufficiently small
depending on ϵ,

N2−k·ak
(
B(0, ak) ∩K

)
≥ ℓk

2
≥ 2(1−ϵ)k

which gives that dimA(K, 0) = 1.
On the other hand, for k ∈ N,

a−1
k K ∩B(0, 1) ⊂ [0, ak+1/ak] ∪ [1/k, 1].

Since kak+1/ak ≤ 1/k, it follows that for any λ ≥ 1 and λK ∩ B(0, 1) can be
contained in a union of two intervals with arbitrarily small length as λ diverges to
∞. Thus any tangent F ∈ Tan(K, 0) consists of at most 2 points.

2.4. Tangents of dynamically invariant sets. We recall from Proposition 2.8 (ii)
that the Assouad dimension of K need not be attained as the Assouad dimension
of a point, and even the Assouad dimension at a point need not be attained as the
upper box dimension of a tangent at that point.

Now recall the definition of self-embeddability from Definition 1.1. For self-
embeddable sets, we can prove directly that the Assouad dimension of K is
attained as the Hausdorff dimension of a tangent. In fact, the tangent can be
chosen to have positive Hα-measure for α = dimAK.

Theorem 2.12. Let K ⊆ Rd be compact and self-embeddable with α = dimAK. Then
there is a dense set of points x ∈ K for which there exist F ∈ Tan(K, x) such that
Hα

∞(F ) ≳α 1.

Proof. By self-embeddability and since dimA(K, x) = dimA(f(K), f(x)) for a
bi-Lipschitz map f , it suffices to construct a single point x with this property.

First, begin with some arbitrary ball B(x1, r1) with x1 ∈ K and 0 < r1 ≤ 1.
Since K is self-embeddable, get a bi-Lipschitz map f1 : K → K ∩B(x1, r1). Since
dimA f1(K) = α, by Corollary 2.7 there is a weak tangent F1 of f1(K) such that
Hα

∞(F1) ≥ 1. Since F1 is a weak tangent of f1(K), there is a similarity T1 with
similarity ratio λ1 ≥ 1 such that 0 ∈ T1(K) and

dH
(
T1(f1(K)) ∩B(0, 1), F1

)
≤ 1.

Then choose x2 ∈ K and r2 ≤ 1/2 so that B(x2, r2) ⊂ T−1
1 B◦(0, 1).

Repeating the above construction, next with the ball B(x2, r2), and iterating,
we obtain a sequence of similarity maps (Tn)∞n=1 each with similarity ratio λn ≥ n,
bi-Lipschitz maps fn, and compact sets Fn such that

1. T−1
n+1B(0, 1) ⊆ T−1

n B(0, 1),

2. dH
(
Tn(fn(K)) ∩B(0, 1), Fn

)
≤ 1

n
, and

3. Hα
∞(Fn) ≥ 1.

Let x = limn→∞ T−1
n (0) and note by 1 that x ∈ T−1

n B(0, 1) for all n ∈ N. Let hn be a
similarity with similarity ratio 1/2 such that

dH

(λn
2
(fn(K)− x) ∩B(0, 1), hn(Fn)

)
≤ 1

n
.



TANGENTS OF INVARIANT SETS 15

Observe that Hα
∞(hn(Fn)) ≥ 2−α. Thus passing to a subsequence if necessary, since

fn(K) ⊆ K, we may set

F0 = lim
n→∞

λn
2
(fn(K)− x) ∩B(0, 1) and F = lim

n→∞

λn
2
(K − x) ∩B(0, 1).

and observe that F0 ⊆ F . Again passing to a subsequence if necessary, by compact-
ness of the orthogonal group, 2 and the triangle inequality, there is an isometry
h so that limn→∞ h ◦ hn(Fn) = F0. Thus by upper semicontinuity of Hausdorff
content,

Hα
∞(F ) ≥ Hα

∞(F0) ≥ lim
n→∞

Hα
∞(h ◦ hn(Fn)) = 2−α

as required. □

We recall from Proposition 2.8 (ii) that, for a general compact set K, the upper box
dimension of K provides a lower bound for the pointwise Assouad dimension
at some point. For self-embeddable sets, we observe that the upper box dimen-
sion provides a uniform lower bound for the pointwise Assouad dimension at
every point. On the other hand, the upper box dimension does not lower bound
the maximal dimension of a tangent. For an example of this phenomenon, see
Theorem 4.12.

Proposition 2.13. Let K ⊆ Rd be self-embeddable. Then for any x ∈ K, we have
dimA(K, x) ≥ dimBK.

Proof. Fix α < dimBK and x ∈ K. Let C > 0 and ρ > 0 be arbitrary. Since
K is self-embeddable, there is some bi-Lipschitz map f : K → B(x, ρ) so that
f(K) ⊆ K. Since dimB f(K) > α, there is some 0 < r ≤ ρ so that

Nr(B(x, ρ) ∩K) ≥ Nr(f(K)) ≥ C
(ρ
r

)α
.

Since C > 0 and ρ > 0 were arbitrary, dimA(K, x) ≥ α, as required. □

Now assuming uniform self-embeddability, we will see that the set of points
with tangents that have positive Hα-measure has full Hausdorff dimension for
α = dimAK. Since uniformly self-embeddable sets satisfy the hypotheses of [Fal89,
Theorem 4], it always holds that dimBK = dimHK (see also [Fra14, Theorem 2.10]).
On the other hand, it can happen in this class of sets that dimBK < α: for example,
this is the situation for self-similar sets in R with dimBK < 1 which fail the weak
separation condition; see [FHO+15, Theorem 1.3]. We provide a subset of full
Hausdorff dimension for which each point has a tangent with positive Hausdorff
α-measure.

The idea of the proof is essentially as follows. Let F be a weak tangent for
K with strictly positive Hausdorff α-content. For each s < dimBK, using the
implicit method of [Fal89, Theorem 4], we can construct a well-distributed set of
N balls at resolution δ, where δ−s ≪ N . Then, inside each ball, using uniform self-
embeddability, we can map an image of an approximate tangent T−1

δ (B(0, 1))∩K ≈
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F where Tδ has similarity ratio λ. ChoosingN to be large, the resulting collection of
images of the approximate tangent F is again a family of well-distributed balls at
resolution λ−1δ, with (λ−1δ)−s ≈ N . Repeating this construction along a sequence
of tangents converging to F yields a set E with dimHE ≥ s such that each x ∈ E
has a tangent which is an image of F (up to some negligible distortion), which has
positive Hausdorff α-content by upper semicontinuity of content.

We fix a compact set K. To simplify notation, we say that a function f : K → K
is in G(z, r, c) for z ∈ K and c, r > 0 if f(K) ⊂ B(z, r) and

cr|x− y| ≤ |f(x)− f(y)| ≤ c−1r|x− y|

for all x, y ∈ K.

Theorem 2.14. Let K ⊂ Rd be uniformly self-embeddable and let α = dimAK. Then

dimH{x ∈ K : ∃F ∈ Tan(K, x) with Hα
∞(F ) ≳ 1} = dimHK = dimBK.

Proof. Write α = dimAK. If dimBK = 0 we are done; otherwise, let 0 < s <
dimBK be arbitrary. Since K is uniformly self-embeddable, there is a constant
a ∈ (0, 1) so that for each z ∈ K and 0 < r ≤ diamK there is a map f ∈ G(z, r, a).
Next, from Corollary 2.7, there is a compact set F ⊂ B(0, 1) with Hα

∞(F ) ≥ 1 and
a sequence of similarities (Tk)∞k=1 with similarity ratios (λk)∞k=1 such that

F = lim
k→∞

Tk(K) ∩B(0, 1)

with respect to the Hausdorff metric. Set Qk = T−1
k (B(0, 1))∩K. We will construct

a Cantor set E ⊂ K of points each of which has pointwise Assouad dimension at
least α and has dimHE ≥ s.

We begin with a preliminary construction. First, since s < dimBK, there is
some r0 > 0 and a collection of points {yi}N0

i=1 ⊂ K such that |yi − yj| > 3r0 for
all i ̸= j and N0 ≥ 2sa−sr−s

0 . Now for each i, take a map ϕi ∈ G(yi, r0, a). Write
I = {1, . . . , N0}, and for i = (i1, . . . , in) ∈ In set

ϕi = ϕi1 ◦ · · · ◦ ϕin ,

and, having fixed some x0 ∈ K, write xi = ϕi(x0) ∈ ϕi(K). Observe that if the
maximal length of a common prefix of i and j is m, then

dist(ϕi(K), ϕj(K)) ≥ r0(ar0)
m.

We now begin our inductive construction. Without loss of generality, we may
assume that λn ≥ 12 for all n ∈ N and r0 ≤ 1. First, for each n ∈ N, define constants
(mn)

∞
n=1 ⊂ {0} ∪ N and (ρn)

∞
n=1 converging monotonically to zero from above by

the rules

1. 2−mn ≤ a2r0λ
−1
n

3
,

2. ρ0 = diamK, and

3. ρn := ρn−1 ·
aλ−1

n · (ar0)mn

3
.
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Next, for n ∈ N∪{0} we inductively choose points yn,i ∈ K and maps Ψn,i ∈
G(yn,i, ρn, a) for i ∈ Im1 × · · · × Imn . Let ∅ denote the empty word and let
y0,∅ ∈ K be arbitrary and let Ψ0,∅ denote the identity map. Then for each k = ij

with i ∈ Im1 × · · · × Imn−1 and j ∈ Imn , sequentially choose:
4. ψn,k ∈ G(Ψn−1,i(xj), ρnλna

−1, a)
5. yn,k = ψn,k ◦ T−1

n (0)
6. Ψn,k ∈ G(yn,k, ρn, a)

Finally, write J0 = {∅}, Jn = Im1 × · · · × Imn for n ∈ N, and let

En =
⋃
i∈Jn

B(yn,ij, 3ρn) and E = K ∩
∞⋂
n=1

En.

Suppose i ∈ Jn−1 and j ∈ Imn . Since xj ∈ K, Ψn−1,i(K) ⊂ B(yn−1,i, ρn−1), and
yn,ij ∈ ψn,ij(K) ⊂ B(Ψn−1,i(xj), ρn−1), we conclude since ρn−1 ≥ 3ρn that

B(yn,ij, 3ρn) ⊂ B(yn−1,i, 3ρn−1).

Moreover, yn,ij ∈ K, so the sets En are non-empty nested compact sets and
therefore E is non-empty.

We next observe the following fundamental separation properties of the balls
in the construction of the sets En. Let n ∈ N and suppose j1 ̸= j2 in Imn and
i ∈ Jn−1 (writing J0 = {∅}). Suppose j1 and j2 have a common prefix of maximal
length m. First recall that |xj1 − xj2| ≥ r0(ar0)

m, so that

|Ψn−1,i(xj1)−Ψn−1,i(xj2)| ≥ ρn−1(ar0)
m+1.

Then, since for j = 1, 2

yn,ijj ∈ ψn,ijj(K) ⊂ B
(
Ψn−1,i(xjj),

ρn−1(ar0)
mn

3

)
we observe that

|yn,ij1 − yn,ij2| ≥ ρn−1(ar0)
m+1 − 2

ρn−1(ar0)
mn

3
≥ ρn−1(ar0)

m+1

3
.

Since we assumed that λn ≥ 12, by the triangle inequality

(2.1) dist
(
B(yn,ij1 , 3ρn), B(yn,ij2 , 3ρn)

)
≥ ρn−1(ar0)

m+1

3
− 6ρn ≥ ρn−1(ar0)

m+1

6
.

We first show that dimHE ≥ s. By the method of repeated subdivision, define
a Borel probability measure µ with suppµ = E and for i ∈ Jn,

µ(B(yn,i, 3ρn) ∩K) =
1

#Jn

.

Now suppose U is an arbitrary open set with U ∩ E ̸= ∅. Intending to use the
mass distribution principle, we estimate µ(U). Assuming that U has sufficiently
small diameter, let n ∈ N be maximal so that

diamU ≤ a−1λn
2

ρn =
ρn−1(ar0)

mn

6
.
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By (2.1), there is a unique i ∈ Jn such that U ∩B(yn,i, 3ρn) ̸= ∅. We first recall by
choice of the constants mn that

ρn = (diamK) ·
(a2r0λ−1

n

3

)n
(ar0)

m1+···+mn

≥ (diamK)2−(m1+···+mn)(ar0)
m1+···+mn .

There are two cases. First assume ρn/6 < diamU . Thus

µ(U) ≤ 1

#Jn

≤
(1
2
ar0

)s(m1+···+mn)

≤ (diamK)−sρsn

≤
( 6

diamK

)s
· (diamU)s.

Otherwise, let k ∈ {0, . . . ,mn+1 − 1} be so that

ρn(ar0)
k+1

6
< diamU ≤ ρn(ar0)

k

6
.

By (2.1), U intersects at most Nmn−k
0 balls B(yn+1,ω, 3ρn+1) for ω ∈ Jn+1, so since

2−sk ≤ 1,

µ(U) ≤ 1

#Jn ·Nk
0

≤ (diamK)−sρsn · (2−s(ar0)
s)k

≤
( 6

ar0 diamK

)s
·
(ρn(ar0)k+1

6

)s
≤
( 6

ar0 diamK

)s
·
(
diamU

)s
.

This treats all possible small values of diamU , so there is a constant M > 0 such
that µ(U) ≤M(diamU)s. Thus dimHE ≥ s by the mass distribution principle.

Now fix

C = (3 + a−2)−α.

We will show that each z ∈ E has a tangent with Hausdorff α-content at least C.
Let z ∈ E and define

Sn(x) =
x− z

ρn(3 + a−2)
.

Our tangent will be an accumulation point of the sequence (Sn(K) ∩B(0, 1))∞n=1.
Now fix n ∈ N. Since z ∈ E, there is some ω ∈ Jn so that z ∈ B(yn,ω, 3ρn). By
choice of yn,ω, Qn = B

(
ψ−1
n,ω(yn,ω), λ

−1
n

)
∩K so that

ψn,ω(Qn) ⊆ B
(
yn,ω, ρna

−2
)
∩K ⊆ B

(
z, ρn(3 + a−2)

)
∩K

and therefore, writing Φn = Sn ◦ ψn,ω ◦ T−1
n ,

Φn(Tn(K) ∩B(0, 1)) ⊂ Sn(K) ∩B(0, 1).
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Then for x, y ∈ Tn(K) ∩B(0, 1), by the choice of ψ in (4),

(2.2)
|x− y|
3 + a−2

≤ |Φn(x)− Φn(y)| ≤
|x− y|

a2(3 + a−2)
.

Now, passing to a subsequence (nk)
∞
k=1, we can ensure that

lim
k→∞

Φnk
(F ) = Z0 and lim

k→∞
Snk

(K) ∩B(0, 1) = Z.

Moreover, recall that limk→∞ Tnk
(K) ∩ B(0, 1) = F and Hα

∞(F ) ≥ 1. Observe by
(2.2) that Hα

∞(Φnk
(F )) ≥ C for each k, so by upper semicontinuity of Hausdorff

content, Hα
∞(Z0) ≥ C. But again by (2.2),

dH
(
Z0,Φnk

(Tnk
(K) ∩B(0, 1))

)
≤ dH(Z0,Φnk

(F )) +
dH
(
F, Tnk

(K) ∩B(0, 1)
)

a2(3 + a−2)

so in fact Z0 ⊂ Z and Hα
∞(Z) ≥ C, as claimed. □

Remark 2.15. We note that the upper distortion bound in the definition of uni-
form self-embeddability is used only at the very last step to guarantee that the
images Φnk

(Tnk
(K)∩B(0, 1)) converge to a large set whenever the Tnk

(K)∩B(0, 1)
converge to a large set.

3. ASSOUAD DIMENSION OF NON-AUTONOMOUS SELF-SIMILAR

SETS

In this section, we determine a convenient formula for the Assouad dimension of
certain non-autonomous self-similar sets. Beyond being of general interest, this
formula will also play a critical role in §4.

3.1. Non-autonomous self-similar sets. The notion of a non-autonomous self-
conformal set was introduced and studied in [RU16], where under certain reg-
ularity assumptions the authors prove that the Hausdorff and box dimensions
are equal and given by the zero of a certain pressure function. In this section, we
consider a special case of their construction. For each n ∈ N, let Jn be a finite index
set and let Φn = {Sn,j}j∈Jn be a family of similarity maps Sn,j : Rd → Rd of the
form

Sn,j(x) = rn,jOn,jx+ dn,j

where rn,j ∈ (0, 1) andOn,j is an orthogonal matrix. To avoid degenerate situations,
we assume that associated with the sequence (Φn)

∞
n=1 there is an invariant compact

set X ⊂ Rd (that is Sn,j(X) ⊂ X for all n ∈ N and j ∈ Jn) and moreover that

(3.1) lim
n→∞

sup{r1,j1 · · · rn,jn : ji ∈ Ji for each i = 1, . . . , n} = 0.
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Under these assumptions, associated with the sequence (Φn)
∞
n=1 is an attractor

K =
∞⋂
n=1

⋃
(j1,...,jn)∈J1×···×Jn

S1,j1 ◦ · · · ◦ Sn,jn(X).

Since X is compact and invariant under any map Sn,j with j ∈ Jn, finiteness
of each Jn implies that K is the intersection of a nested sequence of compact
sets and therefore non-empty and compact. The sequence (Φn)

∞
n=1 is called a

non-autonomous iterated function system (IFS) and the attractor K is called the non-
autonomous self-similar set. We refer the reader to [RU16, §2] for more detail on this
construction in a general setting.

Definition 3.1. We say that the non-autonomous IFS (Φn)
∞
n=1

(i) satisfies the open set condition if the invariant compact set X can be chosen
to have non-empty interior U = X◦ so that for each n ∈ N and j, j′ ∈ Jn,
Sn,j(U) ⊂ U and Sn,j(U) ∩ Sn,j′(U) = ∅ for j ̸= j′ ∈ Jn; and

(ii) has uniformly bounded contractions if there is an rmin > 0 so that rmin ≤ rn,j for
all n ∈ N and j ∈ Jn.

Since Leb
(∑

j∈Jn
Sn,j(U)

)
≤ Leb(U) and Leb(Sn,j(U)) ≥ rdmin > 0, the above two

conditions combine to give the following additional condition:
(iii) There is an M ∈ N so that #Jn ≤M for all n ∈ N.

Our main goal in this section is, assuming the open set condition and uniformly
bounded contractions, to establish an explicit formula for dimAK, depending only
on the rn,j . This will be done in Theorem 3.7. In order to obtain this result, we
first make a reduction to a symbolic representation of the attractor K, which we
will denote by ∆. Since this symbolic construction will later be required in §4, we
establish this concept in a somewhat more general context.

3.2. Metric trees. First, fix a reference set Ω and write T0 = {Ω}. Let {Tk}∞k=1 be a
sequence of partitions of Ω so that Tk+1 is a refinement of the partition Tk. For each
Q ∈ Tk with k ∈ N, there is a unique parent Q̂ ∈ Tk−1 with Q ⊂ Q̂. Suppose that for
any γ1 ̸= γ2 ∈ Ω there is a k ∈ N such that there are Q1 ̸= Q2 ∈ Tk so that γ1 ∈ Q1

and γ2 ∈ Q2. We call such a family {Tk}∞k=0 a tree, and write T =
⋃∞

k=0 Tk.
Now, suppose that there is a function ρ : T → (0,∞) which satisfies

1. 0 < ρ(Q) < ρ(Q̂), and
2. there is a sequence (rk)∞k=1 converging to zero from above such that ρ(Q) ≤ rk

for all Q ∈ Tk.
The function ρ induces a metric d on the space Ω by the rule

d(γ1, γ2) = inf{ρ(Q) : Q ∈ T and {γ1, γ2} ⊂ Q}.

In particular, diam(Q) = ρ(Q) with respect to the metric d. We then refer to the
data (Ω, {Tk}∞k=0, ρ) as a metric tree.

We say that a subset A ⊂ T is a section if Q1 ∩ Q2 = ∅ whenever Q1, Q2 ∈ A
with Q1 ̸= Q2. If

⋃
Q∈AQ = Q0, we say that A is a section relative to Q0, and we

say that a section is complete if it is a section relative to Ω. Note that sections are
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necessarily countable and, for example, each Tk for k ∈ N∪{0} is a section relative
to Ω. The set of sections is equipped with a partial order A1 ≼ A2 if for all Q1 ∈ A1

there is a Q2 ∈ A2 such that Q2 ⊂ Q1. In this situation, we say that A1 is refined
by A2. This partial order is equipped with a meet: that is, given a finite family of
sections A1, . . . ,An, there is a unique section A1 ∧ · · · ∧ An which is maximal with
respect to the partial order such that

A1 ∧ · · · ∧ An ≼ Ai

for all i = 1, . . . , n.
A metric tree is equipped with a natural family of sections relative to Ω which

respect the geometry of the metric d. We define

T (r) = {Q ∈ T : ρ(Q) ≤ r < ρ(Q̂)}

where, abusing notation, we write ρ(Ω̂) = ∞. Property 1 above ensures that this is
indeed a section and property 2 ensures that Tk ≼ T (r) for all k sufficiently large.

3.3. Reduction to symbolic representation. Now that we have defined the metric
tree, we introduce a symbolic representation of the set K. Let ∆ =

∏∞
n=1 Jn. For

(j1, . . . , jn) ∈ J1 × · · · × Jn, we denote the cylinder

[j1, . . . , jn] = {j1} × · · · × {jn} ×
∞∏

k=n+1

Jk.

We associate with this cylinder the valuation ρ([j1, . . . , jn]) = r1,j1 · · · rn,jn . Let Tn

denote the set of all cylinders corresponding to finite sequences in J1 × · · · × Jn.
It is clear that this sequence of partitions, equipped with the valuation ρ (recalling
the non-degeneracy assumption (3.1)), induces the structure of a metric tree on ∆.
We also define a natural projection π : ∆ → K by

{π((jn)∞n=1)} =
∞⋂
n=1

S1,j1 ◦ · · · ◦ Sn,jn(X).

Again, this map is well-defined by (3.1). A direct argument shows that π is
Lipschitz.

We now prove that dimAK = dimA ∆. The open set condition ensures that the
only work in this result is to handle the mild overlaps which occur from adjacent
rectangles. In fact, our result will follow from the following standard elementary
lemma for metric spaces which are “almost bi-Lipschitz equivalent”.

Lemma 3.2. Let (X, d1) and (Y, d2) be non-empty bounded metric spaces and suppose
there is a function f : X → Y and constants M ∈ N and c > 0 so that for all 0 < r < 1,

(i) diam(f(B(x, r))) ≤ cr for all x ∈ X ; and
(ii) for every y ∈ Y there are x1, . . . , xM ∈ X such that B(y, r) ⊂

⋃M
i=1 f(B(xi, r)).

Then dimAX = dimA Y .
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Proof. Without loss of generality, we may assume that c ≥ 1. Throughout the
proof, let ϵ > 0 and 0 < r ≤ R < 1 be arbitrary. First, let x ∈ X be arbitrary and,
writing, N = Nr(f(B(x,R))), get y1, . . . , yN ∈ Y so that f(B(x,R)) ⊂

⋃N
i=1B(yi, r).

Since diam f(B(x,R)) ≤ cR,

N ≲ϵ

(
cR

r

)dimA Y+ϵ

≲

(
R

r

)dimA Y+ϵ

.

Moreover, for each i = 1, . . . , N , there are xi,1, . . . , xi,M ∈ X such that B(yi, r) ⊂⋃M
j=1 f(B(xi,j, r)). Thus since {B(xi,j, r) : i = 1, . . . , N and j = 1, . . . ,M} is a cover

for B(x,R),

Nr(B(x,R)) ≤ NM ≲ϵ

(
R

r

)dimA Y+ϵ

.

Since ϵ > 0 and 0 < r ≤ R < 1 are arbitrary, we see that dimAX ≤ dimA Y .
Conversely, let y ∈ Y be arbitrary and get x1, . . . , xM ∈ X such that B(y,R) ⊂⋃M

i=1 f(B(xi, R)). Moreover, for each i = 1, . . . ,M , writing Ni = Nc−1r(B(xi, R)),
there are xi,1, . . . , xi,Ni

where B(xi, R) ⊂
⋃Ni

j=1B(xi,j, c
−1r) and

Ni ≲ϵ

(
cR

r

)dimA X+ϵ

≲

(
R

r

)dimA X+ϵ

.

Thus since {f(B(xi,j, c
−1r)) : i = 1, . . . ,M and j = 1, . . . , Ni} is a cover for B(y,R)

with diam f(B(xi,j, c
−1r)) ≤ r,

Nr(B(y,R)) ≲ϵ N1 + · · ·+NM ≲ϵ

(
R

r

)dimA X+ϵ

.

Again since ϵ > 0 and 0 < r ≤ R < 1 are arbitrary, we get dimA Y ≤ dimAX ,
completing the proof. □

We now obtain our result on the Assouad dimension as a direct corollary.

Corollary 3.3. Let {Φn}∞n=1 be a sequence of self-similar IFSs with associated non-
autonomous self-similar set K and metric tree ∆. Suppose the IFS also satisfies the
open set condition and has uniformly bounded contractions. Then dimAK = dimA ∆.

Proof. Let 0 < r < 1. First, recall that the map π : ∆ → K is Lipschitz. Moreover,
if [i1, . . . , im], [j1, . . . , jℓ] ∈ ∆(r) are distinct, then

S1,i1 ◦ · · · ◦ Sm,im(U) ∩ S1,j1 ◦ · · · ◦ Sℓ,jℓ(U) = ∅

and by the uniformly bounded contraction assumption,

Leb (S1,i1 ◦ · · · ◦ Sm,im(U)) ≈ Leb (S1,j1 ◦ · · · ◦ Sℓ,jℓ(U)) ≈ rd.

But for x ∈ K, Leb(B(x, r)) ≈ rd. Thus there is a constant M ∈ N not depending
on r so that if x ∈ K is arbitrary, there are cylinders I1, . . . , IM ∈ ∆(r) so that
B(x, r) ⊂ π(I1)∪· · ·∪π(IM) so that each Ij ∈ ∆(r) and therefore diam Ij ≤ r. Thus
the conditions for Lemma 3.2 are satisfied and dimAK = dimA ∆. □
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3.4. Regularity properties of Assouad dimension. In this section, we establish
two regularity properties related to the Assouad dimension.

Lemma 3.4. Let A = R+ or A = {κ0n : n ∈ N} for some κ0 > 0. Suppose f : A×A→
{−∞} ∪ R is any function satisfying the following two assumptions:

(i) f is bounded from above.
(ii) For all x, y, z ∈ A,

f(x, y + z) ≤ y · f(x, y) + z · f(x+ y, z)

y + z
.

Then

β := lim sup
y→∞

lim sup
x→∞

f(x, y)

= lim
y→∞

lim sup
x→∞

f(x, y)

= lim
y→∞

sup
x∈A

f(x, y)

= inf
y∈A

lim sup
x→∞

f(x, y).

Moreover, if B ⊂ A is of the form B = {κn : n ∈ N} for some κ > 0, then

β = lim
y→∞
y∈B

sup
x∈B

f(x, y).

Proof. We assume that β > −∞: the proof for β = −∞ is similar (and substan-
tially easier). Let C ∈ R be such that f(x, y) ≤ C for all (x, y) ∈ A× A. Note that
applying (ii) inductively, we obtain for any {yi}ℓi=1 ⊂ A and y ∈ A

(3.2) f
(
y,
∑ℓ

i=1 yi
)
≤
∑ℓ

i=1 yif
(
y +

∑i−1
j=1 yj, yi

)∑ℓ
i=1 yi

.

We take the empty sum to be 0.
We first show that the limit defining β exists. Write h(y) = y · lim supx→∞ f(x, y).

Applying (3.2),

h(y1 + y2) = (y1 + y2) lim sup
x→∞

f(x, y1 + y2)

≤ (y1 + y2) lim sup
x→∞

y1f(x, y1) + y2f(x+ y1, y2)

y1 + y2
≤ h(y1) + h(y2).

Therefore the function h : A → R is subadditive, so the limit limy→∞ h(y)/y ex-
ists and is equal to infy∈A h(y)/y. Note that the same argument applies with a
supremum in place of the limit supremum.

We next show for each ϵ > 0 and all y sufficiently large depending on ϵ and all
x ∈ A,

(3.3) f(x, y) ≤ β + 3ϵ.
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By the definition of β, there are y0 andK so that for all x ≥ K, f(x, y0) ≤ β+ϵ. Now
let y ∈ A be arbitrary and write y = ℓy0 + t for some ℓ ∈ N∪{0} and 0 < t ≤ y0.
Applying (3.2), there is some M ∈ A (depending only on y0 and C) so that for all
y ≥M ,

f(x, y) ≤ y0
∑ℓ−1

i=0 f(x+ iy0, y0) + tf(x+ ℓy0, t)

y

≤ ℓy0
y
(β + ϵ) +

Ct

y
≤ β + 2ϵ.

Now let x ∈ (0, K) and y ≥M +K, and set t = K − x. Again applying (3.2),

f(x, y) ≤ tf(x, t) + (y − t)f(K, y − t)

y

≤ t

y
C +

y − t

y
(β + 2ϵ) ≤ β + 3ϵ

for all y sufficiently large since t ≤ K. This proves (3.3).
Finally, suppose B ⊂ A is of the form B = {κn : n ∈ N} for some κ > 0. First,

note that since B ⊂ A,

β ≥ lim
y→∞
y∈B

sup
x∈B

f(x, y)

and moreover the limit exists as proven above. Conversely, let (x, y) ∈ A× A be
arbitrary with y ≥ 2κ and get (x0, y0) ∈ B ×B and (tx, ty) ∈ A× A with tx, ty ≤ κ
such that x = x0 + tx and y − tx = y0 + ty. Then applying (ii) twice,

f(x0, y0) ≥
y0 + t

y0
· f(x, y − tx)−

t

y0
f(x+ y0, t)

≥ f(x+ tx, y − tx)−
Cκ

y − 2κ

≥ y

y − tx
· f(x, y)− tx

y − tx
f(x, y − tx)−

Cκ

y − 2κ

≥ f(x, y)− 2
Cκ

y − 2κ
.

Therefore since C and κ are fixed and y0 ≥ y − 2κ,

lim sup
y0→∞
y0∈B

sup
x∈B

f(x0, y0) ≥ lim sup
y→∞

sup
x∈A

f(x, y) = β

as required. □

As an application, we can use this subadditivity result to obtain a nice reformula-
tion of the Assouad dimension of an arbitrary set. Let X be a compact doubling
metric space and for δ ∈ (0, 1) and r ∈ (0, 1), write

ψ(r, δ) = sup
x∈X

Nrδ

(
B(x, r) ∩K

)



TANGENTS OF INVARIANT SETS 25

and then set

Ψ(r, δ) =
logψ(r, δ)

log(1/δ)
.

One can think of Ψ(r, δ) is the best guess for the Assouad dimension of X at scales
0 < rδ < δ < 1. This heuristic is made precise in the following result.

Corollary 3.5. Let X be a compact doubling metric space. Then

(3.4) dimAX = lim sup
δ→0

lim sup
r→0

Ψ(r, δ) = lim
δ→0

sup
r∈(0,1)

Ψ(r, δ).

Proof. Since X is doubling, there is an M ≥ 0 so that Ψ(r, δ) ∈ [0,M ]. Moreover,
given r, δ1, δ2 ∈ (0, 1), by covering balls B(x, rδ1) by balls of radius rδ1δ2,

ψ(r, δ1δ2) ≤ ψ(r, δ1)ψ(rδ1, δ2)

and therefore

Ψ(r, δ1δ2) =
logψ(r, δ1δ2)

log(1/δ1δ2)

≤ logψ(r, δ1) + logψ(rδ1, δ2)

log(1/δ1δ2)

=
log(1/δ1)Ψ(r, δ1) + log(1/δ2)Ψ(rδ1, δ2)

log(1/δ1) + log(1/δ2)
.

Thus with the change of coordinate g(x, y) = (e−x, e−y), the second equality in (3.4)
follows by applying Lemma 3.4 to the function Ψ ◦ g.

To see the first equality in (3.4), it is a direct consequence of the definition of
the Assouad dimension that

lim sup
δ→0

lim sup
r→0

Ψ(r, δ) ≤ dimAK

and that there are sequences (δn)∞n=1 and (rn)
∞
n=1 with limn→∞ δn = 0 such that

lim
δ→0

sup
r∈(0,1)

Ψ(r, δ) ≥ lim sup
n→∞

Ψ(rn, δn) ≥ dimAK,

as required. □

Finally, we prove that in the definition of the Assouad dimension one may replace
the exponent associated to localized coverings of balls of the same size by an
exponent coming from localized packings of balls which may have different sizes.
This will be useful since the natural covers appearing from the symbolic repre-
sentation of K consist of cylinders which may have very non-uniform diameters
when indexed by length. First, for a metric space X , x ∈ X , and R ∈ (0, 1), denote
the family of all localized centred packings by

pack(X, x,R) =

{
{B(xi, ri)}∞i=1 :

0 < ri ≤ R, xi ∈ X,B(xi, ri) ⊂ B(x,R),
B(xi, ri) ∩B(xj, rj) = ∅ for all i ̸= j

}
.
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In our proof, we will also require the Assouad dimension of a measure. Given
a compact doubling metric space X and a Borel measure µ with suppµ = X , the
Assouad dimension of µ is given by

dimA µ = inf
{
α ≥ 0 : ∀x ∈ X ∀0 < r ≤ R < diamX

µ(B(x,R))

µ(B(x, r))
≲α

(
R

r

)α}
.

The main result of [VK88] (the original Russian version can be found in [VK87]) is
that for a compact doubling metric space X ,

dimAX = inf{dimA µ : suppµ = X}.

In the following result, we observe that the existence of good measures provides a
convenient way to control the localized disk packing exponent.

Proposition 3.6. Let X be a bounded metric space. Then

dimAX = inf
{
α : ∀0 < R < 1 ∀x ∈ X ∀{B(xi, ri)}∞i=1 ∈ pack(X, x,R)

∞∑
i=1

rαi ≲α R
α
}
.

Proof. That

dimAX ≤ inf
{
α : ∀0 < R < 1 ∀x ∈ X ∀{B(xi, ri)}∞i=1 ∈ pack(X, x,R)

∞∑
i=1

rαi ≲α R
α
}

is immediate by specializing to packings with ri = r for some 0 < r ≤ R, using
the equivalence (up to a constant factor) of covering and packing counts.

Now to show the lower bound, if X is not doubling, then dimAX = ∞ and the
result is trivial. Otherwise, by passing to the completion (which does not change
the value of the Assouad dimension) and recalling that a bounded doubling
metric space is totally bounded, we may assume that X is also compact. Thus let
α > dimAX be arbitrary. By [VK88, Theorem 1], there is a probability measure
µ with suppµ = X and dimA µ < α. Then for any 0 < R < 1, x ∈ X , and
{B(xi, ri)}∞i=1 ∈ pack(X, x,R), by disjointness,

µ
(
B(x,R)

)
≥

∞∑
i=1

µ
(
B(xi, ri)

)
≳ µ

(
B(x,R)

) ∞∑
i=1

(ri
R

)α
.

Therefore,

∞∑
i=1

rαi ≲ Rα

which, since α > dimAX was arbitrary, yields the claimed result. □
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3.5. Proof of the Assouad dimension formula. We can now state and prove the
desired formula for the Assouad dimension of the non-autonomous self-similar
set K. Let n ∈ N and m ∈ N be arbitrary, and let θ(n,m) denote the unique value
satisfying the equation

∑
j1∈Jn+1

· · ·
∑

jm∈Jn+m

m∏
k=1

r
θ(n,m)
n+k,jk

= 1.

Note that θ(n,m) is precisely the similarity dimension of the IFS

Φn+1 ◦ · · · ◦ Φn+m = {f1 ◦ · · · ◦ fm : fi ∈ Φn+i}.

We establish the following formula for the Assouad dimension of K.

Theorem 3.7. Let (Φn)
∞
n=1 be a non-autonomous IFS satisfying the open set condition

and with uniformly bounded contraction ratios. Denote the associated non-autonomous
self-similar set by K. Then

(3.5) dimAK = lim
m→∞

sup
n∈N

θ(n,m).

Proof. Let us first show that the limit in (3.5) exists by verifying that the function
θ(n,m) satisfies the assumptions of Lemma 3.4 with A = N. First, θ(n,m) ∈ [0, d]
since #Jn ≥ 1 for all n ∈ N and the open set condition along with scaling
properties of d-dimensional Lebesgue measure forces

∑
j∈Jn

rdn,j ≤ 1. Thus it
remains to verify assumption (ii) in Lemma 3.4. Let n,m1,m2 ∈ N be arbitrary.
Recalling the definitions of θ(n,m1) and θ(n+m1,m2), by Hölder’s inequality with
exponents (m1 +m2)/m1 and (m1 +m2)/m2,

1 =
∑

j1∈Jn+1

· · ·
∑

jm1+m2∈Jn+m1+m2

(
m1∏
k=1

rn+k,jk

)θ(n,m1)(m1+m2∏
k=m1+1

rn+k,jk

)θ(n+m1,m2)

≥
∑

j1∈Jn+1

· · ·
∑

jm1+m2∈Jn+m1+m2

(
m1+m2∏
k=1

rn+k,jk

)m1θ(n,m1)+m2θ(n+m1,m2)
m1+m2

.

But θ(n,m1 +m2) is the unique value satisfying ϕ(θ(n,m1 +m2)) = 1, where

ϕ(s) =
∑

j1∈Jn+1

· · ·
∑

jm1+m2∈Jn+m1+m2

(
m1+m2∏
k=1

rn+k,jk

)s

is monotonically decreasing in s, yielding the desired inequality. In particular, the
limit in (3.5) exists.

Let us now verify the formula. First, recall from Corollary 3.3 that dimAK =
dimA ∆. Let ϵ > 0 be fixed and let M be sufficiently large so that for all n ∈ N and
m ≥M ,

|θ(n,m)− s| ≤ ϵ where s = lim
m→∞

sup
n∈N

θ(n,m).
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Now fix a cylinder [j1, . . . , jn] ⊂ ∆ for some (j1, . . . , jn) ∈ J1 × · · · × Jn and write
R = diam([j1, . . . , jn]) = r1,j1 · · · rn,jn . Note that if m ≥M , by definition of θ(n,m)

∑
jn+1∈Jn+1

· · ·
∑

jn+m∈Jn+m

n+m∏
k=1

r
θ(n,m)
k,jk

= Rθ(n,m).

But the family of cylinders{
[j1, . . . , jn+m] : (jn+1, . . . , jn+m) ∈ Jn+1 × · · · × Jn+m

}
forms a packing of B(x,R). Thus since m ≥ M is arbitrary, by Proposition 3.6,
dimAK ≥ s− ϵ.

Conversely, let us upper bound dimAK. Recall that ϵ > 0 is fixed as above
and let m ≥ M be fixed. Now let 0 < r ≤ R < 1 and fix a ball B(x,R) ⊂ ∆. By
definition of the metric on ∆, B(x,R) = [j1, . . . , jn] where r1,j1 · · · rn,jn ≤ R. We
inductively build a sequence of covers (Bk)

∞
k=1 for B(x,R) such that each Bk is

composed only of cylinder sets and

(3.6)
∑

[i1,...,iℓ]∈Bk

(r1,i1 · · · rℓ,iℓ)s+ϵ ≤ Rs+ϵ.

and

(3.7) r1,i1 · · · rℓ,iℓ ≥ r · rmmin for all [i1, . . . , iℓ] ∈ Bk.

Begin with B1 = {[j1, . . . , jn]}, which clearly satisfies the requirements.
Now suppose we have constructed Bk for some k ∈ N. Let [i1, . . . , iℓ] ∈ Bk be

an arbitrary cylinder set. If r1,i1 · · · rℓ,iℓ ≤ r, do nothing; this guarantees that (3.7)
holds. Otherwise, replace the cylinder [i1, . . . , iℓ] with the family of cylinders

{[i1, . . . , iℓ, j1, . . . , jm] : (j1, . . . , jm) ∈ Jℓ+1 × · · · × Jℓ+m}.

The choice of m ≥M and the definition of θ(ℓ,m) ensures that (3.6) holds.
Repeat this process until every cylinder in Bk has diameter ≤ r. That this

process terminates at a finite level k is guaranteed by (3.1). Thus replacing each
cylinder [i1, . . . , iℓ] with a ball B(xi1,...,iℓ , r) for some xi1,...,iℓ ∈ [i1, . . . , iℓ], by (3.6)
and (3.7) the corresponding cover has∑

[i1,...,iℓ]∈Bk

rs+ϵ ≤ r
−m(s+ϵ)
min

∑
[i1,...,iℓ]∈Bk

(r1,i1 · · · rℓ,iℓ)s+ϵ ≲ Rs+ϵ

which guarantees that dimAK ≤ s+ ϵ, as claimed. □

4. TANGENT STRUCTURE AND DIMENSION OF

GATZOURAS–LALLEY CARPETS

In this section, we introduce the definitions of Gatzouras–Lalley and Barański
carpets and prove our main results on tangents and pointwise Assouad dimension
of Gatzouras–Lalley carpets.
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4.1. Gatzouras–Lalley and Barański carpets.

4.1.1. Defining the maps. Fix an index set I with #I ≥ 2, and for j = 1, 2 fix
contraction ratios (βi,j)i∈I ⊂ (0, 1) and translations (di,j)i∈I ⊂ R. We then call the
IFS {Ti}i∈I diagonal when

Ti(x1, x2) = (βi,1x1 + di,1, βi,2x2 + di,2) for each i ∈ I.

Let ηj denote the orthogonal projection onto the jth coordinate axis, i.e. ηj(x1, x2) =
xj . We denote by Λj = {Si,j}i∈I the projected systems, where ηj ◦ Tj = Si,j ◦ ηj . We
will often write η = η1 to denote simply the projection onto the first coordinate
axis. Of course, Si,j(x) = βi,jx+ di,j are iterated function systems of similarities.

Let I∗ =
⋃∞

n=0 In, and for i = (i1, . . . , in) ∈ I∗ and j = 1, 2, write

Ti = Ti1 ◦ · · · ◦ Tin ,
Si,j = Si1,j ◦ · · · ◦ Sin,j

and

pi = pi1 · · · pin ,
βi,j = βi1,j · · · βin,j.

For n ∈ N and γ ∈ Ω := IN, we write γ↿n to denote the unique prefix of γ in In.
Now ηj induces an equivalence relation ∼j on I where i ∼ i′ if Si,j = Si′,j . Let

ηj : I → I/ ∼j denote the natural projection. Intuitively, ηj(i) is the set of indices
which lie in the same column or row as the index i. Then ηj extends naturally to a
map on Ω by ηj((in)∞n=1) = (ηj(in))

∞
n=1 ⊂ ηj(I)∗; and similarly extends to a map on

I∗. For notational clarity, we will refer to words in I∗ using upright indices, such
as i, and words in ηj(I∗) using their underlined variants, such as i. Note that if
i ∼j j, then and Si,j = Sj,j . In particularly, we may unambiguously write Si,j and
βi,j for i ∈ ηj(I∗).

Associated with the IFS {Ti}i∈I is a unique non-empty compact attractor K,
satisfying K =

⋃
i∈I Ti(K). Note that the projected IFS {Si,j}i∈I has attractor Kj =

ηj(K) for j = 1, 2. Recalling that Ω = IN, let π : Ω → K denote the continuous map{
π
(
(in)

∞
n=1

)}
= lim

n→∞
Si1 ◦ · · · ◦ Sin(K).

Without loss of generality, and for the remainder of this document, we will
assume that K ⊂ [0, 1]2. We can now introduce our two primary classes of self-
affine sets.

Definition 4.1. We say that the carpet is of type Gatzouras–Lalley if:
1. Ti((0, 1)2) ∩ Tj((0, 1)2) = ∅ for all i ̸= j,
2. either Si,1((0, 1)) = S(j,1)((0, 1)) or Si,1((0, 1))∩Sj,1((0, 1)) = ∅ for all i, j, and
3. βi,1 > βi,2 for all i ∈ I;

and type Barański if:
1. Ti((0, 1)2) ∩ Tj((0, 1)2) = ∅ for all i ̸= j, and



30 ANTTI KÄENMÄKI & ALEX RUTAR

2. either Si,ℓ((0, 1)) = S(j,ℓ)([0, 1]) or Si,ℓ((0, 1)) ∩ Sj,ℓ((0, 1)) = ∅ for all i, j and
ℓ = 1, 2.

Moreover, we say that an IFS {fi}i∈I with attractor K satisfies the strong separation
condition (or SSC for short) if fi(K) ∩ fj(K) = ∅ for all i ̸= j ∈ I.

4.1.2. Dimensions of Gatzouras–Lalley carpets. To conclude this section, we recall
some standard results on the dimensions of Gatzouras–Lalley carpets. We defer
the corresponding results for Barański carpets to §5.1.

Before we do this, we first recall the notion of the lower dimension, which is in
some sense dual to the definition of Assouad definition. Let K ⊂ Rd be compact.
Then the lower dimension of K is given by

dimLK = sup
{
s : ∃C > 0∀0 < r ≤ R < 1∀x ∈ K

Nr(B(x,R) ∩K) ≥ C
(R
r

)s}
.

In order to state our results on the Hausdorff dimensions, we must also introduce
some notation for Bernoulli measures. Let P denote the collection of probability
vectors on I, i.e.

P = P(I) :=
{
(pi)i∈I : pi ≥ 0 for all i and

∑
i∈I

pi = 1
}
.

Equip P with the topology inherited from RI . Given p ∈ P , considering p as a
probability measure on I , we let pN denote the infinite product measure supported
on Ω. We let µp = π∗p

N denote the corresponding invariant measure on K, where
π∗ denotes the pushforward map. Note that the projections ηj also induce natural
maps ηj : P(I) → P(ηj(I)) by ηj(p)ℓ =

∑
i∈η−1

j (ℓ) pi.
Given a probability vector p ∈ P , we write

H(p) = −
∑
i∈I

pi log pi and χj(p) = −
∑
i∈I

pi log βi,j.

We now recall the main results of [LG92]—stated below in (i) and (ii)—as well
as the result of [Mac11]—stated below in (iii). We also note that the same proof
as given in [Mac11] (which is explained more precisely in [Fra14, Theorem 2.13])
gives the analogous result for the lower dimension.

Proposition 4.2 ([LG92; Mac11]). Let K be a Gatzouras–Lalley carpet.

(i) The Hausdorff dimension of K is given by

dimHK = sup
p∈P

s(p)

where

s(p) :=
H(p)

χ2(p)
+

H(η(p))

χ1(p)− χ2(p)
.

Moreover, the supremum is always attained at an interior point of P .
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(ii) The box dimension of K exists and is given by the unique solution to∑
i∈I

β
dimB η(K)
i,1 β

dimB K−dimB η(K)
i,2 = 1 where

∑
j∈η(I)

β
dimB η(K)
j,1 = 1.

(iii) The Assouad dimension of K is given by

dimAK = dimB η(K) + max
ℓ∈η(I)

t(ℓ)

where t(ℓ) is defined as the unique solution to the equations∑
j∈η−1(ℓ)

β
t(ℓ)
j,2 = 1.

Similarly, the lower dimension of K is given by

dimLK = t+ min
ℓ∈η(I)

t(ℓ).

4.1.3. Regular points and interior words. We conclude this section with the notion
of a regular point and an interior word.

Definition 4.3. We say that a point x ∈ K is regular if for each r ∈ (0, 1), there is
an i ∈ I∗ with βi,1 ≲ r such that B(η(x), r)∩ η(K) ⊂ Si,1(η(K)). Given i ∈ I∗, we
say that i is an interior word if Si,1([0, 1]) ⊂ (0, 1). We let Bn ⊂ In denote the set of
interior words of length n.

The following lemma is standard. Recall that Ω = IN is the symbolic space
coding the attractor K. Here, and elsewhere, given an n ∈ N and Y ⊂ In, we
embed YN in Ω in the natural way. We will abuse notation and interchangeably
refer to elements in the subsystem or in the full system.

Lemma 4.4. Let K be a Gatzouras–Lalley carpet.
(i) If η(K) satisfies the SSC, then each x ∈ K is regular.

(ii) Suppose γ ∈ BN
n for some n ∈ N. Then π(γ) is regular.

We can now guarantee the existence of large subsystems consisting only of regular
points. This result is essentially [FJS10, Lemma 4.3].

Proposition 4.5 ([FJS10]). Let K be a Gatzouras–Lalley carpet corresponding to the IFS
{Ti}i∈I . Then for every ϵ > 0, there is an n ∈ N and a family J ⊂ In so that the IFS
{Tj : j ∈ J } with attractor Kϵ satisfies the following conditions:

(i) each i ∈ J is an interior word,
(ii) dimHKϵ ≥ dimHK − ϵ,

(iii) dimB η(Kϵ) ≥ dimB η(K)− ϵ, and
(iv) there are 0 < ρ2 < ρ1 < 1 so that βi,1 = ρ1 and βi,2 = ρ2 for all i ∈ I and each

column has the same number of maps.
In particular, each x ∈ Kϵ is a regular point with respect to the IFS {Ti}i∈I and dimAKϵ =
dimHKϵ = dimLKϵ.
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Proof. First, if K is contained in a vertical line, then K is the attractor of a
self-similar IFS in R and the result is substantially easier. Now applying [FJS10,
Lemma 4.3], there exists a family J0 ⊂ In0 with attractor K0 satisfying conditions
(ii), (iii), and (iv). By condition (iv), there is a t ∈ R so that t(i) = t for all i ∈ J0.
Therefore

dimHK0 = dimB η(K) + t

and since K is not contained in a vertical line, we may assume that dimB η(K0) > 0.
Since η(K0) is the attractor of a self-similar IFS, iterating J0 if necessary and

removing the maps in the first and last column, obtain a family J ⊂ J n
0 with

corresponding attractor Kϵ such that t(j) = t for any j ∈ J , and dimB η(Kϵ) ≥
dimB η(K)− ϵ. Since words which correspond to rectangles that do not lie in the
first or last column are necessarily interior words, combining this construction
with Lemma 4.4 provides a family J satisfying the desired properties. □

4.2. Approximate squares and symbolic slices. A common technique when
studying invariant sets for iterated function systems on some index set I is to
first reduce the problem to a symbolic problem on the coding space I∗. However,
the main technical complexity in understanding the dimension theory Gatzouras–
Lalley carpets, and more generally self-affine sets, is that the cylinder sets Ti(K)
are often exponentially distorted rectangles. As a result, we will keep track of two
symbolic systems simultaneously, which together will capture the geometry of the
set K.

Fix a Gatzouras–Lalley IFS Λ = {Ti}i∈I . We first introduce some notation for
handling cylinders. We then associate with the IFS Λ, and the related defining
data that we introduced in §4.1, two important metric trees: first, the metric tree of
approximate squares, and second the metric tree of symbolic slices.

First, recall that Ω = IN is the space of infinite sequences on I. Given k ∈
N∪{0} and a word i ∈ Ik, we define the cylinder corresponding to i by

[i] = {γ ∈ Ω : γ↿k = i}.
The family of cylinders {[i] : i ∈ Ik}∞k=0 defines a tree: we will often abuse notation
and simply refer to {Ik}∞k=0 as a tree. We will associate with this tree a variety of
metrics, such as those induced by the maps i 7→ βi,j for j = 1, 2. We will also use
the same notation for the projected words {η(Ik)}∞k=0.

Next, we define the metric tree of approximate squares. Before we do this, we
introduce the notion of a pseudo-cylinder. Suppose i ∈ Ik and j ∈ η(Iℓ). We then
write

P (i, j) = {γ = (in)
∞
n=1 ∈ Ω : (i1, . . . , ik) = i and η(ik+1, . . . , ik+ℓ) = j}.

Note that map (i, j) 7→ P (i, j) is injective. Another equivalent way to understand
the pseudo-cylinder P (i, j) is as a finite union of cylinders inside the cylinder [i],
all of which lie inside the same column; that is,

(4.1) P (i, j) =
⋃

k∈η−1(j)

[ik].
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FIGURE 3. Two iterations of a Gatzouras–Lalley IFS within a cylinder,
with a wide pseudo-cylinder in highlighted in blue and a tall pseudo-
cylinder in red.

We refer the reader to Figure 3 for a depiction of the definition of a pseudo-cylinder.
Now given an infinite word γ ∈ Ω, let Lk(γ) be the minimal integer so that

βγ1,1 · · · βγLk(γ),1 < βγ1,2 · · · βγk,2.

In other words, Lk(γ) is chosen so that the level Lk(γ) rectangle has approximately
the same width as the height of the level k rectangle. Write γ↿Lk(γ)

= ij where
i ∈ Ik. We then define the approximate square Qk(γ) ⊂ Ω by

Qk(γ) = P (i, η(j)).

While different γ may define the same approximate square, the choice of i and η(j)
are unique. For fixed i, let U(i) ⊂ η(I∗) denote the set of j so that P (i, j) is an
approximate square. Of course, Qk+1(γ) ⊂ Qk(γ) and moreover for any γ, γ′ ∈ Ω,
either Qk(γ) = Qk(γ

′) or Qk(γ) ∩ Qk(γ
′) = ∅. In particular, U(i) is a complete

section and the approximate squares P (i, j) are disjoint in symbolic space for
fixed i.

We say that a pseudo-cylinder P (i, j) is wide if j ≼ k for some k ∈ U(i); in other
words, P (i, j) contains approximate squares of the form P (i, k). Otherwise, we
say that P (i, j) is tall. In other words, one can think of the wide pseudo-cylinders
as “interpolating” between the cylinder P (i,∅) = [i] and the approximate square
P (i, j) = Qn(γ).

Denote the set of all approximate squares by

Sk = {Qk(γ) : γ ∈ Ω} and S =
∞⋃
k=0

Sk.

As discussed above, every approximate square is uniquely associated with a pair
(i, j), so we may therefore define a metric induced by ρ(Q) = βi,2, which makes
the collection of approximate squares into a metric tree.

To conclude this section, we define the metric tree of symbolic slices. Suppose
we fix a word γ ∈ Ω. The word γ = (in)

∞
n=1 defines for each n ∈ N a self-similar

IFS Φn = {Sj,2 : j ∈ η−1(η(in))}. This IFS is precisely the IFS corresponding to the
column containing the index in. Note that there are only finitely many possible
choices for the Φn, so the sequence (Φn)

∞
n=1 has as an attractor a non-autonomous

self-similar set Kη(γ) and corresponding metric tree Ω(η(γ)), as defined in §3. This
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non-autonomous IFS has uniformly bounded contractions and satisfies the OSC
with respect to the open interval (0, 1). For notational simplicity, we denote the
cylinder sets which compose this metric tree as

Fη(γ),n = {[j1, . . . , jn] : (j1, . . . , jn) ∈ Φ1 × · · · × Φn} and Fη(γ) =
∞⋃
n=0

Fη(γ),n.

We call Kη(γ) the symbolic slice associated with the word γ. If the projected IFS
{Si,1}i∈η(I) satisfies the SSC, then if x = η(π(γ)),

{x} ×Kη(γ) = η−1(x) ∩K

is precisely the vertical slice of K containing x. In general, Kη(γ) is always con-
tained inside a vertical slice of K. The symbolic fibre Kη(γ) (and its associated
Assouad dimension) was introduced and studied in [FR22+, §1.2] in the more
general setting of overlapping diagonal carpets.

4.3. Tangents of Gatzouras–Lalley carpets. It turns out that the pointwise As-
souad dimension at x = π(γ) is closely related to the Assouad dimension of the
symbolic fibre Kη(γ). In this section, we make this notion precise, and moreover
use it to construct large tangents for Gatzouras–Lalley carpets.

In our main result in this section, we prove that approximate squares con-
taining a fixed word γ ∈ Ω converge in Hausdorff distance to product sets of
weak tangents of Kη(γ) with the projection η(K), up to some finite distortion and
contributions from adjacent approximate squares. First, we define

Φk,γ(x, y) =
(
S−1
γ↿Lk(γ),1

(x), S−1
γ↿k,2

(y)
)
.

By choice of Lk(γ), the maps Φk,γ are (up to some constant-size distortion) homo-
theties. One can think of Φk,γ as mapping the approximate square π(Qk(γ)) to the
unit square [0, 1]2.

Proposition 4.6. LetK be a Gatzouras–Lalley carpet and let γ ∈ Ω be arbitrary. Suppose
(in)

∞
n=1 is any sequence such that η(in) = η(γ↿n). Then

(4.2) pH
(
η(K)× (S−1

in,2(Kη(γ)) ∩ [0, 1]); Φn,γ(K) ∩ [0, 1]2
)
≲ κn

where κ = max
{βi,2

βi,1
: i ∈ I

}
∈ (0, 1). Moreover, suppose γ is regular. Then for any

γ ∈ Ω and F ∈ Tan(K, π(γ)), there is an E ∈ Tan(Kη(γ)) and a similarity map h so that
h(F ) ⊂ η(K)× E.

Proof. We first prove that

dH
(
η(K)× (S−1

in,2(Kη(γ)) ∩ [0, 1]),Φn,γ(π(Qn(γ)))
)
≲ κn

Fix n ∈ N and write k = Ln(γ). Let Qn(γ) = P (γ↿n, j) and enumerate η−1(j) =

{j1, . . . , jn} ⊂ Ik−n. Observe that η(Tji(K)) = Sji,1(K) does not depend on
the choice of i = 1, . . . ,m. Now Φn,γ(Tγ↿nji(K)) is contained in the rectangle
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[0, 1]×Sji,2(K). Moreover, the rectangle [0, 1]×Sji,2(K) has height ≲ κn. Therefore

(4.3) dH

(
η(K)×

m⋃
i=1

Sji,2([0, 1]),Φn,γ(Qn(γ))

)
≲ κn.

But approximating the set Sin,2([0, 1]) ∩ Kη(γ) at level n with cylinders at level
k = Ln(γ), using the fact that η(in) = η(γ↿n),

(4.4) dH

(
S−1
in,2(Kη(γ)) ∩ [0, 1],

m⋃
i=1

Sji,2([0, 1])

)
≲ κn.

Combining (4.3) and (4.4) gives the claim. In particular, noting that Qn(γ) ⊂ K
and Φn,γ(Qn(γ)) ⊂ [0, 1]2 gives (4.2).

Now suppose in addition that x = π(γ) is regular and let r > 0 be arbitrary.
Since x is regular, there is an n ∈ N with r ≤ βγ↿n,1 ≲ r such that

B(x, r) ∩K ⊂
ℓ⋃

j=1

Tij(K)

where

{i1, . . . , iℓ} = {i ∈ In : η(i) = η(γ↿n) and Ti(K) ∩B(x, r) ̸= ∅}.

Now exactly as before, each rectangle Tij(K) has width ≈ r and height ≲ rκn.
Therefore identifying x ∈ K with the analogous point x ∈ Kη(γ), there is a simi-
larity map hr with contraction ratio in some interval [1, c] for a fixed c depending
only on the IFS so that

pH
(
r−1(K − x) ∩B(0, 1);hr(η(K))× r−1(Kη(γ) − x)

)
≲ κn.

Now suppose F ∈ Tan(K, x) so that F = limn→∞ r−1
n (K − x) ∩B(0, 1). Passing to

a subsequence, we may assume that the hrn have contraction ratios converging to
some r0 ≥ 1. Thus passing again to a subsequence, let F0 = limn→∞(r0rn)

−1(K −
x) ∩B(0, 1). Since r0 ≥ 1, we have F ⊂ F0. Passing again to a subsequence, let

lim
n→∞

(r0rn)
−1(Kη(γ) − x) ∩B(0, 1) = E ∈ Tan(Kη(γ)).

Thus r−1
0 F ⊂ F0 ⊂ η(K)× E, as claimed. □

To conclude this section, we establish our general result which guarantees the
existence of product-like tangents for arbitrary points in Gatzouras–Lalley carpets.

Proposition 4.7. Let K be a Gatzouras–Lalley carpet. Then for each x ∈ K, there is an
F ∈ Tan(K, x) so that

HdimH η(K)+dimA Kη(γ)(F ) ≳ 1,

where γ ∈ Ω is such that π(γ) = x. In particular,

dimA(K, x) ≥ max{dimH η(K) + dimAKη(γ), dimBK}.
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Proof. We will construct the set F essentially as a product η(K) × E where
E is a weak tangent of Kη(γ). First, recall from Corollary 3.3 that dimAKη(γ) =
dimA Ω(η(γ)). Thus there is a sequence (nk)

∞
k=1 diverging to infinity and words

ik ∈ Ink with η(ik) = γ↿nk
such that

E := lim
k→∞

S−1
ik,2

(Kη(γ)) ∩ [0, 1]

has HdimA Kη(γ)(E) ≳ 1.
Thus by Proposition 4.6 applied along the sequence (ik)

∞
k=1, since the images

Φ−1
n,γ([0, 1]

2) are rectangles with bounded eccentricity containing π(γ), there is a
tangent F ∈ Tan(K, x) containing an image of η(K)× E under a bi-Lipschitz map
with constants depending only on K. But η(K) is Ahlfors–David regular so that

HdimH η(K)+dimA Kη(γ)(F ) ≥ HdimH η(K)+dimA Kη(γ)
(
η(K)× E

)
≳ 1

as claimed. The result concerning dimA(K, x) then follows by Proposition 2.2 and
Proposition 2.13. □

4.4. Upper bounds for the pointwise Assouad dimension. We now prove our
main upper bound for the pointwise Assouad dimension of Gatzouras–Lalley
carpets. As a result of the local inhomogeneity of Gatzouras–Lalley carpets,
obtaining good upper bounds requires some care. We will prove a sequence of
lemmas which, morally, provide optimal covers for a variety of symbolic objects:
these covers will then be combined to obtain our general upper bound for the
pointwise Assouad dimension.

We first show that, as a result of the vertical alignment of their component
cylinders, pseudo cylinders can essentially be covered by their projection. Recall
that S denotes the set of all approximate squares. Then if P (i, j) is any wide
pseudo-cylinder, we can write it as a union of the approximate squares in the
family

Q(i, j) = {Q ∈ S : Q = P (i, k) for some k ∈ η(I∗) and Q ⊂ P (i, j)}.

Since each Q = P (i, k) for some k, we have Q ∈ S(βi,2) so that this family of
approximate squares forms a section.

Lemma 4.8. Let P (i, j) be a wide pseudo-cylinder. Then

#Q(i, j) ≈
(
βij,1

βi,2

)dimB η(K)

.

Proof. First, enumerate Q(i, j) = {Q1, . . . , Qm}, and for each i = 1, . . . ,m, there
is a unique ki so that Qi = P (i, ki). Moreover, {k1, . . . , km} forms a section relative
to [j], so that writing s = dimB η(K) and recalling that η(K) is the attractor of a
self-similar IFS satisfying the open set condition,

(4.5)
m∑
i=1

βs
ki,1

= βs
j,1.
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But βiki,1 ≈ βi,2 since each Qi is an approximate square, which gives the desired
result. □

In the next result, we provide good covers for cylinder sets using approximate
squares with diameter bounded above by the height of the corresponding rectangle.
Heuristically, a cylinder set can first be decomposed into approximate squares
using Lemma 4.8, and an “average” approximate square itself has box dimension
the same as the box dimension of K. To make this notion precise, we simply
reverse the order: we begin with a good cover for the box dimension of K, and
take the image under some word i. The image of each approximate square is a
wide pseudo-cylinder, so we may apply Lemma 4.8 to complete the bound.

Lemma 4.9. Suppose i ∈ I∗ and 0 < r ≤ βi,2. Then

#{Q ∈ S(r) : Q ⊂ [i]} ≈
(
βi,2
r

)dimB K

·
(
βi,1
βi,2

)dimB η(K)

Proof. Fix i ∈ I∗ and 0 < r ≤ βi,2. Write δ = r/βi,2, so by inspecting the proofs
of [LG92, Lemmas 2.1, 2.2, & 2.3], we see that

#S(δ) ≈ (1/δ)dimB K .

Enumerate S(δ) = {Q1, . . . , Qm} and for each i = 1, . . . ,m, we may write Qi =
P (ji, ki) for some ji ∈ I∗ and ki ∈ η(I∗). Then for each i = 1, . . . ,m,

Q(iji, ki) ⊂ S(r) and [i] =
m⋃
i=1

⋃
Q∈Q(iji,ki)

Q.

Thus by Lemma 4.8 applied to each pseudo-cylinder P (iji, ki), since Qi is an
approximate square and βjiki,1 ≈ βji,2,

#{Q ∈ S(r) : Q ⊂ [i]} =
m∑
i=1

#Q(iji, ki)

≈
m∑
i=1

(
βijiki,1

βiji,2

)dimB η(K)

≈
(
βi,2
r

)dimB K

·
(
βi,1
βi,2

)dimB η(K)

as claimed. □

To conclude our collection of preliminary lemmas, we use the Assouad dimension
of the symbolic fibre Kη(γ) to control the size of “column sections” of approximate
squares. We note that the word i appears in the hypothesis but not the conclu-
sion: this is simply to clarify the application of this lemma when it is used in
Proposition 4.11.
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Lemma 4.10. Let ϵ > 0 and γ ∈ Ω be arbitrary. Suppose k ∈ N and Qk(γ) = P (i, j).
Let A be any section of I∗ such that A ≼ η−1(j). Then∑

k∈A

β
dimA Kη(γ)+ϵ

k,2 ≲ϵ,γ 1.

Proof. The assumption on the section A precisely means that {ik : k ∈ A} is a
section relative to i in Fη(γ). Then by Proposition 3.6 applied to the metric space
Ω(η(γ)) (recalling that dimAΩ(η(γ)) = dimAKη(γ) from Corollary 3.3), since A is a
section,

∑
k∈A

(
βik,2
βi,2

)dimA Kη(γ)+ϵ

≲ϵ,γ 1.

Cancelling the βi,2 gives the desired result. □

Finally, by combining the various counts that we have established earlier in this
section, we are now in position to compute the upper bound for the pointwise
Assouad dimension.

Let us begin with an intuitive explanation for this proof. Since x is regular,
we will reduce the problem of computing covers of balls to computing covers for
approximate squares. Thus suppose we fix an approximate square P (i, j), which is
the union of cylinders {ik : η(k) = j}. We wish to cover this set with approximate
squares in S(r). There are two cases. First, the rectangle corresponding to the
cylinder ik has height greater than or equal to r, in which case we simply keep this
cylinder and obtain a good bound for the cover using Lemma 4.9: this is the family
A1. Otherwise, the rectangle is shorter, and we instead want to cover groups
of cylinders simultaneously. Such groups are precisely wide pseudo-cylinders
corresponding to elements of A2 and have height r, which we can then cover using
Lemma 4.8. These covers are then combined using Lemma 4.10.

Proposition 4.11. Let K be a Gatzouras–Lalley carpet and suppose x = π(γ) ∈ K.
Then

dimA(K, x) ≥ max{dimBK, dimH η(K) + dimAKη(γ)}

with equality if x is regular.

Proof. Recalling the general lower bound proven in Proposition 4.7, we must
show that

dimA(K, x) ≤ max{dimBK, dimH η(K) + dimAKη(γ)} =: ζ

when x is regular. We obtain this bound by a direct covering argument. We will
prove that for any k ∈ N and approximate square Qk(γ) = P (i, j), if 0 < r ≤ βi,2,
then

(4.6) #{Q ∈ S(r) : Q ⊂ Qk(γ)} ≲

(
βi,2
r

)ζ

.
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Assuming this, since x is regular, for any ball B(x,R), there is an R′ ≲ R and at
most two approximate squares Q1, Q2 ∈ S(R′) lying in the same column such
that B(x,R) ⊂ π(Q1) ∪ π(Q2). Since Q1, Q2 lie in the same column, Qj = Qkj(γj)
for some kj ∈ N where η(γj) = η(γ). Moreover, if 0 < r ≤ R and Q ∈ S(r) is
arbitrary, then diamπ(Q) ≲ r. Thus (4.6) immediately gives the correct bound, up
to a constant factor, for Nr(B(x,R) ∩K).

It remains to prove (4.6). Fix an approximate square Qk(γ) = P (i, j) and
suppose 0 < r ≤ βi,2 is arbitrary. First, let

A0 = η−1(j) ∧ Fη(γ)(r/βi,2) and A = {ik : k ∈ A0}.
We then decompose A = A1 ∪ A2, where

A1 = A \ Fη(γ)(r) and A2 = A ∩ Fη(γ)(r).

First, suppose ik ∈ A1. Then, by definition, βik,2 > r which, by definition of A0,
implies that η(k) = j. Thus by Lemma 4.9 applied to the cylinder ik and scale r,
since dimB η(K) ≤ dimBK and βik,1 ≈ βi,2,

(4.7) #{Q ∈ S(r) : Q ⊂ [ik]} ≈
(
βik,2
r

)dimB K (
1

βk,2

)dimB η(K)

.

Otherwise, suppose ik ∈ A2 ⊂ Fη(γ)(r). Since A0 ≼ η−1(j), there is a j′ so that
η(k)j′ = j. Thus choice of j′ ensures that

P (ik, j′) = Qk(γ) ∩ [ik].

Thus by Lemma 4.8 and since Qk(γ) = P (i, j) is an approximate square,

(4.8) #{Q ∈ S(r) : Q ⊂ Qk(γ) ∩ [ik]} = #Q(ik, j′ ≈
(

1

βk,2

)dimB η(K)

.

Thus by applying (4.7) and (4.8) to the respective components and recalling that
βik,2 ≈ r whenever ik ∈ A2,

#{Q ∈ S(r) : Q ⊂ Qk(γ)}

=
∑
ik∈A1

#{Q ∈ S(r) : Q ⊂ [ik]}+
∑
ik∈A2

#{Q ∈ S(r) : Q ⊂ Qk(γ) ∩ [ik]}

≈
∑
ik∈A1

(
βik,2
r

)dimB K (
1

βk,2

)dimB η(K)

+
∑
ik∈A2

(
1

βk,2

)dimB η(K)

≲
∑
ik∈A1

(
βik,2
r

)ζ (
βi,2
βik,2

)ζ

β
dimA Kη(γ)

k,2 +
∑
ik∈A2

(
βi,2
r

)ζ

β
dimA Kη(γ)

k,2

=

(
βi,2
r

)ζ ∑
k∈A0

β
dimA Kη(γ)

k,2

≲

(
βi,2
r

)ζ

where the last line follows by Lemma 4.10 applied to the section A0. Thus (4.6)
follows, and therefore our desired result. □
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4.5. Dimensions of level sets of pointwise Assouad dimension. Given an index
i ∈ I, let Φη(i) denote the IFS corresponding to the column containing the index i,
that is

Φη(i) = {Sj,2 : j ∈ I and η(j) = η(i)}.

Now given a word γ = (in)
∞
n=1 ∈ Ω, recall that the symbolic slice Kη(γ) is the

non-autonomous self-similar set associated with the IFS {Φη(in)}∞n=1. Since there
are only finitely many choices for the Φη(in), the hypotheses of Theorem 3.7 are
automatically satisfied and

dimAKη(γ) = lim
m→∞

sup
n∈N

θη(γ)(n,m)

where

∑
(j1,...,jm)∈η−1(η(i1,...,in))

m∏
k=1

β
θη(γ)(n,m)

jk,2
= 1.

We now obtain our main formula for the pointwise Assouad dimension of arbitrary
points in Gatzouras–Lalley carpets.

Theorem 4.12. Let K be a Gatzouras–Lalley carpet. Then for every x ∈ K with x =
π(γ), there is an F ∈ Tan(K, x) with Hs(F ) ≳ 1 where

s := dimB η(K) + dimAKη(γ)

= dimB η(K) + lim
m→∞

sup
n∈N

θη(γ)(n,m)

In particular,

max{dimH F : F ∈ Tan(K, x)} ≥ s and dimA(K, x) ≥ max{s, dimB η(K)}

where both inequalities are equalities if x is regular. In particular, if η(K) satisfies the
strong separation condition then equality holds for all x ∈ K.

Proof. By Proposition 4.7, there is an F ∈ Tan(K, x) so that

HdimH η(K)+dimA Kη(γ)(F ) ≳ 1.

Moreover, dimAKη(γ) = limm→∞ supn∈N θη(γ)(n,m) by Theorem 3.7. The formula
for dimA(K, x), including the case when x is regular, then follows by Proposi-
tion 4.11.

If x is regular, it moreover follows from Proposition 4.6 that for any F ∈
Tan(K, x), there is a similarity map h and a weak tangent E ∈ Tan(Kη(γ)) so that
h(F ) ⊂ η(K)× E. Since dimB η(K) = dimH η(K),

dimH F = dimH h(F ) ≤ dimB η(K) + dimHE ≤ dimB η(K) + dimAKη(γ)

as required.
Finally, we recall that if η(K) satisfies the strong separation condition, then

each x ∈ K is regular by Lemma 4.4 (i). □
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Our next goal is to prove that the set of pointwise Assouad dimensions forms an
interval. The main observation required in the proof is a stability result for the
expression θη(γ)(n,m) when m is large. In order to facilitate the proof, we establish
some notation. First suppose m ∈ N and i ∈ Im. Define ϕi : [0, 1] → R by

ϕi(s) =
∑
j∈In

η(j)=η(i)

βs
j,2.

Since ϕi is strictly decreasing with ϕi(0) > 1 and ϕi(1) < 1, there is a unique t(i)
so that ϕi(t(i)) = 1. Note that 0 < smin ≤ t(i) ≤ smax < 1 where smin = min{t(i) :
i ∈ I} and smax = max{t(i) : i ∈ I}. Of course, the function t is chosen precisely
so that

θη(γ)(n,m) = t(γn+1, . . . , γn+m).

We can now prove, essentially, that the set of fibre dimensions form an interval.

Lemma 4.13. Let K be a Gatzouras–Lalley carpet and suppose dimLK < α < dimAK.
Then for all k0 ∈ N sufficiently large, for all n ∈ N there is in ∈ Bn

k0
⊂ Ik0n satisfying

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) = α− dimB η(K).

Proof. Let i ∈ Im and j ∈ I be arbitrary. We first show that |t(ij) − t(i)|
converges to zero uniformly as m diverges to infinity. First, if j ∈ I is arbitrary,
then

(4.9) ϕij(t(i)) =
∑
i∈I

η(i)=η(j)

β
t(i)
i,2 ≈ 1.

On the other hand,

ϕij(t(i) + ϵ) ≤ ϕij(t(i)) · (min{βi,2 : i ∈ I})mϵ

so that, if t(i) + ϵ ≥ t(ij), applying (4.9), we observe that (min{βi,2 : i ∈ I})mϵ ≈ 1
which forces ϵ ≈ 1/m. The same argument also holds for the lower bound.
Iterating the above bound, we have therefore proven that for any m, k ∈ N, i ∈ Im,
and j ∈ Ik,

(4.10) |t(ij)− t(i)| ≲ k

m
.

We now proceed with our general construction. First, fixing any interior word
j ∈ I∗ and i ∈ I so that dimAK = dimB η(K) + t(i),

dimAK = dimB η(K) + lim
k→∞

t(jik);

and similarly for the lower dimension. Thus for all sufficiently large k0, there are
words jL, jA ∈ Bk0 so that

dimB η(K) + t(jL) < α < dimB η(K) + t(jA).

We inductively construct (jL,k, jA,k)
∞
k=1 so that, for each k ∈ N,
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1. α− dimB η(K)− 1
k
≤ t(jL,k) ≤ α− dimB η(K),

2. α− dimB η(K) ≤ t(jA,k) ≤ dimAK + dimB η(K) + 1
k
,

3. jL,k, jA,k ∈ B∗
k0

and, for k ≥ 2, jL,k, jA,k ∈ {jL,k−1, jA,k−1}∗, and
4. |jL,k| ≥ k and |jA,k| ≥ k.

First, set jL,1 = jL and jA,1 = jA which clearly satisfy the desired properties. Now
suppose we have constructed jL,k and jA,k. Since t(jA,k) ≥ α− dimB η(K), for any
m ∈ N,

lim
n→∞

t(jmL,kj
n
A,k) ≥ dimB η(K)− α.

Moreover, t(jmL,k) ≤ dimB η(K) − α and, by taking m ≥ k sufficiently large and
applying (4.10), for all n ∈ N sufficiently large,

|t(jmL,kjn+1
A,k )− t(jmL,kj

n
A,k)| ≤

1

k + 2
<

1

k + 1
.

Combining these two observations, there is a pair m,n so that jA,k+1 := jmL,kj
n
A,k ∈

B∗
k0

satisfies conditions 1 and 4. The identical argument gives jL,k+1 ∈ B∗
k0

satisfy-
ing 2, as claimed.

To complete the proof, since jL,k ∈ B∗
k0

for all k ∈ N, we may identify the
sequence (jL,k)

∞
k=1 with a sequence (in)

∞
n=1 where in ∈ Bk0 for all n ∈ N. It

immediately follows from 4 that

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) ≥ α− dimB η(K).

To establish the converse bound, it suffices to show for every k ∈ N that

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) ≤ α− dimB η(K) +
1

k
.

By 3, for all k ∈ N, there is a K ∈ N so that for all n ≥ K, in ∈ {jL,k, jA,k}∗. For
each ℓ ∈ N, write kℓ = iKℓ+1 · · · iK(ℓ+1) and note that kℓ ∈ {jL,k, jA,k}∗ for all ℓ ∈ N.
Thus for any n,m ∈ N,

t(kℓ+1 · · · kℓ+m) ≤
1

m

m∑
i=1

t(kℓ+i) ≤ α− dimB η(K) +
1

k
.

But by Lemma 3.4 and the subadditivity property of t established in Theorem 3.7,

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) = lim
m→∞

sup
n∈N

t(kn+1 · · · kn+m)

which gives the claim. □

To conclude this section, we assemble the results proven in the prior two sections
to obtain our main result.

Theorem 4.14. Let K be a Gatzouras–Lalley carpet. Then for any dimBK ≤ α ≤
dimAK,

(4.11) dimH{x ∈ K : dimA(K, x) = α} = dimHK.
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Otherwise, if α /∈ [dimBK, dimAK], then {x ∈ K : dimA(K, x) = α} = ∅. However,

(4.12) HdimH K
(
{x ∈ K : dimA(K, x) ̸= dimAK}

)
= 0.

Proof. Note that if dimBK = dimAK, then dimA(K, x) = dimAK for all x ∈ K
and the results are clearly true. Thus we may assume that dimHK < dimBK <
dimAK.

We first establish (4.11). Let ϵ > 0 be arbitrary and dimBK ≤ α ≤ dimAK.
Apply Proposition 4.5 and get k ∈ N and a family J ⊂ Bk with corresponding
attractor Kϵ satisfying dimHK − ϵ ≤ dimHKϵ = dimAKϵ and dimB η(K) − ϵ ≤
dimB η(Kϵ). If α < dimAK, iterating the system if necessary, by Lemma 4.13 get a
sequence (in)

∞
n=1 with in ∈ Bk for all n ∈ N and moreover

(4.13) lim
m→∞

sup
n∈N

t(in+1 · · · in+m) = α− dimB η(K).

If instead α = dimAK, instead simply take in = ik0 where i0 ∈ I is any word
such that dimAK = dimB η(K) + t(i0). Note that t(j) = dimAKϵ − dimB η(Kϵ)
for any j ∈ J . Thus by taking ϵ to be sufficiently small, we may assume that
t(j) ≤ α− dimB η(K) for all j ∈ J .

Now, let (Nk)
∞
k=1 be a sequence of natural numbers satisfying limk→∞Nk/k = ∞

and write

Ω0 =
∞∏
k=1

J Nk × {i1} × · · · × {ik}.

By taking each Nk to be sufficiently large, we may ensure that dimH π(Ω0) ≥
dimHKϵ − ϵ. Fix γ ∈ Ω0: it remains to verify that dimA(K, π(γ)) = α. Since γ ∈ BN

k ,
π(γ) is a regular point of K by Lemma 4.4 (ii). By passing to the subsystem
induced by Bk ⊂ Ik, write γ = (kk)

∞
k=1 where kk ∈ Bk. Thus by Theorem 4.12 and

Lemma 3.4,

dimA(K, x) = max
{
dimBK, lim

m→∞
sup
n∈N

t(kn+1 · · · kn+m)
}
.

Since i1 · · · im appears as a subword of of γ for arbitrarily large m, by (4.13) and
since α > dimBK, it follows that dimA(K, x) ≥ α.

We now obtain the upper bound. Let ϵ > 0 be arbitrary. By (4.13), there is an
ℓ0 ∈ N so that whenever ℓ ≥ ℓ0, we have t(ij+1 · · · ij+ℓ) ≤ α−dimB η(K)+ ϵ. Let m
be sufficiently large so that ℓ0/m ≤ ϵ. Since limk→∞Nk/k = ∞, for all n sufficiently
large, there is a j ∈ N so that

kn+1 · · · kn+m = j1 · · · jm−ℓij+1 · · · ij+ℓ.

Thus for m,n sufficiently large, if ℓ ≥ ℓ0,

t(kn+1 · · · kn+m) ≤
(m− ℓ) · t(j1 · · · jm−ℓ) + ℓ · t(ij+1 · · · ij+ℓ)

m

≤ m− ℓ

m
· (α− dimB η(K)) +

ℓ

m
(α− dimB η(K) + ϵ)
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≤ α− dimB η(K) + ϵ

and similarly if ℓ < ℓ0, recalling that t(ij+1 · · · ij+ℓ) ≤ 1,

t(kn+1 · · · kn+m) ≤ α− dimB η(K) +
ℓ0
m

≤ α− dimB η(K) + ϵ.

Therefore

lim sup
m→∞

lim sup
n→∞

t(kn+1 · · · kn+m) ≤ α− dimB η(K) + ϵ

and since ϵ > 0 was arbitrary,

lim
m→∞

sup
n∈N

t(kn+1 · · · kn+m) = lim sup
m→∞

lim sup
n→∞

t(kn+1 · · · kn+m) ≤ α− dimB η(K)

so that dimA(K, x) ≤ α, as claimed. Of course, we recall as well that dimBK ≤
dimA(K, x) ≤ dimAK by Proposition 2.13.

We finally consider the points x such that dimA(K, x) < dimAK. Let i0 ∈ I be
such that dimAK = dimB η(K) + t(i0). Let

JM := {(i1, . . . , iM) ∈ IM : (i1, . . . , iM) ̸= (i0, . . . , i0)}

have attractor KM ⊂ K. Since JM is a proper subsystem, dimHKM < dimHK
so that HdimH K(KM) = 0. Now let x ∈ K have dimA(K, x) < dimAK. Suppose
x = π(γ) where γ = (in)

∞
n=1, so that

dimA(K, x) ≥ max

{
dimBK, dimB η(K) + lim

m→∞
sup
n∈N

t(in+1, . . . , in+m)

}
.

Since dimA(K, x) < dimAK,

lim
m→∞

sup
n∈N

t(in+1, . . . , in+m) < t(i0).

In particular, there is a constant M so that γ does not contain iM0 as a subword.
Thus x ∈ KM for some M and therefore

HdimH K ({x ∈ K : dimA(K, x) < dimAK}) ≤
∞∑

M=1

HdimH K(KM) = 0

as required. □

Remark 4.15. We recall that if K is a Gatzouras–Lalley carpet, then HdimH K(K) >
0, with HdimH K(K) < ∞ if and only if K is Ahlfors regular; see [LG92]. In
particular, the positivity of the Hausdorff measure guarantees that the claim
(4.12) in Theorem 4.14 is not vacuous; and, if the Hausdorff measure is finite,
Theorem 4.14 is trivial.
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5. TANGENT STRUCTURE AND DIMENSION OF BARAŃSKI CARPETS

5.1. Dimensions and decompositions of Barański carpets. Recall the definition
of the Barański carpet and basic notation from §4.1. SupposeK is a Barański carpet
and γ ∈ Ω is arbitrary. For each k ∈ N, we define a probability vector ξk(γ) by the
rule

ξk(γ)i =
#{1 ≤ ℓ ≤ k : γℓ = i}

k
for each i ∈ I.

In other words, ξk(γ) is the distribution of the letter frequencies in the first k letters
of γ. We then define

Γk(γ) =
χ1(ξk(γ))

χ2(ξk(γ))
.

The function Γk induces a partition Ω = Ω0 ∪ Ω1 ∪ Ω2 by

Ω0 = {γ : lim inf
k→∞

Γk(γ) ≤ 1 ≤ lim sup
k→∞

Γk(γ)}

Ω1 = {γ : lim sup
k→∞

Γk(γ) < 1}

Ω2 = {γ : 1 < lim inf
k→∞

Γk(γ)}.

We now recall the dimensional formula for a general Barański carpet. First, we
decompose P = P1 ∪ P2 where

Pj = {w ∈ P : χj(w) ≤ χj′(w)}.

Now given a measure w ∈ Pj , recall [Bar07, Corollary 5.2] which states that

dimH π∗w
N =

H(ηj(w))

χj(w)
+
H(w)−H(ηj(w))

χj′(w)
.

Here and for the remainder of this document, for notational simplicity, given j = 1
we write j′ = 2 and given j = 2 we write j′ = 1.

We also introduce some notation for symbolic slices both in the horizontal and
vertical directions. Given γ ∈ Ω and j ∈ 1, 2, let θηj(γ),j be defined by the rule

∑
(j1,...,jm)∈η−1

j (ηj(i1,...,in))

m∏
k=1

β
θηj(γ),j(n,m)

jk,j
= 1.

The value θη(γ) = θη1(γ),1 was defined previously in the context of a Gatzouras–
Lalley carpet. As is the case with a Gatzouras–Lalley carpet, if we denote by
Kηj(γ),j the non-autonomous self-similar set associated with the non-autonomous
self-similar IFS {Si,j : i ∈ η−1(η(γk))}∞k=1, then

dimAKηj(γ),j = lim
m→∞

sup
n∈N

θηj(γ),j(n,m).
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Assuming η1(K) (resp. η2(K)) satisfies the SSC, then Kη1(γ),1 (resp. Kη2(γ),2) is
precisely the intersection of K with the vertical (resp. horizontal) line containing
x = π(γ). We now recall [Fra14, Theorem 2.12] concerning the Assouad dimension
and the main result of [Bar07] on the Hausdorff dimensions of Barański carpets.
While this result is not stated explicitly, the relevant details can be obtained directly
by inspecting the proof.

Proposition 5.1 ([Bar07; Fra14]). Let K be a Barański carpet such that Ω1 ̸= ∅ and
Ω2 ̸= ∅. Then:

(i) For each j = 1, 2,

dimH π(Ω0 ∪ Ωj) ≤ dj

where

dj = max
w∈Pj

(
H(ηj(w))

χj(w)
+
H(w)−H(ηj(w))

χj′(w)

)
.

In particular, dimHK = max{d1, d2}.
(ii) We have

dimAK = dimB η(K) + max
j=1,2

{tj}

where

tj = max
ℓ∈ηj(I)

tj(ℓ)

and tj(ℓ) is the unique solution to the equation∑
j∈η−1

j (ℓ)

β
tj(ℓ)
j,2 = 1.

5.2. Pointwise Assouad dimension along uniformly contracting sequences. In
this section, we state a generalization of our results on Gatzouras–Lalley carpets
to Barański carpets, with the caveat that we restrict our attention to points coded
by sequences which contract uniformly in one direction. The arguments are
similar to the Gatzouras–Lalley case so we only include detail when the proofs
diverge. Handling more general sequences would result in a more complicated
formula for the pointwise Assouad dimension depending on the scales at which
the contraction ratio is greater in one direction than the other, which we will not
treat here.

We begin by defining the analogues of pseudo-cylinders and approximate
squares. Fix j = 1, 2. Suppose i ∈ Ik and j ∈ ηj(Iℓ). We then write

Pj(i, j) = {γ = (in)
∞
n=1 ∈ Ω : (i1, . . . , ik) = i and η(ik+1, . . . , ik+l) = j}.
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Now let γ ∈ Ω be arbitrary and let k ∈ N. Let j be chosen so that βγ↿k,j ≥ βγ↿k,j′ .
We then let Lk(γ) ≥ k be the minimal integer so that

βγ↿Lk,j(γ)
,j < βγ↿k,j′ .

Write γ↿Lk,j(γ)
= ij and define the approximate square

Qk(γ) = Pj(i, ηj(j)).

Finally, we call a pseudo-cylinder wide if Pj(i, j) contains an approximate square
Pj(i, k); otherwise, we call the pseudo-cylinder tall.

In the case when the Barański carpet is in fact a Gatzouras–Lalley carpet, these
definitions with j = 1 coincide with the definitions in the Gatzouras–Lalley case.

Next, the collection of approximate squares forms a metric tree when equipped
with the valuation ρ(Pj(i, ηj(j))) = βi,j′ . Note that for each approximate square
Q, there is a unique choice for j except precisely when βγ↿k,j = βγ↿k,j′ , so indeed ρ
is well-defined.

Similarly as in the Gatzouras–Lalley case, given a pseudo-cylinder Pj(i, j), we
write

Qj(i, j) = max{A : A is a section of S relative to Pj(i, j)}

where S is the collection of all approximate squares and the maximum is with
respect to the partial ordering on sections. That the maximum always exists
follows from the properties of the meet. In the case when the pseudo-cylinder is
wide, this coincides precisely with the definition in the Gatzouras–Lalley case.

However, unlike in the Gatzouras–Lalley case, we will also have to handle tall
pseudo-cylinders, which have a more complex structure. This additional structure
is handled in the following covering lemma.

Lemma 5.2. (i) Let Pj(i, j) be a wide pseudo-cylinder. Then

#Qj(i, j) ≈
(
βij,j

βi,j′

)dimB ηj(K)

.

(ii) Let Pj(i, j) be a tall pseudo-cylinder. Then

#Qj(i, j) ≲

(
βi,j′

βij,j

)dimB ηj′ (K)

.

(iii) Let ϵ > 0 be arbitrary. Suppose i ∈ I∗ and let j be chosen so that βi,j′ ≤ βi,j . Let
0 < r ≤ βi,j . Then

#{Q ∈ S(r) : Q ⊂ [i]} ≲ϵ

(
βi,j′

r

)dimB K+ϵ

·
(
βi,j
βi,j′

)dimB ηj(K)

.
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(iv) Let ϵ > 0 and γ ∈ Ω be arbitrary. Suppose k ∈ N and j = 1, 2 are such that
Qk(γ) = Pj(i, j). Let A be any section of I∗ satisfying A ≼ η−1

j (j). Then∑
k∈A

β
dimA Kηj(γ),j

+ϵ

k,j′ ≲ϵ,γ 1.

Proof. The proof of (i) is identical to the proof given in Lemma 4.8 and similarly
the proof of (iv) is identical to that of Lemma 4.10.

We now prove (ii). In order to do this, we must understand the structure of
the pseudo-cylinder Pj(i, j). Heuristically, when (for instance) j = 1, Pj(i, j) is a
union of cylinders which fall into one of two types: those which are tall, and those
which are wide. If a cylinder is tall, we apply (i) in the opposite direction to cover
it with approximate squares, and if a cylinder is wide, we group nearby cylinders
together to form approximate squares. We then combine these counts using the
slice dimension tj , which is bounded above by dimB ηj′(K).

Write A = η−1
j (j) and partition A = A1 ∪ A2 where

A1 = {k ∈ A : βik,j′ ≥ βij,j} and A2 = A \ A1.

First, for k ∈ A1, note that Pj′(ik,∅) is a wide pseudo-cylinder and we set

B1 =
⋃
k∈A1

Qj′(ik,∅).

By applying (i), since βik,j ≈ βij,j ,

(5.1) #B1 =
∑
k∈A1

#Qj′(ik,∅) ≈
∑
k∈A1

(
βik,j′

βij,j

)dimB ηj′ (K)

Otherwise if k ∈ A2, let l1(k) denote the prefix of k of maximal length so that
βil1(k),j′ ≥ βij,j . Writing k = l1(k)l2(k), this choice guarantees that

B(k) := Pj(il1(k), ηj(l2(k)))

is the unique approximate square contained in [i] containing [ik]. Finally, let

A′
2 = {l1(k) : k ∈ A2} and B2 = {B(k) : k ∈ A2}.

We then note that, since βil,j′ ≈ βij,j by the choice of l1(k),

(5.2) #B2 ≈
∑
l∈A′

2

(
βil,j′

βij,j

)dimB ηj′ (K)

To conclude, observe that Qj(i, j) = B1 ∪ B2 and applying (5.1) and (5.2),

#Qj(i, j) = #B1 +#B2
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≲
∑
k∈A1

(
βik,j′

βij,j

)dimB ηj′ (K)

+
∑
l∈A′

2

(
βil,j′

βij,j

)dimB ηj′ (K)

=

(
βi,j′

βij,j

)dimB ηj′ (K) ∑
k∈A1∪A′

2

β
dimB ηj′ (K)

k,j′

≤

(
βi,j′

βij,j

)dimB ηj′ (K)

where the last line follows since A1 ∪ A′
2 ≼ η−1

j (j) is a section and dimB ηj′(K) ≥
tj(j) where ∑

k∈A1∪A′
2

β
tj(j)

k,j′ = 1.

Finally, we combine the bounds given in (i) and (ii) with a similar argument to
the proof of Lemma 4.9 to obtain (iii). Let ϵ > 0 be arbitrary and fix i ∈ I∗ and
j = 0, 1 so that 0 < r ≤ βi,j′ ≤ βi,j . Write δ = r/βi,j′ so, recalling the proof of
[Bar07, Theorem B],

#S(δ) ≲ϵ (1/δ)
dimB K+ϵ.

Now enumerate

S(δ) = {Q1,j, . . . , Qmj ,j} ∪ {Q1,j′ , . . . , Qmj′ ,j
′}

where for each z = j, j′ and 1 ≤ i ≤ mz,

Qi,z = Pz(ji,z, ki,z)

for some ji,z ∈ I∗ and ki,z ∈ ηz(I∗). Observe that each Pz(iji,z, ki,z) is a wide
pseudo-cylinder if z = j and a tall pseudo-cylinder if z = j′. Thus we may
complete the proof in the same way as Lemma 4.9, by applying (i) to the wide
pseudo-cylinders and (ii) to the tall pseudo-cylinders. □

We can now prove the following formulas for the pointwise Assouad dimension.

Proposition 5.3. Let K be a Barański carpet. Then for each j = 1, 2, if ηj(K) satisfies
the SSC, for all γ ∈ Ωj and x = π(γ),

dimA(K, x) = max{dimBK, dimB ηj(K) + dimAKηj(γ),j}

and

max{dimH F : F ∈ Tan(K, x)} = dimB ηj(K) + dimAKηj(γ),j.

Furthermore,

dimAKηj(γ),j = lim
m→∞

sup
n∈N

θηj(γ),j(n,m) ≤ max
ℓ∈ηj(I)

tj(ℓ).
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Proof. If γ ∈ Ωj , by definition there is a constant κ ∈ (0, 1) so that

βγ↿k,j′

βγ↿k,j
≲ κn.

In particular, there is a constant κ′ ∈ (0, 1) so that each maximal cylinder [i]
contained in Qk(γ) has βi,j′/βi,j ≲ (κ′)k, which converges to zero. Thus the same
proof as given in Proposition 4.11 but instead applying Lemma 5.2 in place of the
analogous bounds for Gatzouras–Lalley carpets gives that

dimA(K, x) ≤ max{dimBK, dimB ηj(K) + dimAKηj(γ),j}.

Similarly, the same proof as Proposition 4.7 shows that

max{dimH F : F ∈ Tan(K, x)} = dimB ηj(K) + dimAKηj(γ),j.

Finally, using the same subadditivity properties of θη(γ),j(n,m) established at the
beginning of the proof of Theorem 3.7,

lim
m→∞

sup
n∈N

θηj(γ),j(n,m) ≤ max
ℓ∈ηj(I)

tj(ℓ).

as required. □

5.3. Barański carpets with few large tangents. In contrast to Gatzouras–Lalley
carpets, the analogue of Theorem 4.14 need not hold for Barański carpets. We first
give a precise characterization of when a Barański carpet has few large tangents.
Fix the definitions of tj and dj from Proposition 5.1.

Theorem 5.4. Let K be a Barański carpet such that ηj(K) satisfies the SSC and Ωj ̸= ∅
for j = 1, 2. Suppose for one of j = 1, 2, dj < dj′ and dimB ηj(K)+tj > dimB ηj′(K)+tj′ .
Then

dimH{x ∈ K : dimA(K, x) = dimAK} < dimHK.

Proof. Suppose d1 < d2 and dimB η1(K)+t1 > dimB η2(K)+t2 (the opposite case
follows analogously). By Proposition 5.1, dimHK = d2 and dimAK = dimB η1(K)+
t1. In particular, by Proposition 5.3, if dimA(K, x) = dimAK = dimB η1(K)+t1, then
necessarily x = π(γ) where γ ∈ Ω0 ∪ Ω1. But dimH π(Ω0 ∪ Ω1) = d1 < d2 = dimHK,
as required. □

Remark 5.5. In the context of Theorem 5.4, one can in fact prove that the following
are equivalent:

(i) dimH{x ∈ K : dimA(K, x) = dimAK} < dimHK.
(ii) dimH{x ∈ K : ∃F ∈ Tan(K, x) such that dimH F = dimAK} < dimHK.

(iii) For one of j = 1, 2, dj < dj′ and dimB ηj(K) + tj > dimB ηj′(K) + tj′ .
Such a proof follows similarly to the Gatzouras–Lalley case with appropriate
modifications to restrict attention only to the family Ω1 or Ω2. The only additional
observation required is that [FJS10, Lemma 4.3] also holds in the Barański case
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and the uniform subsystem can be chosen so the maps are contracting strictly in
direction j and the dimension of the corresponding attractor is arbitrarily close to
dj .

In particular, if one of the above equivalent conditions hold and without loss
of generality d1 > d2 and dimB η1(K) + t1 < dimB η2(K) + t2, then the Hausdorff
dimension of the level set φ(α) = dimH{x ∈ K : dimA(K, x) = α} is given by the
piecewise formula

φ(α) =

{
dimHK : dimBK ≤ α ≤ dimB η1(K) + t1

d2 : dimB η1(K) + t1 < α ≤ dimAK.

We leave the remaining details to the curious reader.

With Theorem 5.4 in hand, we can now give an explicit example of a Barański
carpet which has few large tangents.

Corollary 5.6. There is a Barański carpet K such that

dimH{x ∈ K : dimA(K, x) = dimAK} < dimHK.

Proof. Fix some δ ∈ [0, 1/6) and define parameters β = 1/4 − δ, α1 = 1/3 − δ,
and α2 = 1/6− δ. Now define the families of maps

Φ1 = {(x, y) 7→ (α1x, βy + iβ) : i = 0, . . . , 3}
Φ2,a = {(x, y) 7→ (α2x+ α1 + jα2, βy + iβ) : j = 0, 1 and i = 0, 1}
Φ2,b = {(x, y) 7→ (α2x+ α1 + jα2, βy + iβ) : j = 3, 4 and i = 2, 3}

and then set

Φ2 = Φ2,a ∪ Φ2,b and Φ = Φ1 ∪ Φ2,a ∪ Φ2,b.

We abuse notation and use functions and indices interchangeably. Now Φ is a
Barański IFS with three columns corresponding to Φ1, Φ2,a, and Φ2,b. This carpet is
conjugate to the carpet generated by the maps depicted in Figure 2b. Note that if
δ > 0, both projected IFSs satisfy the SSC.

We now simplify the dimensional expression in Proposition 5.1 (ii) for our
specific system. First, for w ∈ P , set p =

∑
i∈Φ2

wi. Note that χ1(w) = −p logα2 −
(1 − p) logα1 and χ2(w) = − log β depend only on p. But since entropy and
projected entropy are maximized uniquely by uniform vectors, defining the vector
z(p) ∈ P by

z(p)i =

{
1−p
4

: i ∈ Φ1

p
8
: i ∈ Φ2

we necessarily have

H(η1(w))

χ1(w)
+
H(w)−H(η1(w))

χ2(w)
≤ H(η1(z(p)))

χ1(z(p))
+
H(z(p))−H(η1(z(p)))

χ2(z(p))
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=
−p log p− (1− p) log(1− p)

−p logα2 − (1− p) logα1

=: D1(p)

and
H(η2(w))

χ2(w)
+
H(w)−H(η2(w))

χ1(w)
≤ H(η2(z(p)))

χ2(z(p))
+
H(z(p))−H(η2(z(p)))

χ1(z(p))

=
log 4

− log β
+

−p log p− (1− p) log(1− p)− log 4

−p logα2 − (1− p) logα1

=: D2(p).

Moreover, writing p0 = logα1−log β
logα1−logα2

, z(p) ∈ P1 if and only if p ∈ [0, p0] and z(p) ∈ P2

if and only if p ∈ [p0, 1]. We thus observe that

dimHK = sup
p∈[0,1]

D(p) where D(p) =

{
D1(p) : 0 ≤ p ≤ p0

D2(p) : p0 ≤ p ≤ 1
.

Now, a manual computation directly shows that, substituting δ = 0,

sup
p∈[0,1]

D1(p) ≈ 0.489536 and sup
p∈[0,1]

D2(p) ≈ 0.529533

and moreover the maximum of D2(p) is attained at a value p2 ∈ (p0, 1). Thus for all
δ sufficiently close to 0, since all the respective quantities are continuous functions
of δ, there is a value p2 ∈ (p0, 1) so that

d1 ≤ sup
p∈[0,1]

D1(p) < sup
p∈[0,1]

D(p) = D2(p2) = d2.

(In fact, one can show that this is the case for all δ ∈ (0, 1/6), but this is not required
for the proof.)

On the other hand, when δ = 0, t1 = 2 whereas t2 = 1+s < 2 where s ≈ 0.72263
is the unique solution to (

1

3

)s

+ 2 ·
(
1

6

)s

= 1.

Thus for all δ sufficiently close to 0, the conditions for Theorem 5.4 are satisfied, as
required. □
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