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ABSTRACT. We study the fine scaling properties of planar self-affine
carpets. For Gatzouras–Lalley carpets, we give a precise formula for maximal
Hausdorff dimension of a tangent in terms of the Hausdorff dimension of
the projection and the Assouad dimension of the corresponding vertical slice.
Using regularity properties for the Assouad dimension of non-autonomous
self-similar sets, this implies that the set of points with tangents that are as
large as possible has full Hausdorff measure, at the critical exponent. On the
other hand, we give an explicit example of a Barański carpet for which the
Hausdorff dimension of the set of points for which there exists a maximal
tangent has Hausdorff dimension strictly less than the Hausdorff dimension
of the original carpet.
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1. INTRODUCTION

A classical problem in geometric measure theory is the following: given a subset
E ⊂ Rd, what can be said about the structure of the set of tangents at points in
E? If E has positive and finite s-dimensional Hausdorff measure, then classical
density theorems (see, for instance, [Mat95, Theorem 6.2]) imply that almost every
point has a tangent with positive Hausdorff s-measure. However, sets which are
not Ahlfors regular can have points with tangents which are much larger than
expected. In general, the maximal possible Hausdorff dimension of a tangent is
given by the Assouad dimension of the set E [Fur08; KOR17]; this value is attained
by a weak tangent (where the location of “zooming in” is allowed to vary depending
on the scale), but not necessarily by an actual tangent [LR15].

Moreover, for many well-studied fractal sets, the Assouad dimension and
the Hausdorff dimension can differ, so the classical information concerning the
existence of large tangents cannot reach the threshold of the Assouad dimension.
Motivated by this phenomenon, in [KR23+], the authors study the structure of
the set of tangents for sets satisfying various weak forms of dynamical invariance
(informally, that the sets contain small potentially highly distorted copies at all
scales and distortions). For general attractors of bi-Lipschitz iterated function
systems, it is shown in [KR23+] that there necessarily is at least one tangent with
Hausdorff dimension which attains the Assouad dimension, and (essentially)
overlapping self-conformal sets, the authors prove in fact that there the set of
points with tangents of maximal Hausdorff dimension is a full dimension subset.

However, the gap between these two classes of sets is quite large. For instance,
one might hope that in the presence of reasonably well-behaved dynamics, then
most points will have a tangent which is as large as possible. In order to under-
stand this problem more generally, in this paper, we study the question of the
fine structure of tangents for a particular family of self-affine sets (such as those
depicted in Figure 1).

Our results show that in fact whether or not there are many maximal tangents
depends on the geometry of the particular set under consideration. Within our
class of sets, when there is only one direction of maximal contraction, the majority
of points have maximal tangents which are as large as possible. Despite this, there
are still many points for which all tangents are much smaller than expected. This
is explained in Theorem A. On the other hand, we also demonstrate that there
exist self-affine sets for which the majority of points have no large tangents (see
Theorem B). More generally, we obtain precise results relating the dimensions
of tangents to the Assouad dimension of appropriate slices of the corresponding
self-affine set.

In the next section, we introduce the relevant definitions to make the above
definitions precise. We then state our main results in §1.2.

1.1. Assouad dimensions. Fix a compact set K ⊂ Rd. We say that a compact
set F ⊂ B(0, 1) is a weak tangent of K ⊂ Rd if it is a Hausdorff limit of successive
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(A) Gatzouras–Lalley (B) Barański

FIGURE 1. Some self-affine carpets, which are attractors of the iterated
function systems depicted in Figure 2.

magnifications of the set K. We denote the set of weak tangents of K by Tan(K).
More strongly, F is a tangent of K at x if it is a Hausdorff limit of successive
magnifications of K upon the point x. We denote the set of tangents of K at x by
Tan(K, x). We refer the reader to §2.1 for precise definitions.

Closely related to the notion of a weak tangent is the Assouad dimension of K,
introduced in [Ass77], which is the dimensional quantity

dimA K = inf
{
s : ∃C > 0∀0 < r ≤ R < 1∀x ∈ K

Nr(B(x,R) ∩K) ≤ C
(R
r

)s}
.

Here, for a general bounded set F , Nr(F ) is the smallest number of closed balls
with radius r required to cover F . It always holds that dimHK ≤ dimP K ≤
dimB K ≤ dimA K, where dimH K, dimPK, and dimBK denote the Hausdorff,
packing, and upper box dimensions respectively. In some sense, the Assouad
dimension is the largest reasonable notion of dimension which can be defined
using covers. An observation which goes back essentially to Furstenberg, but was
stated explicitly in [KOR17], is that the Assouad dimension is characterized by
weak tangents:

(1.1) dimAK = max{dimH F : F ∈ Tan(K)}.

We refer the reader to [Fra20] for more background on Assouad dimensions.
Continuing the analogy with tangents, a localized version of the Assouad

dimension was recently introduced in [KR23+]. Given x ∈ K, the pointwise
Assouad dimension is

dimA(K, x) = inf
{
s : ∃C > 0∃ρ > 0 ∀0 < r ≤ R < ρ

Nr(B(x,R) ∩K) ≤ C
(R
r

)s}
.

The choice of ρ > 0 in the definition of dimA(K, x) ensures a sensible form
of bi-Lipschitz invariance: if f : K → K ′ is bi-Lipschitz, then dimA(K, x) =
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dimA(f(K), f(x)). It is immediate from [KR23+, Proposition 2.2] and the defi-
nition of the pointwise Assouad dimension that

(1.2) sup{dimB F : F ∈ Tan(K, x)} ≤ dimA(K, x) ≤ dimA K.

Unfortunately, the first inequality can be strict by [KR23+, Example 2.9], and
the second inequality can be strict for all x ∈ K simultaneously by [KR23+,
Example 2.8]. On the other hand, if K is very regular (for instance, Ahlfors–David
regular), then dimA(K, x) = dimA K for all x ∈ K. We note here that an analogous
notion of pointwise Assouad dimension for measures was introduced recently in
[Ant22].

Of course, there are many sets which are not Ahlfors–David regular, but which
still exhibit enough regularity that one might hope for more to be true. A natural
question, motivated by the general relationship in (1.1), is to understand when
equality holds in (1.2). Some preliminary answers are given in [KR23+, Theorem C].
In particular, if K is a self-affine set (or more generally an attractor of a bi-Lipschitz
IFS), then

dimA K = max{dimH F : F ∈ Tan(K, x) and x ∈ K}

and

(1.3) dimP{x ∈ K : dimA(K, x) = dimA K} = dimPK.

Moreover, if K is a self-similar or self-conformal set, then [KR23+, Theorem 2.12]
shows that in fact equality holds on a very large subset:

(1.4) dimH{x ∈ K : ∃F ∈ Tan(K, x) such that dimH F = dimA K} = dimH K.

However, there is a relatively large gap between self-conformal sets and general
attractors of bi-Lipschitz IFSs. Motivated by these results, our goal in this docu-
ment is to understand to what extent the results for self-conformal sets extend to
more general IFS attractors.

In the following section, we discuss our main results concerning self-affine sets
and provide some answers which indicate that answers to these questions are, in
general, quite subtle.

1.2. Main results and outline of paper. With these questions in mind, we now
turn our attention to two specific families of affine iterated function systems in
the plane: specifically, the planar self-affine carpets of Gatzouras–Lalley [LG92]
and Barański [Bar07]. Note that these sets are self-affine but (except for some
degenerate cases) not self-similar. We defer precise definitions and notation to §3.1;
see Figure 2 for examples of the generating maps in these classes. In the following
statement, let η : R2 → R be the orthogonal projection onto the first coordinate
axis and for x ∈ R2 let ℓx be the vertical line containing x.

Theorem A. Let K be a Gatzouras–Lalley carpet. Then

HdimH K
(
{x ∈ K : dimA(K, x) ̸= dimAK}

)
= 0.
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FIGURE 2. Generating maps associated with a Gatzouras–Lalley and
Barański system. The parameters from the Barański carpet correspond
to the example in Theorem 4.6 with δ = 1/40.

On the other hand, for any dimB K ≤ α ≤ dimA K,

dimH{x ∈ K : dimA(K, x) = α} = dimHK.

Moreover, if η(K) satisfies the SSC, then for any x ∈ K,
(i) max{dimH F : F ∈ Tan(K, x)} = dimB η(K) + dimA ℓx ∩K,

(ii) dimA(K, x) = max{dimBK, dimB η(K) + dimA ℓx ∩K}.

Of course, if α /∈ [dimB K, dimAK], then {x ∈ K : dimA(K, x) = α} = ∅. It follows
immediately from Theorem A that the conclusion (1.4) extends to the class of
Gatzouras–Lalley carpets and that

dimA(K, x) = max{dimH F : F ∈ Tan(K, x)}

if and only if dimA ℓx ∩ K ≥ dimBK − dimB η(K). Moreover, if s = dimHK,
then Hs(K) > 0 and furthermore Hs(K) < ∞ if and only if K is Ahlfors–David
regular (see [LG92]), in which case the results are trivial. We thus see that the
majority of points, from the perspective of Hausdorff s-measure, have tangents
with Hausdorff dimension attaining the Assouad dimension of K. However, we
still have an abundance of points with pointwise Assouad dimension giving any
other reasonable value.

The proof of Theorem A is obtained by combining Theorem 3.12 and Theo-
rem 3.14. The dimensional results given in (i) and (ii) exhibit a precise version of a
well-known phenomenon: at small scales, properly self-affine sets and measures
look like products of the projection with slices. Note that, in order to obtain (i) and
(ii), the strong separation condition in the projection is required or the pointwise
Assouad dimension could be incorrect along sequences which are “arbitrarily
close together at small scales”. The formula holds for more general Gatzouras–
Lalley carpets if one restricts attention to points where this does not happen (see
Theorem 3.3).
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For Gatzouras–Lalley carpets with projection onto the first coordinate axis
satisfying the strong separation condition, slices through x are precisely attractors
of a non-autonomous iterated function system corresponding to the sequence of
columns containing the point x (such a phenomenon was exploited in a more gen-
eral setting in [FR24]). The proof of Theorem A therefore relies on the dimension
theory of non-autonomous self-similar sets as studied in [KR24+]. We present the
required results in §2.3.

However, it turns out that the fact that Gatzouras–Lalley carpets have an
abundance of large tangents does not extend to the non-dominated setting.

Theorem B. There exists a Barański carpet K such that

dimH{x ∈ K : dimA(K, x) = dimA K} < dimHK.

The conclusion (1.3) is thus not valid for the Hausdorff dimension in general. The
proof of Theorem B is given in Theorem 4.6, and it follows from a more general
result—namely Theorem 4.4—describing when Barański carpets satisfying certain
separation conditions have a large number of large tangents. The proof follows
from formulas for the pointwise Assouad dimension at points which are coded by
sequences which contract uniformly in one direction; see Theorem 4.3 for a precise
formulation.

The key distinction between Barański carpets and Gatzouras–Lalley carpets is
that Barański carpets are not dominated; see for instance [BKY21+, §2.4] for a precise
definition in the general planar self-affine setting. A natural question therefore is
if this phenomenon is specific to the non-dominated setting.

Question 1.1. Let K be a non-empty dominated self-affine set, with or without overlaps.
Does it necessarily hold that

dimH{x ∈ K : dimA(K, x) = dimA K} = dimH K?

What about the corresponding question for tangents?

1.3. Notation. Throughout, we work in R2 equipped with the usual Euclidean
metric. Given functions f and g, we say that f ≲ g if there is a constant C > 0 so
that f(x) ≤ Cg(x) for all x in the domain of f and g. We write f ≈ g if f ≲ g and
g ≲ f .

2. TANGENTS AND POINTWISE ASSOUAD DIMENSION

2.1. Tangents and weak tangents. To begin this section, we precisely define the
notions of tangent and weak tangent, and establish the fundamental relationship
between the dimensions of tangents and the pointwise Assouad dimension. These
results will be used to find a lower bound for the pointwise Assouad dimension
of a Gatzouras-Lalley carpet by means of symbolic fibres.

Given a set E ⊂ Rd and δ > 0, we denote the open δ-neighbourhood of E by

E(δ) = {x ∈ Rd : ∃y ∈ E such that |x− y| < δ}.
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Now given a non-empty subset X ⊂ Rd, we let K(X) denote the set of non-empty
compact subsets of X equipped with the Hausdorff metric

dH(K1, K2) = max{pH(K1;K2), pH(K2;K1)}

where

pH(K1;K2) = inf{δ > 0 : K1 ⊂ K
(δ)
2 }.

If X is compact, then (K(X), dH) is a compact metric space itself. We also write

dist(E1, E2) = inf{|x− y| : x ∈ E1, y ∈ E2}

for non-empty sets E1, E2 ⊂ Rd.
We say that a set F ∈ K(B(0, 1)) is a weak tangent of K ⊂ Rd if there exists

a sequence of similarity maps (Tk)
∞
k=1 with 0 ∈ Tk(K) and similarity ratios λk

diverging to infinity such that

F = lim
k→∞

Tk(K) ∩B(0, 1)

in K(B(0, 1)). We denote the set of weak tangents of K by Tan(K). A key feature
of the Assouad dimension is that it is characterized by Hausdorff dimensions
of weak tangents. This result is originally from [KOR17, Proposition 5.7]. The
following version is the recent improvement [KR23+, Corollary B].

Proposition 2.1. If K is a compact set, then

α := dimA K = max
F∈Tan(K)

dimH F.

Moreover, the maximizing weak tangent F can be chosen so that Hα
∞(F ) ≥ 1.

In a similar flavour, we say that F is a tangent of K at x ∈ K if there exists a
sequence of similarity ratios (λk)

∞
k=1 diverging to infinity such that

F = lim
k→∞

λk(K − x) ∩B(0, 1)

in K(B(0, 1)). We denote the set of tangents of K at x by Tan(K, x).
Of course, Tan(K, x) ⊂ Tan(K). Unlike in the case for weak tangents, we

require the similarities in the construction of the tangent to in fact be homotheties.
This choice is natural since, for example, a function f : R → R is differentiable at
x if and only if the set of tangents of the graph of f at (x, f(x)) is the singleton
{B(0, 1) ∩ ℓ} for some non-vertical line ℓ passing through the origin. In prac-
tice, compactness of the group of orthogonal transformations in Rd means this
restriction will not cause any technical difficulties.

Let us next recall from [KR23+] some of the recent results on the connections
between tangent sets and pointwise Assouad dimension. The first result is [KR23+,
Proposition 2.2].
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Proposition 2.2. For any compact set K ⊂ Rd and x ∈ K, dimA(K, x) ≥ dimB F for
any F ∈ Tan(K, x).

The next result follows from [KR23+, Proposition 2.11].

Proposition 2.3. Let K ⊆ Rd be a self-affine set. Then for all x ∈ K, we have
dimA(K, x) ≥ dimB K.

We also recall from [KR24+, Proposition 3.1] an alternative characterization of the
Assouad dimension by localized packings of balls which may have very different
sizes. Let X be a bounded metric space. If x ∈ X and R ∈ (0, 1), then the family of
all localized centred packings is

pack(X, x,R) =

{
{B(xi, ri)}i :

0 < ri ≤ R, xi ∈ X,B(xi, ri) ⊂ B(x,R),
B(xi, ri) ∩B(xj, rj) = ∅ for all i ̸= j

}
.

The collections here may be finite or countably infinite. In a similar way to how
box and packing dimensions are related (see, for instance, [BP17, Section 2.6]), we
have the following “disc-packing” formulation of the Assouad dimension.

Proposition 2.4. Let X be a bounded metric space. Then

dimAX = inf
{
α : ∀0 < R < 1 ∀x ∈ X ∀{B(xi, ri)}∞i=1 ∈ pack(X, x,R)

∞∑
i=1

rαi ≲α Rα
}
.

2.2. Metric trees. First, fix a reference set Ω and write T0 = {Ω}. Let {Tk}∞k=1 be a
sequence of countable partitions of Ω so that Tk+1 is a refinement of the partition
Tk. For each Q ∈ Tk with k ∈ N, there is a unique parent Q̂ ∈ Tk−1 with Q ⊂ Q̂.
Suppose that for any γ1 ̸= γ2 ∈ Ω there is a k ∈ N such that there are Q1 ̸= Q2 ∈ Tk

so that γ1 ∈ Q1 and γ2 ∈ Q2. We call such a family {Tk}∞k=0 a tree, and write
T =

⋃∞
k=0 Tk.

Now, suppose that there is a function ρ : T → (0,∞) which satisfies
1. 0 < ρ(Q) < ρ(Q̂), and
2. there is a sequence (rk)∞k=1 converging to zero from above such that ρ(Q) ≤ rk

for all Q ∈ Tk.
The function ρ induces a metric d on the space Ω by the rule

d(γ1, γ2) = inf{ρ(Q) : Q ∈ T and {γ1, γ2} ⊂ Q}.

In particular, diam(Q) = ρ(Q) with respect to the metric d. We then refer to the
data (Ω, {Tk}∞k=0, ρ) as a metric tree.

We say that a subset A ⊂ T is a section if Q1 ∩ Q2 = ∅ whenever Q1, Q2 ∈ A
with Q1 ̸= Q2. If

⋃
Q∈AQ = Q0, we say that A is a section relative to Q0, and we

say that a section is complete if it is a section relative to Ω. Note that sections are
necessarily countable and, for example, each Tk for k ∈ N∪{0} is a section relative
to Ω. The set of sections is equipped with a partial order A1 ≼ A2 if for all Q1 ∈ A1
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there is a Q2 ∈ A2 such that Q2 ⊂ Q1. In this situation, we say that A1 is refined
by A2. This partial order is equipped with a meet: that is, given a finite family of
sections A1, . . . ,An, there is a unique section A1 ∧ · · · ∧ An which is maximal with
respect to the partial order such that

A1 ∧ · · · ∧ An ≼ Ai

for all i = 1, . . . , n.
A metric tree is equipped with a natural family of sections relative to Ω which

respect the geometry of the metric d. We define

(2.1) T (r) = {Q ∈ T : ρ(Q) ≤ r < ρ(Q̂)}

where, abusing notation, we write ρ(Ω̂) = ∞. Property 1 above ensures that this is
indeed a section and property 2 ensures that Tk ≼ T (r) for all k sufficiently large.

2.3. Regularity of non-autonomous self-similar sets. We now recall some of
the results on non-autonomous self-similar sets from [KR24+]. We require more
than just the dimension of non-autonomous self-similar sets (as already follows,
for instance, from [LLM+16]); a key feature required in our proofs are the reg-
ularity properties of the similarity dimensions of the finite components of the
non-autonomous IFS.

For each n ∈ N, let Jn be a finite index set with #Jn ≥ 2, and let Φn = {Sn,j}j∈Jn

be a family of similarity maps Sn,j : Rd → Rd of the form

Sn,j(x) = rn,jOn,jx+ dn,j

where rn,j ∈ (0, 1) and On,j is an orthogonal matrix. To avoid degenerate situations,
we assume that

(2.2) lim
n→∞

sup{r1,j1 · · · rn,jn : ji ∈ Ji for each i = 1, . . . , n} = 0

and that there is a compact set X ⊂ Rd which is invariant such that Sn,j(X) ⊂ X for
all n ∈ N and j ∈ Jn. Associated with the sequence (Φn)

∞
n=1, there is a non-empty

and compact limit set

K =
∞⋂
n=1

⋃
(j1,...,jn)∈J1×···×Jn

S1,j1 ◦ · · · ◦ Sn,jn(X).

Under these assumptions, the sequence (Φn)
∞
n=1 is called a non-autonomous iterated

function system (IFS) and the limit set K is called the non-autonomous self-similar set.
We can associated a natural metric tree to every non-autonomous self-similar

set. Let T =
⋃∞

n=0 Tn denote the set of all cylinder sets in the infinite product space
∆ =

∏∞
n=1 Jn, where

Tn =

{
[j1, . . . , jn] = {j1} × · · · × {jn} ×

∞∏
k=n+1

Jk : ji ∈ Ji for i = 1, . . . , n

}
.
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Note that the unique cylinder in T0 is the set ∆. Given a cylinder Q = [j1, . . . , jn] ∈
T , we write ρ(Q) = r1,j1 · · · rn,jn . The triplet (∆, {Tk}∞k=0, ρ) is then a metric tree.
We define π : ∆ → Rd by the relation

{π
(
(in)

∞
n=1

)
} =

∞⋂
n=1

S1,i1 ◦ · · · ◦ Sn,in(X).

This function is well-defined by (2.2), and it is easy to see that π is Lipschitz so
that π(∆) = K.

We say that a non-autonomous IFS (Φn)
∞
n=1 satisfies the open set condition if the

invariant compact set X can be chosen to have non-empty interior U = X◦ so that
for each n ∈ N and j ̸= j′ ∈ Jn, we have Sn,j(U) ∩ Sn,j′(U) = ∅. Furthermore,
we say that the IFS has uniformly bounded contraction ratios if there is a constant
rmin > 0 so that rn,j ≥ rmin for all n ∈ N and j ∈ Jn.

Our first lemma follows from [KR24+, Theorem 2.9 and Proposition 2.5].

Lemma 2.5. Let (Φn)
∞
n=1 be a non-autonomous self-similar IFS satisfying the open set

condition and with uniformly bounded contraction ratios. Denote the associated non-
autonomous self-similar set by K and the metric tree by ∆. Then dimAK = dimA ∆.

For each non-autonomous IFS (Φn)
∞
n=1 let θ(n,m) be the similarity dimension of

the IFS Φn+1 ◦ · · · ◦ Φn+m = {f1 ◦ · · · ◦ fm : fi ∈ Φn+i} defined by

∑
j1∈Jn

· · ·
∑

jm∈Jn+m−1

m−1∏
k=0

r
θ(n,m)
n+k,jn+k

= 1.

The following theorem follows by combining [KR24+, Theorem 2.9, Proposition 3.5,
Lemma 4.2, and Theorem 4.3].

Theorem 2.6. Let (Φn)
∞
n=1 be a non-autonomous IFS satisfying the open set condition

and with uniformly bounded contraction ratios. Denote the associated non-autonomous
self-similar set by K. Then for every n,m, k ∈ N and n ≤ n′ ≤ n+ k,

(i) θ(n,m+ k) ≤ max{θ(n,m), θ(n+m, k)}, and
(ii) |θ(n,m+ k)− θ(n′,m)| ≲ k

m
.

Moreover,

(2.3) dimAK = lim
m→∞

sup
n∈N

θ(n,m) = lim
m→∞
m∈κN

sup
n∈κN

θ(n,m)

for all κ ∈ N, where κN = {κn : n ∈ N}.

3. TANGENT STRUCTURE AND DIMENSION OF

GATZOURAS–LALLEY CARPETS

In this section, we introduce the definitions of Gatzouras–Lalley and Barański
carpets and prove our main results on tangents and pointwise Assouad dimension
of Gatzouras–Lalley carpets.
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3.1. Gatzouras–Lalley and Barański carpets.

3.1.1. Defining the maps. Fix an index set I with #I ≥ 2, and for j = 1, 2 fix
contraction ratios (βi,j)i∈I ⊂ (0, 1) and translations (di,j)i∈I ⊂ R. We then call the
IFS {Ti}i∈I diagonal when

Ti(x1, x2) = (βi,1x1 + di,1, βi,2x2 + di,2) for each i ∈ I.

Let ηj denote the orthogonal projection onto the jth coordinate axis, i.e. ηj(x1, x2) =
xj . We denote by Λj = {Si,j}i∈I the projected systems, where ηj ◦ Tj = Si,j ◦ ηj . We
will often write η = η1 to denote simply the projection onto the first coordinate
axis. Of course, Si,j(x) = βi,jx+ di,j are iterated function systems of similarities.

Let I∗ =
⋃∞

n=0 In, and for i = (i1, . . . , in) ∈ I∗ and j = 1, 2, write

Ti = Ti1 ◦ · · · ◦ Tin ,

Si,j = Si1,j ◦ · · · ◦ Sin,j

and

pi = pi1 · · · pin ,
βi,j = βi1,j · · · βin,j.

For n ∈ N and γ ∈ Ω := IN, we write γ↿n to denote the unique prefix of γ in In.
Now ηj induces an equivalence relation ∼j on I where i ∼ i′ if Si,j = Si′,j . Let

ηj : I → I/ ∼j denote the natural projection. Intuitively, ηj(i) is the set of indices
which lie in the same column or row as the index i. Then ηj extends naturally to
a map on Ω by ηj((in)

∞
n=1) = (ηj(in))

∞
n=1 ⊂ ηj(I)N ∼= ηj(IN); and similarly extends

to a map on I∗. For notational clarity, we will refer to words in I∗ using upright
indices, such as i, and words in ηj(I∗) using their underlined variants, such as i.
Note that if i ∼j j, then and Si,j = Sj,j . In particularly, we may unambiguously
write Si,j and βi,j for i ∈ ηj(I∗).

Associated with the IFS {Ti}i∈I is a unique non-empty compact attractor K,
satisfying K =

⋃
i∈I Ti(K). Note that the projected IFS {Si,j}i∈I has attractor Kj =

ηj(K) for j = 1, 2. Recalling that Ω = IN, let π : Ω → K denote the continuous map
uniquely defined by {

π
(
(in)

∞
n=1

)}
= lim

n→∞
Si1 ◦ · · · ◦ Sin(K).

Without loss of generality, and for the remainder of this document, we will assume
that K ⊂ [0, 1]2. We can now introduce our two primary classes of self-affine sets.

Definition 3.1. We say that the carpet is of type Gatzouras–Lalley if:
1. Ti((0, 1)

2) ∩ Tj((0, 1)
2) = ∅ for all i ̸= j,

2. either Si,1((0, 1)) = S(j,1)((0, 1)) or Si,1((0, 1))∩Sj,1((0, 1)) = ∅ for all i, j, and
3. βi,1 > βi,2 for all i ∈ I;

and type Barański if:
1. Ti((0, 1)

2) ∩ Tj((0, 1)
2) = ∅ for all i ̸= j, and
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2. either Si,ℓ((0, 1)) = S(j,ℓ)((0, 1)) or Si,ℓ((0, 1)) ∩ Sj,ℓ((0, 1)) = ∅ for all i, j and
ℓ = 1, 2.

Moreover, we say that an IFS {fi}i∈I with attractor K satisfies the strong separation
condition (or SSC for short) if fi(K) ∩ fj(K) = ∅ for all i ̸= j ∈ I.

3.1.2. Dimensions of Gatzouras–Lalley carpets. To conclude this section, we recall
some standard results on the dimensions of Gatzouras–Lalley carpets. We defer
the corresponding results for Barański carpets to §4.1.

Before we do this, we first recall the notion of the lower dimension, which is in
some sense dual to the definition of Assouad definition. Let K ⊂ Rd be compact.
Then the lower dimension of K is given by

dimL K = sup
{
s : ∃C > 0∀0 < r ≤ R < 1∀x ∈ K

Nr(B(x,R) ∩K) ≥ C
(R
r

)s}
.

In order to state our results on the Hausdorff dimensions, we must also introduce
some notation for Bernoulli measures. Let P denote the collection of probability
vectors on I, i.e.

P = P(I) :=
{
(pi)i∈I : pi ≥ 0 for all i and

∑
i∈I

pi = 1
}
.

Equip P with the topology inherited from RI . Given p ∈ P , considering p as a
probability measure on I , we let pN denote the infinite product measure supported
on Ω. We let µp = π∗p

N denote the corresponding invariant measure on K, where
π∗ denotes the pushforward map. Note that the projections ηj also induce natural
maps ηj : P(I) → P(ηj(I)) by ηj(p)ℓ =

∑
i∈η−1

j (ℓ) pi.
Given a probability vector p ∈ P , we write

H(p) = −
∑
i∈I

pi log pi and χj(p) = −
∑
i∈I

pi log βi,j.

We now recall the main results of [LG92]—stated below in (i) and (ii)—as well
as the result of [Mac11]—stated below in (iii). We also note that the same proof
as given in [Mac11] (which is explained more precisely in [Fra14, Theorem 2.13])
gives the analogous result for the lower dimension.

Proposition 3.2 ([LG92; Mac11]). Let K be a Gatzouras–Lalley carpet.

(i) The Hausdorff dimension of K is given by

dimHK = sup
p∈P

s(p)

where

s(p) :=
H(η(p))

χ1(p)
+

H(p)−H(η(p))

χ2(p)
.
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Moreover, the supremum is always attained at an interior point of P (i.e. at vector
w ∈ P with wi > 0 for all i ∈ I).

(ii) The box dimension of K exists and is given by the unique solution to∑
i∈I

β
dimB η(K)
i,1 β

dimB K−dimB η(K)
i,2 = 1 where

∑
j∈η(I)

β
dimB η(K)
j,1 = 1.

(iii) The Assouad dimension of K is given by

dimAK = dimB η(K) + max
ℓ∈η(I)

t(ℓ)

where t(ℓ) is defined as the unique solution to the equations∑
j∈η−1(ℓ)

β
t(ℓ)
j,2 = 1.

Similarly, the lower dimension of K is given by

dimLK = dimB η(K) + min
ℓ∈η(I)

t(ℓ).

3.1.3. Regular points and interior words. We conclude this section with the notion
of a regular point and an interior word. Heuristically, a regular point is one which
uniformly avoids points in other columns; note that we do not require such a
property within each columns.

Definition 3.3. We say that a point x ∈ K is regular if for each r ∈ (0, 1), there is
an i ∈ I∗ with βi,1 ≲ r such that B(η(x), r)∩ η(K) ⊂ Si,1(η(K)). Given i ∈ I∗, we
say that i is an interior word if Si,1([0, 1]) ⊂ (0, 1). We let Bn ⊂ In denote the set of
interior words of length n.

The following lemma is standard. Recall that Ω = IN is the symbolic space
coding the attractor K. Here, and elsewhere, given an n ∈ N and Y ⊂ In, we
embed YN in Ω in the natural way. We will abuse notation and interchangeably
refer to elements in the subsystem or in the full system.

Lemma 3.4. Let K be a Gatzouras–Lalley carpet.
(i) If η(K) satisfies the SSC, then each x ∈ K is regular.

(ii) Suppose γ ∈ BN
n for some n ∈ N. Then π(γ) is regular.

We can now guarantee the existence of large subsystems consisting only of regular
points. This result is essentially [FJS10, Lemma 4.3].

Proposition 3.5 ([FJS10]). Let K be a Gatzouras–Lalley carpet corresponding to the IFS
{Ti}i∈I . Then for every ϵ > 0, there is an n ∈ N and a family J ⊂ In so that the IFS
{Tj : j ∈ J } with attractor Kϵ satisfies the following conditions:

(i) each i ∈ J is an interior word,
(ii) dimH Kϵ ≥ dimHK − ϵ,
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(iii) dimB η(Kϵ) ≥ dimB η(K)− ϵ, and
(iv) there are 0 < ρ2 < ρ1 < 1 so that βi,1 = ρ1 and βi,2 = ρ2 for all i ∈ I and each

column has the same number of maps.
In particular, each x ∈ Kϵ is a regular point with respect to the IFS {Ti}i∈I and dimAKϵ =
dimH Kϵ = dimLKϵ.

Proof. First, if K is contained in a vertical line, then K is the attractor of a
self-similar IFS in R and the result is substantially easier. Now applying [FJS10,
Lemma 4.3], there exists a family J0 ⊂ In0 with attractor K0 satisfying conditions
(ii), (iii), and (iv). By condition (iv), there is a t ∈ R so that t(i) = t for all i ∈ J0.
Therefore

dimHK0 = dimB η(K) + t

and since K is not contained in a vertical line, we may assume that dimB η(K0) > 0.
Since η(K0) is the attractor of a self-similar IFS, iterating J0 if necessary and

removing the maps in the first and last column, obtain a family J ⊂ J n
0 with

corresponding attractor Kϵ such that t(j) = t for any j ∈ J , and dimB η(Kϵ) ≥
dimB η(K)− ϵ. Since words which correspond to rectangles that do not lie in the
first or last column are necessarily interior words, combining this construction
with Theorem 3.4 provides a family J satisfying the desired properties. □

3.2. Approximate squares and symbolic slices. A common technique when
studying invariant sets for iterated function systems on some index set I is to
first reduce the problem to a symbolic problem on the coding space I∗. However,
the main technical complexity in understanding the dimension theory Gatzouras–
Lalley carpets, and more generally self-affine sets, is that the cylinder sets Ti(K)
are often exponentially distorted rectangles. As a result, we will keep track of two
symbolic systems simultaneously, which together will capture the geometry of the
set K.

Fix a Gatzouras–Lalley IFS Λ = {Ti}i∈I . We first introduce some notation for
handling cylinders. We then associate with the IFS Λ, and the related defining
data that we introduced in §3.1, two important metric trees: first, the metric tree of
approximate squares, and second the metric tree of symbolic slices.

First, recall that Ω = IN is the space of infinite sequences on I. Given k ∈
N∪{0} and a word i ∈ Ik, we define the cylinder corresponding to i by

[i] = {γ ∈ Ω : γ↿k = i}.

The family of cylinders {[i] : i ∈ Ik}∞k=0 defines a tree: we will often abuse notation
and simply refer to {Ik}∞k=0 as a tree. We will associate with this tree a variety of
metrics, such as those induced by the maps i 7→ βi,j for j = 1, 2. We will also use
the same notation for the projected words {η(Ik)}∞k=0.

Next, we define the metric tree of approximate squares. Before we do this, we
introduce the notion of a pseudo-cylinder. Suppose i ∈ Ik and j ∈ η(Iℓ). We then
write

P (i, j) = {γ = (in)
∞
n=1 ∈ Ω : (i1, . . . , ik) = i and η(ik+1, . . . , ik+ℓ) = j}.
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FIGURE 3. Two iterations of a Gatzouras–Lalley IFS within a cylinder,
with a wide pseudo-cylinder in highlighted in blue and a tall pseudo-
cylinder in red.

Note that map (i, j) 7→ P (i, j) is injective. Another equivalent way to understand
the pseudo-cylinder P (i, j) is as a finite union of cylinders inside the cylinder [i],
all of which lie inside the same column; that is,

(3.1) P (i, j) =
⋃

k∈η−1(j)

[ik].

We refer the reader to Figure 3 for a depiction of the definition of a pseudo-cylinder.
Now given an infinite word γ ∈ Ω, let Lk(γ) be the minimal integer so that

βγ1,1 · · · βγLk(γ),1 < βγ1,2 · · · βγk,2.

In other words, Lk(γ) is chosen so that the level Lk(γ) rectangle has approximately
the same width as the height of the level k rectangle. Write γ↿Lk(γ)

= ij where
i ∈ Ik. We then define the approximate square Qk(γ) ⊂ Ω by

Qk(γ) = P (i, η(j)).

While different γ may define the same approximate square, the choice of i and η(j)
are unique. For fixed i, let U(i) ⊂ η(I∗) denote the set of j so that P (i, j) is an
approximate square. Of course, Qk+1(γ) ⊂ Qk(γ) and moreover for any γ, γ′ ∈ Ω,
either Qk(γ) = Qk(γ

′) or Qk(γ) ∩ Qk(γ
′) = ∅. In particular, U(i) is a complete

section and the approximate squares P (i, j) are disjoint in symbolic space for
fixed i.

We say that a pseudo-cylinder P (i, j) is wide if j ≼ k for some k ∈ U(i); in other
words, P (i, j) contains approximate squares of the form P (i, k). Otherwise, we
say that P (i, j) is tall. In other words, one can think of the wide pseudo-cylinders
as “interpolating” between the cylinder P (i,∅) = [i] and the approximate square
P (i, j) = Qn(γ).

Denote the set of all approximate squares by

Sk = {Qk(γ) : γ ∈ Ω} and S =
∞⋃
k=0

Sk.

As discussed above, every approximate square is uniquely associated with a pair
(i, j), so we may therefore define a metric induced by ρ(Q) = βi,2, which makes
the collection of approximate squares into a metric tree.
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To conclude this section, we define the metric tree of symbolic slices. Suppose
we fix a word γ ∈ Ω. The word γ = (in)

∞
n=1 defines for each n ∈ N a self-similar

IFS Φn = {Sj,2 : j ∈ η−1(η(in))}. This IFS is precisely the IFS corresponding to the
column containing the index in. Note that there are only finitely many possible
choices for the Φn, so the sequence (Φn)

∞
n=1 has as an attractor a non-autonomous

self-similar set Kη(γ) and corresponding metric tree Ω(η(γ)), as defined in §2.3.
This non-autonomous IFS has uniformly bounded contractions and satisfies the
OSC with respect to the open interval (0, 1). For notational simplicity, we denote
the cylinder sets which compose this metric tree as

Fη(γ),n = {[j1, . . . , jn] : (j1, . . . , jn) ∈ Φ1 × · · · × Φn} and Fη(γ) =
∞⋃
n=0

Fη(γ),n.

We call Kη(γ) the symbolic slice associated with the word γ. If the projected IFS
{Si,1}i∈η(I) satisfies the SSC, then if x = η(π(γ)),

{x} ×Kη(γ) = η−1(x) ∩K

is precisely the vertical slice of K containing x. In general, Kη(γ) is always con-
tained inside a vertical slice of K. The symbolic fibre Kη(γ) (and its associated
Assouad dimension) was introduced and studied in [FR24, §1.2] in the more
general setting of overlapping diagonal carpets.

3.3. Tangents of Gatzouras–Lalley carpets. It turns out that the pointwise As-
souad dimension at x = π(γ) is closely related to the Assouad dimension of the
symbolic fibre Kη(γ). In this section, we make this notion precise, and moreover
use it to construct large tangents for Gatzouras–Lalley carpets.

In our main result in this section, we prove that approximate squares con-
taining a fixed word γ ∈ Ω converge in Hausdorff distance to product sets of
weak tangents of Kη(γ) with the projection η(K), up to some finite distortion and
contributions from adjacent approximate squares. First, we define

Φk,γ(x, y) =
(
S−1
γ↿Lk(γ),1

(x), S−1
γ↿k,2

(y)
)
.

By choice of Lk(γ), the maps Φk,γ are (up to some constant-size distortion) homo-
theties. One can think of Φk,γ as mapping the approximate square π(Qk(γ)) to the
unit square [0, 1]2.

Proposition 3.6. Let K be a Gatzouras–Lalley carpet and let γ ∈ Ω be arbitrary. Suppose
(in)

∞
n=1 is any sequence such that η(in) = η(γ↿n). Then

(3.2) pH
(
η(K)× (S−1

in,2(Kη(γ)) ∩ [0, 1]); Φn,γ(K) ∩ [0, 1]2
)
≲ κn

where κ = max
{βi,2

βi,1
: i ∈ I

}
∈ (0, 1). Moreover, suppose γ is regular. Then for any

γ ∈ Ω and F ∈ Tan(K, π(γ)), there is an E ∈ Tan(Kη(γ)) and a similarity map h so that
h(F ) ⊂ η(K)× E.
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Proof. We first prove that

dH
(
η(K)× (S−1

in,2(Kη(γ)) ∩ [0, 1]),Φn,γ(π(Qn(γ)))
)
≲ κn

Fix n ∈ N and write k = Ln(γ). Let Qn(γ) = P (γ↿n, j) and enumerate η−1(j) =

{j1, . . . , jn} ⊂ Ik−n. Observe that η(Tji(K)) = Sji,1(K) does not depend on
the choice of i = 1, . . . ,m. Now Φn,γ(Tγ↿nji(K)) is contained in the rectangle
η(K)×Sji,2(K). Moreover, the rectangle η(K)×Sji,2(K) has height ≲ κn. Therefore

(3.3) dH

(
η(K)×

m⋃
i=1

Sji,2([0, 1]),Φn,γ(Qn(γ))

)
≲ κn.

But approximating the set Sin,2([0, 1]) ∩ Kη(γ) at level n with cylinders at level
k = Ln(γ), using the fact that η(in) = η(γ↿n),

(3.4) dH

(
S−1
in,2(Kη(γ)) ∩ [0, 1],

m⋃
i=1

Sji,2([0, 1])

)
≲ κn.

Combining (3.3) and (3.4) gives the claim. In particular, noting that Qn(γ) ⊂ K
and Φn,γ(Qn(γ)) ⊂ [0, 1]2 gives (3.2).

Now suppose in addition that x = π(γ) is regular and let r > 0 be arbitrary.
Since x is regular, there is an n ∈ N with r ≤ βγ↿n,1 ≲ r such that

B(x, r) ∩K ⊂
ℓ⋃

j=1

Tij(K)

where

{i1, . . . , iℓ} = {i ∈ In : η(i) = η(γ↿n) and Ti(K) ∩B(x, r) ̸= ∅}.

Now exactly as before, each rectangle Tij(K) has width ≈ r and height ≲ rκn.
Therefore identifying x ∈ K with the analogous point x ∈ Kη(γ), there is a simi-
larity map hr with contraction ratio in some interval [1, c] for a fixed c depending
only on the IFS so that

pH
(
r−1(K − x) ∩B(0, 1);hr(η(K))× r−1(Kη(γ) − x)

)
≲ κn.

Now suppose F ∈ Tan(K, x) so that F = limn→∞ r−1
n (K − x) ∩B(0, 1). Passing to

a subsequence, we may assume that the hrn have contraction ratios converging to
some r0 ≥ 1. Thus passing again to a subsequence, let F0 = limn→∞(r0rn)

−1(K −
x) ∩B(0, 1). Since r0 ≥ 1, we have F ⊂ F0. Passing again to a subsequence, let

lim
n→∞

(r0rn)
−1(Kη(γ) − x) ∩B(0, 1) = E ∈ Tan(Kη(γ)).

Thus r−1
0 F ⊂ F0 ⊂ η(K)× E, as claimed. □
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To conclude this section, we establish our general result which guarantees the
existence of product-like tangents for arbitrary points in Gatzouras–Lalley carpets.

Proposition 3.7. Let K be a Gatzouras–Lalley carpet. Then for each x ∈ K, there is an
F ∈ Tan(K, x) so that

HdimH η(K)+dimA Kη(γ)(F ) ≳ 1,

where γ ∈ Ω is such that π(γ) = x. In particular,

dimA(K, x) ≥ max{dimH η(K) + dimA Kη(γ), dimBK}.

Proof. We will construct the set F essentially as a product η(K) × E where
E is a weak tangent of Kη(γ). First, recall from Theorem 2.5 that dimAKη(γ) =
dimA Ω(η(γ)). Thus by Theorem 2.1, there is a sequence (nk)

∞
k=1 diverging to

infinity and words ik ∈ Ink with η(ik) = γ↿nk
such that

E := lim
k→∞

S−1
ik,2

(Kη(γ)) ∩ [0, 1]

has HdimA Kη(γ)(E) ≳ 1.
Thus by Theorem 3.6 applied along the sequence (ik)

∞
k=1, since the images

Φ−1
n,γ([0, 1]

2) are rectangles with bounded eccentricity containing π(γ), there is a
tangent F ∈ Tan(K, x) containing an image of η(K)× E under a bi-Lipschitz map
with constants depending only on K. But η(K) is Ahlfors–David regular so that

HdimH η(K)+dimA Kη(γ)(F ) ≥ HdimH η(K)+dimA Kη(γ)
(
η(K)× E

)
≳ 1

as claimed. The result concerning dimA(K, x) then follows by Theorem 2.2 and
Theorem 2.3. □

3.4. Upper bounds for the pointwise Assouad dimension. We now prove our
main upper bound for the pointwise Assouad dimension of Gatzouras–Lalley
carpets. As a result of the local inhomogeneity of Gatzouras–Lalley carpets,
obtaining good upper bounds requires some care. We will prove a sequence of
lemmas which, morally, provide optimal covers for a variety of symbolic objects:
these covers will then be combined to obtain our general upper bound for the
pointwise Assouad dimension.

We first show that, as a result of the vertical alignment of their component
cylinders, pseudo cylinders can essentially be covered by their projection. Recall
that S denotes the set of all approximate squares. Then if P (i, j) is any wide
pseudo-cylinder, we can write it as a union of the approximate squares in the
family

Q(i, j) = {Q ∈ S : Q = P (i, k) for some k ∈ η(I∗) and Q ⊂ P (i, j)}.

Since each Q = P (i, k) for some k, we have Q ∈ S(βi,2) so that this family of
approximate squares forms a section.



TANGENTS AND SLICES OF SELF-AFFINE CARPETS 19

Lemma 3.8. Let P (i, j) be a wide pseudo-cylinder. Then

#Q(i, j) ≈
(
βij,1

βi,2

)dimB η(K)

.

Proof. First, enumerate Q(i, j) = {Q1, . . . , Qm}, and for each i = 1, . . . ,m, there
is a unique ki so that Qi = P (i, ki). Moreover, {k1, . . . , km} forms a section relative
to [j], so that writing s = dimB η(K) and recalling that η(K) is the attractor of a
self-similar IFS satisfying the open set condition,

(3.5)
m∑
i=1

βs
ki,1

= βs
j,1.

But βiki,1 ≈ βi,2 since each Qi is an approximate square, which gives the desired
result. □

In the next result, we provide good covers for cylinder sets using approximate
squares with diameter bounded above by the height of the corresponding rectangle.
Heuristically, a cylinder set can first be decomposed into approximate squares
using Theorem 3.8, and an “average” approximate square itself has box dimension
the same as the box dimension of K. To make this notion precise, we simply
reverse the order: we begin with a good cover for the box dimension of K, and
take the image under some word i. The image of each approximate square is a
wide pseudo-cylinder, so we may apply Theorem 3.8 to complete the bound.

Lemma 3.9. Suppose i ∈ I∗ and 0 < r ≤ βi,2. Then

#{Q ∈ S(r) : Q ⊂ [i]} ≈
(
βi,2
r

)dimB K

·
(
βi,1
βi,2

)dimB η(K)

Proof. Fix i ∈ I∗ and 0 < r ≤ βi,2. Write δ = r/βi,2, so by inspecting the proofs
of [LG92, Lemmas 2.1, 2.2, & 2.3], we see that

#S(δ) ≈ (1/δ)dimB K .

Enumerate S(δ) = {Q1, . . . , Qm} and for each i = 1, . . . ,m, we may write Qi =
P (ji, ki) for some ji ∈ I∗ and ki ∈ η(I∗). Then for each i = 1, . . . ,m,

Q(iji, ki) ⊂ S(r) and [i] =
m⋃
i=1

⋃
Q∈Q(iji,ki)

Q.

Thus by Theorem 3.8 applied to each pseudo-cylinder P (iji, ki), since Qi is an
approximate square and βjiki,1 ≈ βji,2,

#{Q ∈ S(r) : Q ⊂ [i]} =
m∑
i=1

#Q(iji, ki)

≈
m∑
i=1

(
βijiki,1

βiji,2

)dimB η(K)
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≈
(
βi,2
r

)dimB K

·
(
βi,1
βi,2

)dimB η(K)

as claimed. □

To conclude our collection of preliminary lemmas, we use the Assouad dimension
of the symbolic fibre Kη(γ) to control the size of “column sections” of approximate
squares. We note that the word i appears in the hypothesis but not the conclu-
sion: this is simply to clarify the application of this lemma when it is used in
Theorem 3.11.

Lemma 3.10. Let ϵ > 0 and γ ∈ Ω be arbitrary. Suppose k ∈ N and Qk(γ) = P (i, j).
Let A be any section of I∗ such that A ≼ η−1(j). Then∑

k∈A

β
dimA Kη(γ)+ϵ

k,2 ≲ϵ,γ 1.

Proof. The assumption on the section A precisely means that {ik : k ∈ A} is
a section relative to i in Fη(γ). Then by Theorem 2.4 applied to the metric space
Ω(η(γ)) (recalling that dimA Ω(η(γ)) = dimA Kη(γ) from Theorem 2.5), since A is a
section,

∑
k∈A

(
βik,2
βi,2

)dimA Kη(γ)+ϵ

≲ϵ,γ 1.

Cancelling the βi,2 gives the desired result. □

Finally, by combining the various counts that we have established earlier in this
section, we are now in position to compute the upper bound for the pointwise
Assouad dimension.

Let us begin with an intuitive explanation for this proof. Since x is regular,
we will reduce the problem of computing covers of balls to computing covers for
approximate squares. Thus suppose we fix an approximate square P (i, j), which is
the union of cylinders {ik : η(k) = j}. We wish to cover this set with approximate
squares in S(r). There are two cases. First, the rectangle corresponding to the
cylinder ik has height greater than or equal to r, in which case we simply keep
this cylinder and obtain a good bound for the cover using Theorem 3.9: this is the
family A1. Otherwise, the rectangle is shorter, and we instead want to cover groups
of cylinders simultaneously. Such groups are precisely wide pseudo-cylinders
corresponding to elements of A2 and have height r, which we can then cover using
Theorem 3.8. These covers are then combined using Theorem 3.10.

Proposition 3.11. Let K be a Gatzouras–Lalley carpet and suppose x = π(γ) ∈ K.
Then

dimA(K, x) ≥ max{dimBK, dimH η(K) + dimA Kη(γ)}

with equality if x is regular.
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Proof. Recalling the general lower bound proven in Theorem 3.7, we must
show that

dimA(K, x) ≤ max{dimBK, dimH η(K) + dimA Kη(γ)} =: ζ

when x is regular. We obtain this bound by a direct covering argument. We will
prove that for any k ∈ N and approximate square Qk(γ) = P (i, j), if 0 < r ≤ βi,2,
then

(3.6) #{Q ∈ S(r) : Q ⊂ Qk(γ)} ≲

(
βi,2
r

)ζ

.

Assuming this, since x is regular, for any ball B(x,R), there is an R′ ≲ R and at
most two approximate squares Q1, Q2 ∈ S(R′) lying in the same column such
that B(x,R) ⊂ π(Q1) ∪ π(Q2). Since Q1, Q2 lie in the same column, Qj = Qkj(γj)
for some kj ∈ N where η(γj) = η(γ). Moreover, if 0 < r ≤ R and Q ∈ S(r) is
arbitrary, then diamπ(Q) ≲ r. Thus (3.6) immediately gives the correct bound, up
to a constant factor, for Nr(B(x,R) ∩K).

It remains to prove (3.6). Fix an approximate square Qk(γ) = P (i, j) and
suppose 0 < r ≤ βi,2 is arbitrary. First, let

A0 = η−1(j) ∧ Fη(γ)(r/βi,2) and A = {ik : k ∈ A0}.

We then decompose A = A1 ∪ A2, where

A1 = A \ Fη(γ)(r) and A2 = A ∩ Fη(γ)(r).

First, suppose ik ∈ A1. Then, by definition, βik,2 > r which, by definition of A0,
implies that η(k) = j. Thus by Theorem 3.9 applied to the cylinder ik and scale r,
since dimB η(K) ≤ dimB K and βik,1 ≈ βi,2,

(3.7) #{Q ∈ S(r) : Q ⊂ [ik]} ≈
(
βik,2
r

)dimB K (
1

βk,2

)dimB η(K)

.

Otherwise, suppose ik ∈ A2 ⊂ Fη(γ)(r). Since A0 ≼ η−1(j), there is a j′ so that
η(k)j′ = j. Thus choice of j′ ensures that

P (ik, j′) = Qk(γ) ∩ [ik].

Thus by Theorem 3.8 and since Qk(γ) = P (i, j) is an approximate square,

(3.8) #{Q ∈ S(r) : Q ⊂ Qk(γ) ∩ [ik]} = #Q(ik, j′) ≈
(

1

βk,2

)dimB η(K)

.

Thus by applying (3.7) and (3.8) to the respective components and recalling that
βik,2 ≈ r whenever ik ∈ A2,

#{Q ∈ S(r) : Q ⊂ Qk(γ)}
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=
∑
ik∈A1

#{Q ∈ S(r) : Q ⊂ [ik]}+
∑
ik∈A2

#{Q ∈ S(r) : Q ⊂ Qk(γ) ∩ [ik]}

≈
∑
ik∈A1

(
βik,2
r

)dimB K (
1

βk,2

)dimB η(K)

+
∑
ik∈A2

(
1

βk,2

)dimB η(K)

≲
∑
ik∈A1

(
βik,2
r

)ζ (
βi,2
βik,2

)ζ

β
dimA Kη(γ)

k,2 +
∑
ik∈A2

(
βi,2
r

)ζ

β
dimA Kη(γ)

k,2

=

(
βi,2
r

)ζ ∑
k∈A0

β
dimA Kη(γ)

k,2

≲

(
βi,2
r

)ζ

where the last line follows by Theorem 3.10 applied to the section A0. Thus (3.6)
follows, and therefore our desired result. □

3.5. Dimensions of level sets of pointwise Assouad dimension. Given an index
i ∈ I, let Φη(i) denote the IFS corresponding to the column containing the index i,
that is

Φη(i) = {Sj,2 : j ∈ I and η(j) = η(i)}.

Now given a word γ = (in)
∞
n=1 ∈ Ω, recall that the symbolic slice Kη(γ) is the

non-autonomous self-similar set associated with the IFS {Φη(in)}∞n=1. Since there
are only finitely many choices for the Φη(in), the hypotheses of Theorem 2.6 are
automatically satisfied and

dimAKη(γ) = lim
m→∞

sup
n∈N

θη(γ)(n,m)

where

∑
(j1,...,jm)∈η−1(η(i1,...,in))

m∏
k=1

β
θη(γ)(n,m)

jk,2
= 1.

We now obtain our main formula for the pointwise Assouad dimension of arbitrary
points in Gatzouras–Lalley carpets.

Theorem 3.12. Let K be a Gatzouras–Lalley carpet. Then for every x ∈ K with x =
π(γ), there is an F ∈ Tan(K, x) with Hs(F ) ≳ 1 where

s := dimB η(K) + dimAKη(γ)

= dimB η(K) + lim
m→∞

sup
n∈N

θη(γ)(n,m)

In particular,

max{dimH F : F ∈ Tan(K, x)} ≥ s and dimA(K, x) ≥ max{s, dimBK}

where both inequalities are equalities if x is regular. In particular, if η(K) satisfies the
strong separation condition then equality holds for all x ∈ K.
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Proof. By Theorem 3.7, there is an F ∈ Tan(K, x) so that

HdimH η(K)+dimA Kη(γ)(F ) ≳ 1.

Moreover, dimA Kη(γ) = limm→∞ supn∈N θη(γ)(n,m) by Theorem 2.6. The formula
for dimA(K, x), including the case when x is regular, then follows by Theorem 3.11.

If x is regular, it moreover follows from Theorem 3.6 that for any F ∈ Tan(K, x),
there is a similarity map h and a weak tangent E ∈ Tan(Kη(γ)) so that h(F ) ⊂
η(K)× E. Since dimB η(K) = dimH η(K),

dimH F = dimH h(F ) ≤ dimB η(K) + dimH E ≤ dimB η(K) + dimAKη(γ)

as required.
Finally, we recall that if η(K) satisfies the strong separation condition, then

each x ∈ K is regular by Theorem 3.4 (i). □

Our next goal is to prove that the set of pointwise Assouad dimensions forms an
interval. First, for i ∈ In, let t(i) be chosen so that∑

j∈In

η(j)=η(i)

β
t(i)
j,2 = 1.

Equivalently, the function t is chosen precisely so that

θη(γ)(n,m) = t(γn+1, . . . , γn+m).

We now have the following result.

Lemma 3.13. Let K be a Gatzouras–Lalley carpet and suppose dimLK < α < dimA K.
Then for all k0 ∈ N sufficiently large, for all n ∈ N there is in ∈ Bn

k0
⊂ Ik0n satisfying

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) = α− dimB η(K).

Proof. First, fixing any interior word j ∈ I∗ and i ∈ I so that dimAK =
dimB η(K) + t(i),

dimA K = dimB η(K) + lim
k→∞

t(jik);

and similarly for the lower dimension. Thus for all sufficiently large k0, there are
words jL, jA ∈ Bk0 so that

dimB η(K) + t(jL) < α < dimB η(K) + t(jA).

We inductively construct (jL,k, jA,k)
∞
k=1 so that, for each k ∈ N,

1. α− dimB η(K)− 1
k
≤ t(jL,k) ≤ α− dimB η(K),

2. α− dimB η(K) ≤ t(jA,k) ≤ dimAK + dimB η(K) + 1
k
,

3. jL,k, jA,k ∈ B∗
k0

and, for k ≥ 2, jL,k, jA,k ∈ {jL,k−1, jA,k−1}∗, and



24 ANTTI KÄENMÄKI & ALEX RUTAR

4. |jL,k| ≥ k and |jA,k| ≥ k.
First, set jL,1 = jL and jA,1 = jA which clearly satisfy the desired properties. Now
suppose we have constructed jL,k and jA,k. Since t(jA,k) ≥ α− dimB η(K), for any
m ∈ N,

lim
n→∞

t(jmL,kj
n
A,k) ≥ α− dimB η(K).

Moreover, t(jmL,k) ≤ α − dimB η(K) and, by taking m ≥ k sufficiently large and
applying Theorem 2.6 (ii), for all n ∈ N sufficiently large,

|t(jmL,kjn+1
A,k )− t(jmL,kj

n
A,k)| ≤

1

k + 2
<

1

k + 1
.

Combining these two observations, there is a pair m,n so that jA,k+1 := jmL,kj
n
A,k ∈

B∗
k0

satisfies conditions 1 and 4. The identical argument gives jL,k+1 ∈ B∗
k0

satisfy-
ing 2, as claimed.

To complete the proof, since jL,k ∈ B∗
k0

for all k ∈ N, we may identify the
sequence (jL,k)

∞
k=1 with a sequence (in)

∞
n=1 where in ∈ Bk0 for all n ∈ N. It

immediately follows from 1 and 4 that

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) ≥ α− dimB η(K).

To establish the converse bound, it suffices to show for every k ∈ N that

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) ≤ α− dimB η(K) +
1

k
.

By 3, for all k ∈ N, there is a K ∈ N so that for all n ≥ K, in ∈ {jL,k, jA,k}∗. For
each ℓ ∈ N, write kℓ = iKℓ+1 · · · iK(ℓ+1) and note that kℓ ∈ {jL,k, jA,k}∗ for all ℓ ∈ N.
Thus for any n,m ∈ N,

t(kℓ+1 · · · kℓ+m) ≤
1

m

m∑
i=1

t(kℓ+i) ≤ α− dimB η(K) +
1

k
.

But by the property of t established in Theorem 2.6 (2.3),

lim
m→∞

sup
n∈N

t(in+1 · · · in+m) = lim
m→∞

sup
n∈N

t(kn+1 · · · kn+m)

which gives the claim. □

To conclude this section, we assemble the results proven in the prior two sections
to obtain our main result.

Theorem 3.14. Let K be a Gatzouras–Lalley carpet. Then for any dimBK ≤ α ≤
dimA K,

(3.9) dimH{x ∈ K : dimA(K, x) = α} = dimHK.

Otherwise, if α /∈ [dimB K, dimA K], then {x ∈ K : dimA(K, x) = α} = ∅. However,

(3.10) HdimH K
(
{x ∈ K : dimA(K, x) ̸= dimAK}

)
= 0.
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Proof. Note that if dimB K = dimA K, then dimA(K, x) = dimAK for all x ∈ K
and the results are clearly true. Thus we may assume that dimH K < dimBK <
dimA K.

We first establish (3.9). Let ϵ > 0 be arbitrary and dimBK ≤ α ≤ dimA K. Apply
Theorem 3.5 and get k ∈ N and a family J ⊂ Bk with corresponding attractor Kϵ

satisfying dimHK − ϵ ≤ dimH Kϵ = dimAKϵ and dimB η(K) − ϵ ≤ dimB η(Kϵ). If
α < dimA K, iterating the system if necessary, by Theorem 3.13 get a sequence
(in)

∞
n=1 with in ∈ Bk for all n ∈ N and moreover

(3.11) lim
m→∞

sup
n∈N

t(in+1 · · · in+m) = α− dimB η(K).

If instead α = dimA K, instead simply take in = ik0 where i0 ∈ I is any word
such that dimA K = dimB η(K) + t(i0). Note that t(j) = dimA Kϵ − dimB η(Kϵ)
for any j ∈ J . Thus by taking ϵ to be sufficiently small, we may assume that
t(j) ≤ α− dimB η(K) for all j ∈ J .

Now, let (Nk)
∞
k=1 be a sequence of natural numbers satisfying limk→∞ Nk/k = ∞

and write

Ω0 =
∞∏
k=1

J Nk × {i1} × · · · × {ik}.

By taking each Nk to be sufficiently large, we may ensure that dimH π(Ω0) ≥
dimH Kϵ − ϵ. Fix γ ∈ Ω0: it remains to verify that dimA(K, π(γ)) = α. Since γ ∈ BN

k ,
π(γ) is a regular point of K by Theorem 3.4 (ii). By passing to the subsystem
induced by Bk ⊂ Ik, write γ = (kk)

∞
k=1 where kk ∈ Bk. Thus by Theorems 2.6

and 3.12,

dimA(K, x) = max
{
dimB K, lim

m→∞
sup
n∈N

t(kn+1 · · · kn+m) + dimB η(K)
}
.

Since i1 · · · im appears as a subword of γ for arbitrarily large m, by (3.11) and since
α > dimB K, it follows that dimA(K, x) ≥ α.

We now obtain the upper bound. Let ϵ > 0 be arbitrary. By (3.11), there is an
ℓ0 ∈ N so that whenever ℓ ≥ ℓ0, we have t(ij+1 · · · ij+ℓ) ≤ α−dimB η(K)+ ϵ. Let C
be the implicit constant from Theorem 2.6 (ii) and let m be sufficiently large so that
Cℓ0/m ≤ ϵ. Since limk→∞Nk/k = ∞, for all n sufficiently large, there is a j ∈ N so
that

kn+1 · · · kn+m = j1 · · · jm−ℓij+1 · · · ij+ℓ.

Thus for m,n sufficiently large, if ℓ ≥ ℓ0, by Theorem 2.6,

t(kn+1 · · · kn+m) ≤ max
{
t(j1 · · · jm−ℓ), t(ij+1 · · · ij+ℓ)}

≤ α− dimB η(K) + ϵ

and similarly if ℓ < ℓ0, recalling that t(ij+1 · · · ij+ℓ) ≤ 1, by Theorem 2.6 recalling
the definition of C,

t(kn+1 · · · kn+m) ≤ α− dimB η(K) + ϵ.
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Therefore

lim sup
m→∞

lim sup
n→∞

t(kn+1 · · · kn+m) ≤ α− dimB η(K) + ϵ

and since ϵ > 0 was arbitrary,

lim
m→∞

sup
n∈N

t(kn+1 · · · kn+m) = lim sup
m→∞

lim sup
n→∞

t(kn+1 · · · kn+m) ≤ α− dimB η(K)

so that dimA(K, x) ≤ α, as claimed. Of course, we recall as well that dimBK ≤
dimA(K, x) ≤ dimAK by Theorem 2.3.

We finally consider the points x such that dimA(K, x) < dimA K. Let i0 ∈ I be
such that dimAK = dimB η(K) + t(i0). Let

JM := {(i1, . . . , iM) ∈ IM : (i1, . . . , iM) ̸= (i0, . . . , i0)}

have attractor KM ⊂ K. Since JM is a proper subsystem, dimH KM < dimH K
so that HdimH K(KM) = 0. Now let x ∈ K have dimA(K, x) < dimA K. Suppose
x = π(γ) where γ = (in)

∞
n=1, so that

dimA(K, x) ≥ max

{
dimB K, dimB η(K) + lim

m→∞
sup
n∈N

t(in+1, . . . , in+m)

}
.

Since dimA(K, x) < dimA K,

lim
m→∞

sup
n∈N

t(in+1, . . . , in+m) < t(i0).

In particular, there is a constant M so that γ does not contain iM0 as a subword.
Thus x ∈ KM for some M and therefore

HdimH K ({x ∈ K : dimA(K, x) < dimAK}) ≤
∞∑

M=1

HdimH K(KM) = 0

as required. □

Remark 3.15. We recall that if K is a Gatzouras–Lalley carpet, then HdimH K(K) >
0, with HdimH K(K) < ∞ if and only if K is Ahlfors regular; see [LG92]. In
particular, the positivity of the Hausdorff measure guarantees that the claim
(3.10) in Theorem 3.14 is not vacuous; and, if the Hausdorff measure is finite,
Theorem 3.14 is trivial.

4. TANGENT STRUCTURE AND DIMENSION OF BARAŃSKI CARPETS

4.1. Dimensions and decompositions of Barański carpets. Recall the definition
of the Barański carpet and basic notation from §3.1. Suppose K is a Barański carpet
and γ ∈ Ω is arbitrary. For each k ∈ N, we define a probability vector ξk(γ) by the
rule

ξk(γ)i =
#{1 ≤ ℓ ≤ k : γℓ = i}

k
for each i ∈ I.
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In other words, ξk(γ) is the distribution of the letter frequencies in the first k letters
of γ. We then define

Γk(γ) =
χ1(ξk(γ))

χ2(ξk(γ))
.

The function Γk induces a partition Ω = Ω0 ∪ Ω1 ∪ Ω2 by

Ω0 = {γ : lim inf
k→∞

Γk(γ) ≤ 1 ≤ lim sup
k→∞

Γk(γ)}

Ω1 = {γ : lim sup
k→∞

Γk(γ) < 1}

Ω2 = {γ : 1 < lim inf
k→∞

Γk(γ)}.

We now recall the dimensional formula for a general Barański carpet. First, we
decompose P = P1 ∪ P2 where

Pj = {w ∈ P : χj(w) ≤ χj′(w)}.

Now given a measure w ∈ Pj , recall [Bar07, Corollary 5.2] which states that

dimH π∗w
N =

H(ηj(w))

χj(w)
+

H(w)−H(ηj(w))

χj′(w)
.

Here and for the remainder of this document, for notational simplicity, given j = 1
we write j′ = 2 and given j = 2 we write j′ = 1.

We also introduce some notation for symbolic slices both in the horizontal and
vertical directions. Given γ ∈ Ω and j ∈ 1, 2, let θηj(γ),j be defined by the rule

∑
(j1,...,jm)∈η−1

j (ηj(i1,...,in))

m∏
k=1

β
θηj(γ),j(n,m)

jk,j
= 1.

The value θη(γ) = θη1(γ),1 was defined previously in the context of a Gatzouras–
Lalley carpet. As is the case with a Gatzouras–Lalley carpet, if we denote by
Kηj(γ),j the non-autonomous self-similar set associated with the non-autonomous
self-similar IFS {Si,j : i ∈ η−1(η(γk))}∞k=1, then

dimAKηj(γ),j = lim
m→∞

sup
n∈N

θηj(γ),j(n,m).

Assuming η1(K) (resp. η2(K)) satisfies the SSC, then Kη1(γ),1 (resp. Kη2(γ),2) is
precisely the intersection of K with the vertical (resp. horizontal) line containing
x = π(γ). We now recall [Fra14, Theorem 2.12] concerning the Assouad dimension
and the main result of [Bar07] on the Hausdorff dimensions of Barański carpets.
While this result is not stated explicitly, the relevant details can be obtained directly
by inspecting the proof.

Proposition 4.1 ([Bar07; Fra14]). Let K be a Barański carpet such that Ω1 ̸= ∅ and
Ω2 ̸= ∅. Then:
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(i) For each j = 1, 2,

dimH π(Ω0 ∪ Ωj) ≤ dj

where

dj = max
w∈Pj

(
H(ηj(w))

χj(w)
+

H(w)−H(ηj(w))

χj′(w)

)
.

In particular, dimH K = max{d1, d2}.
(ii) We have

dimA K = max
j=1,2

{dimB ηj(K) + tj}

where

tj = max
ℓ∈ηj(I)

tj(ℓ)

and tj(ℓ) is the unique solution to the equation∑
j∈η−1

j (ℓ)

β
tj(ℓ)
j,2 = 1.

4.2. Pointwise Assouad dimension along uniformly contracting sequences. In
this section, we state a generalization of our results on Gatzouras–Lalley carpets
to Barański carpets, with the caveat that we restrict our attention to points coded
by sequences which contract uniformly in one direction. The approach is similar
to the Gatzouras–Lalley case so we only include the details when the proofs
diverge. Handling more general sequences would result in a more complicated
formula for the pointwise Assouad dimension depending on the scales at which
the contraction ratio is greater in one direction than the other, which we will not
treat here.

We begin by defining the analogues of pseudo-cylinders and approximate
squares. Fix j = 1, 2. Suppose i ∈ Ik and j ∈ ηj(Iℓ). We then write

Pj(i, j) = {γ = (in)
∞
n=1 ∈ Ω : (i1, . . . , ik) = i and ηj(ik+1, . . . , ik+l) = j}.

Now let γ ∈ Ω be arbitrary and let k ∈ N. Let j be chosen so that βγ↿k,j ≥ βγ↿k,j′ .
We then let Lk(γ) ≥ k be the minimal integer so that

βγ↿Lk,j(γ)
,j < βγ↿k,j′ .

Write γ↿Lk,j(γ)
= ij and define the approximate square

Qk(γ) = Pj(i, ηj(j)).

Finally, we call a pseudo-cylinder wide if Pj(i, j) contains an approximate square
Pj(i, k); otherwise, we call the pseudo-cylinder tall.
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In the case when the Barański carpet is in fact a Gatzouras–Lalley carpet, these
definitions with j = 1 coincide with the definitions in the Gatzouras–Lalley case.

Next, the collection of approximate squares forms a metric tree when equipped
with the valuation ρ(Pj(i, ηj(j))) = βi,j′ . Note that for each approximate square
Q, there is a unique choice for j except precisely when βγ↿k,j = βγ↿k,j′ , so indeed ρ
is well-defined.

Similarly as in the Gatzouras–Lalley case, given a pseudo-cylinder Pj(i, j), we
write

Qj(i, j) = max{A : A is a section of S relative to Pj(i, j)}

where S is the collection of all approximate squares and the maximum is with
respect to the partial ordering on sections. That the maximum always exists
follows from the properties of the meet. In the case when the pseudo-cylinder is
wide, this coincides precisely with the definition in the Gatzouras–Lalley case.

However, unlike in the Gatzouras–Lalley case, we will also have to handle tall
pseudo-cylinders, which have a more complex structure. This additional structure
is handled in the following covering lemma.

Lemma 4.2. (i) Let Pj(i, j) be a wide pseudo-cylinder. Then

#Qj(i, j) ≈
(
βij,j

βi,j′

)dimB ηj(K)

.

(ii) Let Pj(i, j) be a tall pseudo-cylinder. Then

#Qj(i, j) ≲

(
βi,j′

βij,j

)dimB ηj′ (K)

.

(iii) Let ϵ > 0 be arbitrary. Suppose i ∈ I∗ and let j be chosen so that βi,j′ ≤ βi,j . Let
0 < r ≤ βi,j . Then

#{Q ∈ S(r) : Q ⊂ [i]} ≲ϵ

(
βi,j′

r

)dimB K+ϵ

·
(
βi,j
βi,j′

)dimB ηj(K)

.

(iv) Let ϵ > 0 and γ ∈ Ω be arbitrary. Suppose k ∈ N and j = 1, 2 are such that
Qk(γ) = Pj(i, j). Let A be any section of I∗ satisfying A ≼ η−1

j (j). Then∑
k∈A

β
dimA Kηj(γ),j

+ϵ

k,j′ ≲ϵ,γ 1.

Proof. The proof of (i) is identical to the proof given in Theorem 3.8 and simi-
larly the proof of (iv) is identical to that of Theorem 3.10.

We now prove (ii). In order to do this, we must understand the structure of
the pseudo-cylinder Pj(i, j). Heuristically, when (for instance) j = 1, Pj(i, j) is a
union of cylinders which fall into one of two types: those which are tall, and those
which are wide. If a cylinder is tall, we apply (i) in the opposite direction to cover
it with approximate squares, and if a cylinder is wide, we group nearby cylinders
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together to form approximate squares. We then combine these counts using the
slice dimension tj , which is bounded above by dimB ηj′(K).

Write A = η−1
j (j) and partition A = A1 ∪ A2 where

A1 = {k ∈ A : βik,j′ ≥ βij,j} and A2 = A \ A1.

First, for k ∈ A1, note that Pj′(ik,∅) is a wide pseudo-cylinder and we set

B1 =
⋃
k∈A1

Qj′(ik,∅).

By applying (i), since βik,j ≈ βij,j ,

(4.1) #B1 =
∑
k∈A1

#Qj′(ik,∅) ≈
∑
k∈A1

(
βik,j′

βij,j

)dimB ηj′ (K)

Otherwise if k ∈ A2, let l1(k) denote the prefix of k of maximal length so that
βil1(k),j′ ≥ βij,j . Writing k = l1(k)l2(k), this choice guarantees that

B(k) := Pj(il1(k), ηj(l2(k)))

is the unique approximate square contained in [i] containing [ik]. Finally, let

A′
2 = {l1(k) : k ∈ A2} and B2 = {B(k) : k ∈ A2}.

We then note that, since βil,j′ ≈ βij,j by the choice of l1(k),

(4.2) #B2 ≈
∑
l∈A′

2

(
βil,j′

βij,j

)dimB ηj′ (K)

To conclude, observe that Qj(i, j) = B1 ∪ B2 and applying (4.1) and (4.2),

#Qj(i, j) = #B1 +#B2

≲
∑
k∈A1

(
βik,j′

βij,j

)dimB ηj′ (K)

+
∑
l∈A′

2

(
βil,j′

βij,j

)dimB ηj′ (K)

=

(
βi,j′

βij,j

)dimB ηj′ (K) ∑
k∈A1∪A′

2

β
dimB ηj′ (K)

k,j′

≤

(
βi,j′

βij,j

)dimB ηj′ (K)

where the last line follows since A1 ∪ A′
2 ≼ η−1

j (j) is a section and dimB ηj′(K) ≥
tj(j) where ∑

k∈A1∪A′
2

β
tj(j)

k,j′ = 1.
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Finally, we combine the bounds given in (i) and (ii) with a similar argument to
the proof of Theorem 3.9 to obtain (iii). Let ϵ > 0 be arbitrary and fix i ∈ I∗ and
j = 0, 1 so that 0 < r ≤ βi,j′ ≤ βi,j . Write δ = r/βi,j′ so, recalling the proof of
[Bar07, Theorem B],

#S(δ) ≲ϵ (1/δ)
dimB K+ϵ.

Now enumerate

S(δ) = {Q1,j, . . . , Qmj ,j} ∪ {Q1,j′ , . . . , Qmj′ ,j
′}

where for each z = j, j′ and 1 ≤ i ≤ mz,

Qi,z = Pz(ji,z, ki,z)

for some ji,z ∈ I∗ and ki,z ∈ ηz(I∗). Observe that each Pz(iji,z, ki,z) is a wide
pseudo-cylinder if z = j and a tall pseudo-cylinder if z = j′. Thus we may
complete the proof in the same way as Theorem 3.9, by applying (i) to the wide
pseudo-cylinders and (ii) to the tall pseudo-cylinders. □

We can now prove the following formulas for the pointwise Assouad dimension.

Proposition 4.3. Let K be a Barański carpet. Then for each j = 1, 2, if ηj(K) satisfies
the SSC, for all γ ∈ Ωj and x = π(γ),

dimA(K, x) = max{dimBK, dimB ηj(K) + dimA Kηj(γ),j}

and

max{dimH F : F ∈ Tan(K, x)} = dimB ηj(K) + dimAKηj(γ),j.

Furthermore,

dimA Kηj(γ),j = lim
m→∞

sup
n∈N

θηj(γ),j(n,m) ≤ max
ℓ∈ηj(I)

tj(ℓ).

Proof. If γ ∈ Ωj , by definition there is a constant κ ∈ (0, 1) so that

βγ↿k,j′

βγ↿k,j
≲ κn.

In particular, there is a constant κ′ ∈ (0, 1) so that each maximal cylinder [i]
contained in Qk(γ) has βi,j′/βi,j ≲ (κ′)k, which converges to zero. Thus the same
proof as given in Theorem 3.11 but instead applying Theorem 4.2 in place of the
analogous bounds for Gatzouras–Lalley carpets gives that

dimA(K, x) ≤ max{dimBK, dimB ηj(K) + dimA Kηj(γ),j}.

Similarly, the same proof as Theorem 3.7 shows that

max{dimH F : F ∈ Tan(K, x)} = dimB ηj(K) + dimAKηj(γ),j.
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Finally, using Theorem 2.6,

lim
m→∞

sup
n∈N

θηj(γ),j(n,m) ≤ max
ℓ∈ηj(I)

tj(ℓ).

as required. □

4.3. Barański carpets with few large tangents. In contrast to Gatzouras–Lalley
carpets, the analogue of Theorem 3.14 need not hold for Barański carpets. We first
give a precise characterization of when a Barański carpet has few large tangents.
Fix the definitions of tj and dj from Theorem 4.1.

Theorem 4.4. Let K be a Barański carpet such that ηj(K) satisfies the SSC and Ωj ̸= ∅
for j = 1, 2. Suppose for one of j = 1, 2, dj < dj′ and dimB ηj(K)+tj > dimB ηj′(K)+tj′ .
Then

dimH{x ∈ K : dimA(K, x) = dimA K} < dimHK.

Proof. Suppose d1 < d2 and dimB η1(K)+t1 > dimB η2(K)+t2 (the opposite case
follows analogously). By Theorem 4.1, dimH K = d2 and dimAK = dimB η1(K)+t1.
In particular, by Theorem 4.3, if dimA(K, x) = dimAK = dimB η1(K) + t1, then
necessarily x = π(γ) where γ ∈ Ω0 ∪ Ω1. But dimH π(Ω0 ∪ Ω1) = d1 < d2 = dimH K,
as required. □

Remark 4.5. In the context of Theorem 4.4, one can in fact prove that the following
are equivalent:

(i) dimH{x ∈ K : dimA(K, x) = dimA K} < dimHK.
(ii) dimH{x ∈ K : ∃F ∈ Tan(K, x) such that dimH F = dimA K} < dimH K.

(iii) For one of j = 1, 2, dj < dj′ and dimB ηj(K) + tj > dimB ηj′(K) + tj′ .
Such a proof follows similarly to the Gatzouras–Lalley case with appropriate
modifications to restrict attention only to the family Ω1 or Ω2. The only additional
observation required is that [FJS10, Lemma 4.3] also holds in the Barański case
and the uniform subsystem can be chosen so the maps are contracting strictly in
direction j and the dimension of the corresponding attractor is arbitrarily close to
dj .

In particular, if one of the above equivalent conditions hold and without loss
of generality d1 > d2 and dimB η1(K) + t1 < dimB η2(K) + t2, then the Hausdorff
dimension of the level set φ(α) = dimH{x ∈ K : dimA(K, x) = α} is given by the
piecewise formula

φ(α) =

{
dimHK : dimBK ≤ α ≤ dimB η1(K) + t1

d2 : dimB η1(K) + t1 < α ≤ dimA K.

We leave the remaining details to the curious reader.

With Theorem 4.4 in hand, we can now give an explicit example of a Barański
carpet which has few large tangents.
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Corollary 4.6. There is a Barański carpet K such that

dimH{x ∈ K : dimA(K, x) = dimA K} < dimHK.

Proof. Fix some δ ∈ [0, 1/6) and define parameters β = 1/4 − δ, α1 = 1/3 − δ,
and α2 = 1/6− δ. Now define the families of maps

Φ1 = {(x, y) 7→ (α1x, βy + iβ) : i = 0, . . . , 3}
Φ2,a = {(x, y) 7→ (α2x+ α1 + jα2, βy + iβ) : j = 0, 1 and i = 0, 1}
Φ2,b = {(x, y) 7→ (α2x+ α1 + jα2, βy + iβ) : j = 3, 4 and i = 2, 3}

and then set

Φ2 = Φ2,a ∪ Φ2,b and Φ = Φ1 ∪ Φ2,a ∪ Φ2,b.

We abuse notation and use functions and indices interchangeably. Note that Φ is a
Barański IFS with five columns; the carpet is conjugate to the carpet generated by
the maps depicted in Figure 2b. Note that if δ > 0, both projected IFSs satisfy the
SSC.

We now simplify the dimensional expression in Theorem 4.1 (ii) for our specific
system. First, for w ∈ P , set p =

∑
i∈Φ2

wi. Note that χ1(w) = −p logα2 − (1 −
p) logα1 and χ2(w) = − log β depend only on p. But since entropy and projected
entropy are maximized uniquely by uniform vectors, defining the vector z(p) ∈ P
by

z(p)i =

{
1−p
4

: i ∈ Φ1

p
8
: i ∈ Φ2

we necessarily have

H(η1(w))

χ1(w)
+

H(w)−H(η1(w))

χ2(w)
≤ H(η1(z(p)))

χ1(z(p))
+

H(z(p))−H(η1(z(p)))

χ2(z(p))

=
−p log p− (1− p) log(1− p) + p log 4

−p logα2 − (1− p) logα1

+
(2− p) log 2

− log β

=: D1(p)

and

H(η2(w))

χ2(w)
+

H(w)−H(η2(w))

χ1(w)
≤ H(η2(z(p)))

χ2(z(p))
+

H(z(p))−H(η2(z(p)))

χ1(z(p))

=
−p log p− (1− p) log(1− p) + p log 2

−p logα2 − (1− p) logα1

+
log 4

− log β

=: D2(p).
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Moreover, writing p0 =
logα1−log β
logα1−logα2

, z(p) ∈ P1 if and only if p ∈ [0, p0] and z(p) ∈ P2

if and only if p ∈ [p0, 1]. We thus observe that

dimH K = sup
p∈[0,1]

D(p) where D(p) =

{
D1(p) : 0 ≤ p ≤ p0

D2(p) : p0 ≤ p ≤ 1
.

Now, a manual computation directly shows that, substituting δ = 0,

sup
p∈[0,1]

D1(p) ≈ 0.489536 and sup
p∈[0,1]

D2(p) ≈ 0.529533

and moreover the maximum of D2(p) is attained at a value p2 ∈ (p0, 1). Thus for all
δ sufficiently close to 0, since all the respective quantities are continuous functions
of δ, there is a value p2 ∈ (p0, 1) so that

d1 ≤ sup
p∈[0,1]

D1(p) < sup
p∈[0,1]

D(p) = D2(p2) = d2.

(In fact, one can show that this is the case for all δ ∈ (0, 1/6), but this is not required
for the proof.)

On the other hand, when δ = 0, t1 = 2 whereas t2 = 1+s < 2 where s ≈ 0.72263
is the unique solution to 3−s + 2 · 6−s = 1. Thus for all δ sufficiently close to 0, the
conditions for Theorem 4.4 are satisfied, as required. □
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