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ABSTRACT. We study regularity properties of frequency measures arising
from random substitutions, which are a generalisation of (deterministic) sub-
stitutions where the substituted image of each letter is chosen independently
from a fixed finite set. In particular, for a natural class of such measures, we
derive a closed-form analytic formula for the Lq-spectrum and prove that
the multifractal formalism holds. This provides an interesting new class of
measures satisfying the multifractal formalism. More generally, we establish
results concerning the Lq-spectrum of a broad class of frequency measures.
We introduce a new notion called the inflation word Lq-spectrum of a random
substitution and show that this coincides with the Lq-spectrum of the cor-
responding frequency measure for all q ≥ 0. As an application, we obtain
closed-form formulas under separation conditions and recover known results
for topological and measure theoretic entropy.
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1. INTRODUCTION

A substitution is a combinatorial object consisting of a finite alphabet A along
with a set of transformation rules. The theory of substitutions, along with statistical
properties of the system under repeated iteration, is a large and actively researched
field at the interface of combinatorics and symbolic dynamics. A thorough intro-
duction to the statistical properties and dynamics of substitutions can be found
in [BG13; Que87]. Associated with a (deterministic) substitution is a frequency
measure, which encodes the frequency of subwords under repeated iteration. No-
tably, the corresponding subshift supporting this measure has zero topological
entropy, and the frequency measure is the unique ergodic measure supported on
this subshift.

Random substitutions are a generalisation of (deterministic) substitutions
[GL89] where we apply a transformation rule to each letter randomly and inde-
pendently chosen from a finite set of possibilities. Similarly to the deterministic
case, subshifts associated with random substitutions support ergodic frequency
measures which capture the expected rate of occurrence of subwords under ran-
dom iteration. But in contrast to the deterministic case, the corresponding subshift
typically has positive topological entropy and supports uncountably many ergodic
measures. Random substitutions include examples exhibiting deterministic be-
haviour, while also including examples which are subshifts of finite type [GRS19].
Moreover, there is a large amount of intermediate behaviour: subshifts of ran-
dom substitutions can simultaneously exhibit long range correlation [BSS18] (an
indication of order) and positive topological entropy [Goh20] (an indication of
disorder).

As a generalisation of substitutions, random substitutions model quasicrystals
with errors; namely, crystalline structures with local disorder [AL10; GL89]. Ran-
dom substitutions have also proved a useful tool for modelling fractal percolation
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[DG88; DM90; DW01]. Properties of these physical phenomena can be associ-
ated with almost sure properties of the frequency measure corresponding to the
underlying random substitution [Pey81].

In this paper, we study the fine scaling properties of frequency measures
associated with random substitutions from the perspective of multifractal analysis.
This perspective is relevant in a wide variety of contexts, such as the geometry
of fractal sets and measures and in dynamical systems, with typical applications
to geometric measure theory and number theory. In our setting, our primary
objects of study are the Lq-spectrum, which is a parametrised family of quantities
which capture the inhomogeneous scaling properties of a measure, and the local
dimension, which capture the exponential growth rate of a measure around a point.
The Lq-spectrum and local dimensions are related through a heuristic relationship
known as the multifractal formalism, first introduced and studied in a physical
context in [HJK+86]. It is an important and well-studied question to determine
settings in which the multifractal formalism holds, and to determine qualitative
conditions describing its failure.

Much of the work on multifractal analysis has been done in the setting of
local dimensions of self-similar measures (for some examples, see [AP96; Fen05;
FL09; LN99; Shm19]) and Birkhoff sums of potentials in dynamical systems with
a finite type property (see, for example, [FFW01; Kes01; PW97; PW99] and the
reference therein). As a notable recent example, in P. Shmerkin’s recent proof of
the Furstenberg’s intersection conjecture [Shm19], he computes the Lq-spectrum
of a large class of dynamically self-similar measures and relates such results
to the multifractal analysis of slices of sets. This information about Lq-spectra
also implies Lp-smoothness properties in the question of absolute continuity of
Bernoulli convolutions (see [Var18] for some background on this classic problem).
Multifractal analysis of substitutions has also been studied in the physics literature;
see, for instance, [GL90]. For more detail on the geometry of measures and
multifractal analysis, we refer the reader to the foundational work by L. Olsen
[Ols95] and the classic texts of K. Falconer [Fal97] and Ya. Pesin [Pes98].

Returning to our setting, substitution dynamical systems have characteristic
features of (dynamical) self-similarity, but in many cases are far from being ergodic
measures on shifts of finite type. More generally, frequency measures provide
a rich family of shift-invariant ergodic measures which exhibit interesting and
unique properties in symbolic dynamics in a natural way. For example, it was
proved in [GMR+23, Theorem 4.8] that for a certain class of random substitutions,
the corresponding subshift supports a frequency measure that is the unique er-
godic measure of maximal entropy. However, this measure is not a Gibbs measure
with respect to the zero potential, and therefore the system does not satisfy the
common specification property, which is a well-known strategy for proving intrinsic
ergodicity of symbolic dynamical systems (see [CT21] and the references therein).
Moreover, there are examples of random substitutions such that the corresponding
subshift supports multiple ergodic measures of maximal entropy [GS20, Exam-
ple 6.5]. More generally, many key properties of frequency measures associated
with random substitutions are poorly understood.

In this paper, we derive symbolic expressions for the Lq-spectrum of frequency
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measures associated with random substitutions under certain weak assumptions.
Then under an additional assumption (recognisability), we prove a closed-form
analytic expression for the Lq-spectrum and a variational formula which together
imply the multifractal formalism. Recognisable random substitutions exhibit novel
properties not witnessed by other classes of measures for which the multifractal
formalism is well-understood: it often happens that the unique frequency measure
of maximal entropy is not a Gibbs measure with respect to the zero potential
and the corresponding subshift is not sofic. The techniques and results provide
important new perspectives on the geometry and dynamics of the respective
measures.

1.1. Entropy and Lq-spectra. For a Borel probability measure in a compact metric
space, the Lq-spectrum is a well-studied quantity which encodes the scaling proper-
ties of the measure, in a weak sub-exponential sense. Specifically, the Lq-spectrum
of µ is given by

τµ(q) = lim inf
r→0

log sup
∑

i µ
(
B(xi, r)

)q
log r

.

where the supremum is taken over 2r-separated subsets {xi}i of the support of µ.
The Lq-spectrum encodes information about the local scaling of the measure µ.

We define the local dimension of µ at x by

dimloc(µ, x) = lim
r→0

log µ
(
B(x, r)

)
log r

when the limit exists. We then define the multifractal spectrum of µ by

fµ(α) = dimH {x ∈ X : dimloc(µ, x) = α} .

In general, the structure of the set of local dimensions can be very complex—for
example, the level sets are often dense uncountable subsets of the support of µ.
However, the “multifractal miracle” is the phenomenon that, even though the
level sets are very complex, the multifractal spectrum is often a concave analytic
function of α.

In fact, the multifractal spectrum and the Lq-spectrum are related through a
heuristic relationship called the multifractal formalism [HJK+86], which speculates
that under certain regularity assumptions, the multifractal spectrum is given by
the concave conjugate of the Lq-spectrum, that is the quantity

τ ∗µ(α) = inf
q∈R

(qα− τµ(q)).

Generally speaking, τ ∗µ(α) ≥ fµ(α) [LN99]: in particular, the slopes of the asymp-
totes of the Lq-spectrum bound the exponential scaling of measures of balls B(x, r)
uniformly for all x ∈ suppµ.

In our specific setting, where our metric space is the two-sided shift AZ and
the measure µ is ergodic, the local dimension is precisely the scaling rate of the
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information function of µ. In fact, the Shannon–McMillan–Breiman theorem states
that the local dimension of the measure (with an appropriate choice of the metric)
is almost surely the entropy of the measure. Thus the Lq-spectrum provides
uniform control over the scaling rate of the information function. More details
about these notions are given in §2.

1.2. Random substitutions. A (deterministic) substitution is a rule which replaces
each symbol in a finite or infinite string over an alphabet A with a finite word over
the same alphabet. Random substitutions generalise this notion by substituting
a randomly chosen word (according to a fixed finite distribution) independently
for each letter. We can also think of a random substitution as a (deterministic)
set-valued substitution ϑ, together with a choice of probabilities.

For example, given p ∈ (0, 1), the random Fibonacci substitution ϑp is defined by

ϑp :


a 7→

{
ab with probability p,

ba with probability 1− p,

b 7→ a.

To a given (primitive) random substitution ϑP , one can canonically associate a
subshift Xϑ of the two-sided shift AZ along with an ergodic frequency measure
µP , which quantifies the relative occurrence of a given word under repeated
application of the random substitution.

As highlighted in the introduction, primitive random substitutions give rise to
subshifts and measures with a wide variety of properties. As a result, we impose
additional conditions.

Our main assumption, which we call compatibility (see §2.7), asserts that for
each a ∈ A, the number of occurrences of each b ∈ A is identical in every possible
substituted image of a. For example, the random Fibonacci substitution is com-
patible since in all the possible images of a, a occurs once and b occurs once. The
key feature of compatibility is that the one can define a deterministic substitution
matrix, such that the Perron–Frobenius eigenvalue is the asymptotic growth rate
of lengths of words under repeated substitution, and the corresponding right
eigenvector encodes the asymptotic frequency with which the individual letters
appear. Compatibility is a common assumption: for example, it is assumed in the
main results of [BSS18; Goh20; MRS+23; Rus20].

Another standard assumption is recognisability (see §2.9), which heuristically
states that each element of the subshift has a unique preimage in the subshift.
Recognisability precludes the existence of periodic points [Rus20] and is one of
the assumptions required to to establish intrinsic ergodicity in [GMR+23]. It is
also assumed in the main results of [FRS22+; MRS+23].

1.3. Statement and discussion of main results. We now give concise statements
of the main results in this paper. We refer the reader to §2 for full statements of the
notation and definitions used in this section.

Fix a random substitution ϑP and let λ and R denote the Perron–Frobenius
eigenvalue and corresponding right eigenvector of the substitution matrix of ϑP ,
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respectively. Given q ∈ R and k ∈ N, define

φϑP ,k(q) = φk(q) = −
∑
a∈A

Ra log

 ∑
s∈ϑk(a)

P[ϑk
P (a) = s]q

 .

We define the inflation word Lq-spectrum of ϑP by

Tϑ,P (q) = lim inf
k→∞

1

λk
φk(q).

We similarly define the upper variant T ϑ,P by taking a limit superior in place of the
limit inferior. Throughout, µP will denote the frequency measure associated with
ϑP . Heuristically, the inflation word spectrum approximates the frequency mea-
sure µP by the probability distribution on the iterated system, with an appropriate
normalisation.

Our main general result bounding the Lq-spectrum is the following, which
states that Tϑ,P and τµP

coincide for all q ≥ 0, and moreover provides bounds on
τµP

in terms of the functions φk for all q ∈ R.

Theorem A. Let ϑP = (ϑ,P ) be a primitive and compatible random substitution with
corresponding frequency measure µP . Then the limits defining τµP

(q) and Tϑ,P (q) exist
and coincide for all q ≥ 0. Moreover,

1. For all 0 ≤ q ≤ 1,

(1.1)
1

λk − 1
φk(q) ≤ τµP

(q) ≤ 1

λk
φk(q)

and (λ−kφk(q))
∞
k=1 converges monotonically to τµP

(q) from above.

2. For all q ≥ 1,

(1.2)
1

λk
φk(q) ≤ τµP

(q) ≤ 1

λk − 1
φk(q)

and (λ−kφk(q))
∞
k=1 converges monotonically to τµP

(q) from below.

3. For all q < 0,

(1.3)
1

λk − 1
φk(q) ≤ τµP

(q).

The notion of compatibility is defined in §2.7. For q < 0, it is not true in general that
τµP

(q) and Tϑ,P (q) coincide (a counterexample is given in Example 5.2): the “non-
uniqueness of cutting points” allows collisions in the averaging procedure in the
construction of the measure (see Lemma 2.12). In other words, the corresponding
upper bound in (1.3) does not hold in general.

If ϑP also satisfies the disjoint set condition, or the identical set condition with
identical production probabilities (see Definition 2.13), then a closed-form expression
can be obtained for Tϑ,P (see Proposition 3.1). By combining this result with
Theorem A, we obtain the following corollary.
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Corollary B. Let ϑP be a primitive and compatible random substitution with correspond-
ing frequency measure µP . Then for all q ≥ 0:

1. If ϑP satisfies the disjoint set condition, then

τµP
(q) =

1

λ− 1
φ1(q).

2. If ϑP satisfies the identical set condition and has identical production probabilities,
then

τµP
(q) =

1

λ
φ1(q).

In particular, under the disjoint set condition or identical set condition with identi-
cal production probabilities, the Lq-spectrum is analytic on (0,∞).

As a direct application of Theorem A, we obtain new proofs of known results
on measure theoretic and topological entropy.

(a) We obtain the main result of [Goh20] on topological entropy, which states
that for subshifts of primitive and compatible random substitutions, the
topological entropy can be characterised in terms of the asymptotic growth
rate of inflation words.

(b) We also obtain the characterisation of (measure theoretic) entropy obtained in
[GMR+23, Theorem 3.3] for frequency measures corresponding to primitive
and compatible random substitutions. We note that the main results in
[GMR+23] do not require the assumption of compatibility.

This is described in the following corollary.

Corollary C. Let ϑP = (ϑ,P ) be a primitive and compatible random substitution with
associated subshift Xϑ and frequency measure µP .

1. The limit

lim
k→∞

1

λk

∑
a∈A

Ra log(#ϑk(a))

exists and is equal to htop(Xϑ).

2. The Lq-spectrum of µP is differentiable at 1. Moreover, the limit

lim
k→∞

1

λk

∑
a∈A

Ra

∑
v∈ϑk(a)

−P[ϑk
P (a) = v] log(P[ϑk

P (a) = v])

exists and is equal to hµP
(Xϑ) = dimH µP = τ ′µP

(1).

We now turn our attention to the multifractal spectrum. While τµP
(q) and

Tϑ,P (q) do not coincide in general for q < 0, if the random substitution that gives
rise to the frequency measure µP is additionally assumed to be recognisable (see
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Definition 2.14), then the limits defining τµP
(q) and Tϑ,P (q) both exist and coincide

for all q ∈ R. Moreover, under recognisability, we prove that the multifractal
spectrum is the concave conjugate of the Lq-spectrum: in other words, the multi-
fractal formalism holds for any associated frequency measure µP . In particular,
we conclude that fµP

is a concave analytic function.
In fact, in Proposition 4.5 we prove a stronger variational formula for the

multifractal spectrum. For each α ∈ R, we construct measures ν such that dimH ν ≥
τ ∗(α) and dimloc(µP , x) = α for ν-a.e. x ∈ Xϑ. In particular, we can take the
measures to be frequency measures associated with permissible probabilities for
the substitution ϑ.

Theorem D. Let ϑP be a primitive, compatible, and recognisable random substitution
with corresponding frequency measure µP . Then for all q ∈ R,

τµP
(q) = Tϑ,P (q) =

1

λ− 1
φ1(q).

Moreover, fµP
(α) = τ ∗µP

(α) is concave and analytic on its support. In fact, for each α ∈ R
such that fµP

(α) ≥ 0, there are permissible probabilities Q such that fµP
(α) = dimH µQ

and dimloc(µP , x) = α for µQ-a.e. x ∈ Xϑ.

To conclude this section, we observe that our results on Lq-spectra also give
uniform bounds on the exponential scaling rate of the frequency measures. The
following result is a direct application of Theorem A and Theorem D, combined
with bounds on the possible local dimensions (from Proposition 4.4).

Corollary E. Let ϑP = (ϑ,P ) be a primitive, compatible, and recognisable random
substitution. Then

αmin := lim
q→∞

τµP
(q)

q
= −

∑
a∈A

Ra log

(
max
s∈ϑ(a)

P[ϑP (a) = s]

)
αmax := lim

q→−∞

τµP
(q)

q
= −

∑
a∈A

Ra log

(
min
s∈ϑ(a)

P[ϑP (a) = s]

)
.

and for all x ∈ Xϑ, αmin ≤ dimloc(µP , x) ≤ dimloc(µP , x) ≤ αmax. Moreover,

{dimloc(µP , x) : x ∈ Xϑ} = [αmin, αmax].

In particular, when the probabilities P are chosen so that for each a ∈ A, P[ϑP (a) =
s] = 1/#ϑ(a) for all s ∈ ϑ(a), then the Lq-spectrum is the line with slope htop(Xϑ)
passing through (1, 0). Thus the local dimension of µP exists at every x ∈ Xϑ and
is given by the constant value αmin = αmax. This can be rephrased in terms of
a weak Gibbs-type property, which says that every sufficiently long legal word
(with length depending only on ϵ > 0) satisfies

(1.4) exp(−|u|(htop(Xϑ) + ϵ)) ≤ µP ([u]) ≤ exp(−|u|(htop(Xϑ)− ϵ));

see, for example, [Shm19, Lemma 1.4] for a short proof. In general, the error
term ϵ cannot be dropped by the addition of a constant factor. Under certain
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assumptions, one can show that there are infinitely many words with µP ([u]) ≈
|u|−1 exp(−|u|(htop(Xϑ)), as explained in [GMR+23, Lemma 4.12]. These assump-
tions are satisfied, for example, in Example 5.6.

Of course, similar one-sided results hold for q ≥ 0 only under the assumption of
compatibility, by iterating the formula for φk and taking an appropriate maximum
at each level. In fact, since τµP

(q) is differentiable at 1, with derivative giving the
entropy, and since htop(Xϑ) = τµP

(0), it follows that µP is a measure of maximal
entropy if and only if τ ′µP

(q) exists and is constant on the interval (0, 1).

1.4. Further work. We conclude the introduction with a list of comments and
potentially interesting questions.

1. What is the Lq-spectrum for a compatible substitution when q < 0? We do
not know this even for the random substitution given in Example 5.1, which
satisfies the identical set condition with identical production probabilities.
Obtaining results for q < 0 is substantially more challenging, since the sum
in τµP

(q) depends on the measure of cylinders with very small (but non-zero)
measure. For example, in the self-similar case, without the presence of strong
separation assumptions, little is known (in contrast to the q ≥ 0 case).

2. What happens without compatibility? Do the formulas in Theorem A hold in
general? In [GMR+23], it suffices to use an almost sure version of Lemma 2.9.
However, since the Lq-spectrum is sensitive to scaling at individual points
as q tends to ±∞, such an almost sure result in our case is insufficient.

3. Outside the disjoint set condition and the identical set condition, what can
be said about differentiability of the Lq-spectrum? For q ≥ 0, we give the
Lq-spectrum as a uniform limit of analytic functions: however, aside from
the exceptional point q = 1 where we can say more, this is not enough to
give information about differentiability.

4. Can the assumption of recognisability in Theorem D be relaxed to a weaker
condition, such as the disjoint set condition (see Definition 2.13)?

5. Can the error term in (1.4) be determined precisely, up to a constant? The
approximate Gibbs-type bounds discussed following Corollary E are closely
related to the bounds used in the proof of intrinsic ergodicity given in
[GMR+23, Theorem 4.8]. It could be worth exploring the relationship
between intrinsic ergodicity and Gibbs-type properties given by the Lq-
spectrum.

2. PRELIMINARIES

In this section we introduce the key notation and definitions that we will use
throughout the paper. After introducing some basic notation, in §2.2 we introduce
symbolic dynamics on the two-sided shift, as well as our notions of entropy
and dimension. In §2.3 we present the key definitions and basic results from
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multifractal analysis that we work with throughout, including the definitions
of the Lq-spectrum and local dimensions of a measure. Then, in the following
sections we provide an introduction to random substitutions and their associated
dynamical systems. In §2.5 we give the definition of a random substitution via its
action on words, and define the subshift associated to a random substitution. Then,
in §2.6 and §2.7, we define what it means for a random substitution to be primitive
and compatible and present the key properties of such random substitutions. In
§2.8, we give the definition of the frequency measure associated to a random
substitution and state a key result used in the proof of our main results which
relates the measures of cylinder sets via the action of the random substitution.
Finally, in §2.9, we define what it means for a substitution to satisfy the disjoint or
identical set condition, and introduce recognisable random substitutions.

2.1. Symbolic notation. Throughout, we use the following symbolic notation,
which is essentially the same as the notation used in [BG13; LM95].

For a set B, we let #B be the cardinality of B and let F(B) be the set of
non-empty finite subsets of B.

We fix an alphabet A = {a1, . . . , ad}, for some d ∈ N, which is a finite set of
letters ai, and equip it with the discrete topology. Then a word u with letters in A is
a finite concatenation of letters, namely u = ai1 · · · ain for some n ∈ N. We write
|u| = n for the length of the word u, and for m ∈ N, we let Am denote the set of all
words of length m with letters in A.

We set A+ =
⋃

m∈N Am and let

AZ = {(ain)n∈Z : ain ∈ A for all n ∈ Z}

denote the set of all bi-infinite sequences with elements in A, and endow AZ

with the product topology. We also fix a metric on AZ as follows. Given points
x = (xn)n∈Z and y = (yn)n∈Z, let N(x, y) = sup{n ∈ Z : xj = yj for all |j| ≤ n} and
let d(x, y) = e−2N(x,y)−1. The space X is compact with topology generated by the
metric.

We will frequently write sequences (xn)n∈Z ∈ AZ as · · · x−1x0x1 · · · , with the
corresponding notation for finite sequences. If i and j ∈ Z with i ≤ j, and
x = · · ·x−1x0x1 · · · ∈ AZ, then we let x[i,j] = xixi+1 · · ·xj . We use the same notation
if v ∈ A+ and 1 ≤ i ≤ j ≤ |v|. For u and v ∈ A+ (or v ∈ AZ), we write u ◁ v if u is a
subword of v, namely if there exist i and j ∈ Z with i ≤ j so that u = v[i,j]. For u
and v ∈ A+, we set |v|u to be the number of (possibly overlapping) occurrences
of u as a subword of v. If u = ai1 · · · ain and v = aj1 · · · ajm ∈ A+, for some n and
m ∈ N, we write uv for the concatenation of u and v. The abelianisation of a word
u ∈ A+ is the vector Φ(u) ∈ N#A

0 , defined by Φ(u)a = |u|a for all a ∈ A.

2.2. Dynamics, entropy and dimension. We equip the space AZ with invertible
dynamics from the left-shift map S : AZ → AZ. Throughout, we work with a
subshift X ⊂ AZ, which is compact and shift-invariant, that is S−1(X) = X . Then µ
will denote an ergodic and S-invariant Borel probability measure with support
contained in X .
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The metric structure on AZ enables us to define the Hausdorff dimension of Borel
subsets of X . Using this, we define the Hausdorff dimension of µ to be the quantity

dimH µ = inf{dimHE : µ(E) > 0}

where the infimum is taken over Borel sets E. Here, we use Hausdorff dimension
as inherited from the underlying metric; though it would also be appropriate to
use Bowen’s generalisation of topological entropy to non-compact sets [Bow74].
We also define the lower local dimension of µ at x by

dimloc(µ, x) = lim inf
r→0

log µ
(
B(x, r)

)
log r

We define the upper local dimension dimloc(µ, x) analogously using the limit superior
in place of the limit inferior, and when the limits coincide, we refer to the shared
quantity as the local dimension and denote it by dimloc(µ, x).

Local dimensions and Hausdorff dimension are closely related: the same proof
as given, for instance, in [Fal97, Proposition 10.1] implies that

(2.1) dimH µ = sup{s : dimloc(µ, x) ≥ s for µ-a.e. x}.

Now fix a partition ξ so that with ξk =
∨k

i=−k S
−i(ξ), {ξk}∞k=1 generates the Borel

σ-algebra on X . We recall that the entropy of µ with respect to S is given by

hµ(X) = lim
k→∞

1

2k + 1

∑
A∈ξk

−µ(A) log
(
µ(A)).

where, by the classical Kolmogorov–Sinaı̆ theorem, the quantity does not depend
on the choice of partition.

Now given x ∈ X , let ξk(x) denote the unique element in the partition ξk con-
taining x. Then the Shannon–McMillan–Breiman theorem states that the entropy
of µ is almost surely the information rate of µ, that is for µ-a.e. x ∈ X ,

lim
k→∞

− log µ
(
ξk(x)

)
2k + 1

= hµ(X).

We refer the reader to [Kel98, Theorem 3.2.7] for a proof and more background on
this topic.

Now suppose ξ = {Ea}a∈A is the partition of X where Ea = {(xn)n∈Z ∈ X :
x0 = a}. For the remainder of this paper, ξ will always denote this partition. Then
given x = (xn)n∈Z ∈ X ,

ξk(x) = {y ∈ X : xj = yj for all |j| ≤ k} = B(x, e−(2k+1))

and therefore

dimloc(µ, x) = lim
k→∞

− log µ
(
ξk(x)

)
2k + 1
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where both limits exist if either limit exists. Since the limit on the right is µ almost
surely hµ(X), it follows from (2.1) that dimH µ = hµ(X).

Finally, the topological entropy of X is given by

htop(X) = lim
k→∞

− log#{E ∈ ξk : E ∩X ̸= ∅}
2k + 1

.

Of course, htop(X) = dimB X , the box counting dimension of X .

2.3. Lq-spectra and smoothness. Given q ∈ R, we define

Sµ,r(q) = sup
{xi}i∈P(r)

∑
i

µ
(
B(xi, r)

)q
where P(r) is the set of discrete 2r-separated subsets of X , that is P(r) = {{xi}i :
xi ∈ X, d(xi, xj) ≥ 2r for i ̸= j}. We then define the Lq-spectrum of µ to be the
function

τµ(q) = lim inf
q→0

logSµ,r(q)

log r
.

For convenience, we also denote the upper variant τµ(q) by taking a limit superior
in place of the limit inferior. It is a standard consequence of Hölder’s inequality
that τµ(q) is a concave increasing function of q (note that this need not hold for
τµ(q)).

Of course, the preceding definitions hold more generally in an arbitrary metric
space, but in our particular setting we can rephrase the Lq-spectrum in terms of
more familiar sums over cylinders. Recall that ξ denotes the partition of Xϑ into
cylinders at 0 corresponding to the letters in A. Then set

Sµ,n(q) =
∑
E∈ξk

µ(E)q.

Since distinct elements in the partition ξk are e−(2k+1)-separated,

Sµ,n(q) = Sµ,e−(2n+1)(q).

It follows immediately that

τµ(q) = lim inf
n→∞

− logSµ,n(q)

2n+ 1

with the analogous result for τµ(q). In particular, τµ(0) = htop(X) assuming µ is
fully supported on X .

Finally, by shift invariance, we can characterise the subshift X in terms of a
language on X . Given n ∈ N, we set

Ln(X) = {w ∈ An : w ◁ x for some x ∈ X}.
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Given w ∈ Ln(X), we let [w] = {(xn)n∈Z ∈ X : xi = wi for all 1 ≤ i ≤ n}.
Of course, by shift invariance, there is a measure-preserving bijection between
L2n+1(X) and Xn, so it follows again that

τµ(q) = lim inf
n→∞

− 1

n
log

∑
u∈Ln(X)

µ([u])q.

We will primarily use this characterisation throughout the paper.
We first list some basic properties of the Lq-spectrum of the measure µ. Here,

(a) is a direct consequence of Hölder’s inequality, (b) is standard (see, for example,
[Shm19, Lemma 1.4]) and (c) was proved in [FLR02, Theorem 1.4].

Lemma 2.1. Let µ be a shift-invariant measure on X .

(a) The Lq-spectrum τµ(q) is continuous, increasing and concave on R.

(b) Let αmin = limq→∞ τµ(q)/q and αmax = limq→−∞ τµ(q)/q. Then for every s <
αmin ≤ αmax < t, all n sufficiently large and u ∈ Ln, e−tn ≤ µ([u]) ≤ e−sn. In
particular, the local dimensions satisfy

αmin ≤ inf
x∈X

dimloc(µ, x) ≤ sup
x∈X

dimloc(µ, x) ≤ αmax.

(c) The left and right derivatives of τµ at q = 1 bound the Hausdorff dimension of µ,
that is τ+µ (1) ≤ dimH µ ≤ τ−µ (1).

In fact, (a) gives intuition for why the Lq-spectrum encodes smoothness: rather
than obtain almost sure information on local dimensions, the Lq-spectrum contains
uniform information about local dimensions.

Finally, we prove a simple result concerning the Lq-spectrum which will be
useful later in the paper.

Lemma 2.2. Let ζ > 1 be arbitrary. Then

(2.2) τµ(q) =
1

ζ
lim inf
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q


and

(2.3) τµ(q) =
1

ζ
lim sup
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q

 .

Proof. Of course, it always holds that

τµ(q) ≤
1

ζ
lim inf
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q


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τµ(q) ≥
1

ζ
lim sup
n→∞

− 1

n
log

 ∑
u∈L⌊ζn⌋(X)

µ([u])q

 .

First, let q < 0 and let n ∈ N be arbitrary. Let kn be minimal so that ⌊ζkn⌋ ≥ n.
Observe that there is some M ∈ N (independent of n) so that ⌊ζkn⌋ ≤ n +M : it
follows that limn→∞ n/kn = ζ . Then if v ∈ L⌊ζkn⌋(X) is arbitrary, [v] ⊂ [u] for some
u ∈ Ln(X) and µ([v])q ≥ µ([u])q. Thus

S⌊ζkn⌋,µ(q) ≥ Sn,µ(q).

which gives (2.2) for q < 0 since limn/kn = ζ .
Similarly, for q ≥ 0, since there are at most (#A)M words v ∈ L⌊ζkn⌋(X) with

[v] ⊂ [u], pigeonholing, for each u ∈ Ln(X) there is some v(u) ∈ L⌊ζkn⌋(X) such
that µ([v(u)])q ≥ (#A)−qMµ([u])q. Thus

S⌊ζkn⌋,µ(q) ≥ (#A)−qMSn,µ(q).

This gives (2.2) for q ≥ 0.
The arguments for (2.3) follow analogously by choosing kn maximal so that

⌊ζkn⌋ ≤ n. □

2.4. Multifractal spectrum and multifractal formalism. The Lq-spectrum of a
measure is related to the (fine) multifractal spectrum. Let µ be a shift-invariant
measure on a subshift X . We recall that the local dimension of µ at x ∈ X is given
by

dimloc(µ, x) = lim
n→∞

− 1

2n+ 1
log µ([x[−n,n]])

when the limit exists. Given α ∈ R, set

Fµ(α) = {x ∈ X : dimloc(µ, x) = α} .

We then define the multifractal spectrum of µ by

fµ(α) = dimH Fµ(α)

using the convention that dimH ∅ = −∞.
The multifractal spectrum is related to the Lq-spectrum by the following result.

Let g : R → R∪{−∞} be a concave function. For x ∈ R, we let g+(x) (resp. g−(x))
denote the right (resp. left) derivative of g at x. Such limits necessarily exist by
concavity. We denote the subdifferential of g at x by ∂g(x) = [g+(x), g−(x)]. We then
recall that the concave conjugate of g is given by

g∗(α) = inf
q∈R

{qα− g(q)}.

Note that g∗ is always concave since it is the infimum of a family of affine functions.
For more detail concerning the theory of concave functions, we refer the reader to
[Roc70].
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Now, we say that µ satisfies the multifractal formalism when fµ = τ ∗µ . In general,
the multifractal formalism need not hold, but it is well-known that the concave
conjugate of the Lq-spectrum is an upper bound for the multifractal spectrum.
For the convenience of the reader, we provide a short self-contained proof, which
follows the main ideas of [LN99, Theorem 4.1].

Proposition 2.3. Let µ be a shift-invariant measure on a subshift X . Then fµ(α) ≤ τ ∗(α)
for all α ∈ R.

Proof. Recall that ξn denotes the partition of X into cylinders corresponding to
words of length 2n+ 1, each of which has diameter precisely e−(2n+1). For α ∈ R,
n ∈ N and ϵ > 0, let

Mn,ϵ(α) =
{
I ∈ ξn : e−(2n+1)(α+ϵ) ≤ µ(I) ≤ e−(2n+1)(α−ϵ)

}
.

In other words, Mn,ϵ(α) is an ϵ-approximation of Fµ(α) at level n. Our strategy is
to control the size of the sets Mn,ϵ(α) in terms of the Lq-spectrum of µ, and then
use these sets to build a good cover of Fµ(α). Let q ∈ ∂τ ∗(α): we prove this in the
case that q ≥ 0; the case q < 0 is analogous.

First,

(2.4) S2n+1,µ(q) =
∑
I∈ξn

µ(I)q ≥
∑

u∈Mn,ϵ(α)

µ(I)q ≥ e−(2n+1)(α+ϵ)q#Mn,ϵ(α).

Since τµ(q) = lim infn→∞(logS2n+1,µ(q))/(−2n − 1) by Lemma 2.2, there is some
Nϵ ∈ N so that for all n ≥ Nϵ, S2n+1,µ(q) ≤ e−(2n+1)(τµ(q)−ϵ). Combining this with
(2.4),

(2.5) #Mn,ϵ(α) ≤ e−(2n+1)(τ(q)−ϵ) · e(2n+1)(α+ϵ)q = e(2n+1)(τ∗(α)+(q+1)ϵ)

for all n ≥ Nϵ where we have used the fact that q ∈ ∂τ ∗(α).
Now for each x ∈ Fµ(α), we can find some nx ∈ N so that for all n ≥ nx,

µ(ξn(x)) ≥ e−(2n+1)(α+ϵ). In particular,

Gϵ :=
∞⋃

n=Nϵ

Mn,ϵ(α)

is a Vitali cover for Fµ(α).
Now suppose {Ij}∞j=1 is any disjoint subcollection of Gϵ: then with s = τ ∗(α) +

2ϵ(1 + q),

∞∑
j=1

(diam Ij)
s ≤

∞∑
n=Nϵ

∑
I∈Mn,ϵ(α)

(diam I)s ≤
∞∑

n=Nϵ

e−(2n+1)s#Mn,ϵ(α)

≤
∞∑

n=Nϵ

e−(2n+1)se(2n+1)(τ∗(α)+(q+1)ϵ)

=
∞∑

n=Nϵ

(e−(1+q)ϵ)2n+1 < ∞
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by (2.5). Thus by the Vitali covering theorem for Hausdorff measure ([Fal85,
Theorem 1.10] holds in the shift setting with the same proof), there is a cover
{Ei}∞i=1 for Fµ(α) such that

Hs(Fµ(α)) ≤
∞∑
i=1

(diamEi)
s < ∞

and thus dimH Fµ(α) ≤ τ ∗(α) + 2ϵ(1 + q). But ϵ > 0 was arbitrary, so the desired
result follows. □

2.5. Random substitutions. We now introduce our primary objects of interest:
random substitutions, and their associated frequency measures. In a similar manner
to [GMR+23; Goh20], we define a random substitution by the data required to
determine its action on letters. We then extend this to a random map on words.

Definition 2.4. Let A = {a1, . . . , ad} be a finite alphabet. A random substitution
ϑP = (ϑ,P ) is a set-valued substitution ϑ : A → F(A+) together with a set of
non-degenerate probability vectors P = (pi)

d
i=1 where

pi = (pi,1, . . . , pi,ri) with ri = #ϑ(ai); pi ∈ (0, 1]ri ;

ri∑
j=1

pi,j = 1.

such that

ϑP : ai 7→


s(i,1) with probability pi,1,

...
...

s(i,ri) with probability pi,ri ,

for every 1 ≤ i ≤ d, where ϑ(ai) = {s(i,j)}1≤j≤ri .
We call each s(i,j) a realisation of ϑP (ai). If ri = 1 for all i ∈ {1, . . . , d}, then we

call ϑP deterministic.

Example 2.5 (Random Fibonacci). Let A = {a, b}, and let p ∈ (0, 1). The random
Fibonacci substitution ϑP = (ϑ,P ) is the random substitution given by

ϑP :


a 7→

{
ab with probability p,

ba with probability 1− p,

b 7→ a

with defining data ra = 2, rb = 1, s(a,1) = ab, s(a,2) = ba, s(b,1) = a, P = {pa = (p, 1−
p),pb = (1)} and corresponding set-valued substitution ϑ : a 7→ {ab, ba}, b 7→ {a}.

In the following we describe how a random substitution ϑP determines a
(countable state) Markov matrix Q, indexed by A+×A+. We interpret the entry Qu,v

as the probability of mapping a word u to a word v under the random substitution.
Formally, Qai,s(i,j) = pi,j for all j ∈ {1, . . . , ri} and Qai,v = 0 if v /∈ ϑ(ai). We extend
the action of ϑP to finite words by mapping each letter independently to one of its
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realisations. More precisely, given n ∈ N, u = ai1 · · · ain ∈ An and v ∈ A+ with
|v| ≥ n, we let

Dn(v) = {(v(1), . . . , v(n)) ∈ (A+)n : v(1) · · · v(n) = v}

denote the set of all decompositions of v into n individual words and set

Qu,v =
∑

(v(1),...,v(n))∈Dn(v)

n∏
j=1

Qaij ,v
(j) .

In words, ϑP (u) = v with probability Qu,v.
For u ∈ A+, let (ϑn

P (u))n∈N be a stationary Markov chain on some probability
space (Ωu,Fu,Pu), with Markov matrix given by Q; that is,

Pu[ϑ
n+1
P (u) = w | ϑn

P (u) = v] = Pv[ϑP (v) = w] = Qv,w

for all v and w ∈ A+, and n ∈ N. In particular,

Pu[ϑ
n
P (u) = v] = (Qn)u,v

for all u and v ∈ A+, and n ∈ N. We often write P for Pu if the initial word is
understood. In this case, we also write E for the expectation with respect to P. As
before, we call v a realisation of ϑn

P (u) if (Qn)u,v > 0 and set

ϑn(u) = {v ∈ A+ : (Qn)u,v > 0}

to be the set of all realisations of ϑn
P (u). Conversely, we may regard ϑn

P (u) as the set
ϑn(u) endowed with the additional structure of a probability vector. If u = a ∈ A
is a letter, we call a word v ∈ ϑk(a) a level-k inflation word, or exact inflation word.

To a given random substitution ϑP = (ϑ,P ) one can associate a subshift. First,
we say that a word u ∈ A+ is (ϑ-)legal if there exists an ai ∈ A and k ∈ N such that
u appears as a subword of some word in ϑk(ai). We define the language of ϑ by
Lϑ = {u ∈ A+ : u is ϑ-legal} and, for w ∈ A+∪AZ, we let L(w) = {u ∈ A+ : u◁w}
denote the language of w.

Definition 2.6. The random substitution subshift of a random substitution ϑP =
(ϑ,P ) is the system (Xϑ, S), where Xϑ = {w ∈ AZ : L(w) ⊆ Lϑ} and S denotes the
(left) shift map, defined by S(w)i = wi+1 for each w ∈ Xϑ.

Under very mild assumptions, the space Xϑ is non-empty [GS20]. This holds,
for example, if the generating random substitution is primitive (we give a def-
inition in §2.6). We endow Xϑ with the subspace topology inherited from AZ,
and since Xϑ is defined in terms of a language, it is a compact S-invariant sub-
space of AZ. Hence, Xϑ is a subshift. For n ∈ N, we write Ln

ϑ = Lϑ ∩ An and
Ln(w) = L(w) ∩ An to denote the subsets of Lϑ and L(w), respectively, consisting
of words of length n. The set-valued function ϑ naturally extends to Xϑ, where for
w = · · ·w−1w0w1 · · · ∈ Xϑ we let ϑ(w) denotes the (infinite) set of sequences of the
form v = · · · v−2v−1.v0v1 · · · , with vj ∈ ϑ(wj) for all j ∈ Z. It is easily verified that
ϑ(Xϑ) ⊂ Xϑ.
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The notation Xϑ reflects the fact that the random substitution subshift does
not depend on the choice of (non-degenerate) probabilities P . In fact, this is the
case for many structural properties of ϑP . In these cases, one sometimes refers to
ϑ instead of ϑP as a random substitution, see for instance [Goh20; GRS19; Rus20;
RS18]. On the other hand, for some applications, one needs additional structure
on the probability space. In fact, there is an underlying branching process, similar
to a Galton–Watson process, that allows one to construct more refined random
variables, see [GS20] for further details. The measure theoretic properties we
consider are typically dependent on the choice of probabilities; however, some of
the auxiliary results we use only depend on the set-valued substitution ϑ. To avoid
confusion, for results where there is no dependence on the choice of probabilities
we will give the statement in terms of the set-valued substitution ϑ and omit the
dependence on P in the notation.

2.6. Primitive random substitutions. A standard assumption in the study of
substitutions (both deterministic and random) is primitivity. Given a random
substitution ϑP = (ϑ,P ) over an alphabet A = {a1, . . . , ad} with cardinality d ∈ N,
we define the substitution matrix M = MϑP

∈ Rd×d of ϑP by

Mi,j = E[|ϑP (aj)|ai ] =
rj∑
k=1

pj,k|s(j,k)|ai .

Since M has only non-negative entries, it has a real eigenvalue λ of maximal
modulus. Observe that λ ≥ 1, with λ = 1 precisely if M is column-stochastic,
so that the random substitution is non-expanding. To avoid this degenerate
situation, we assume that λ > 1. If the matrix M is primitive (that is if there exists a
k ∈ N such that all the entries of Mk are positive), the Perron–Frobenius theorem
gives that λ is a simple eigenvalue and that the corresponding (right) eigenvector
R = (R1, . . . , Rd) can be chosen to have strictly positive entries. We will normalise
this eigenvector so that ∥R∥1 = 1. We refer to λ as the Perron–Frobenius eigenvalue
of the random substitution, ϑP , with corresponding Perron–Frobenius eigenvector
R.

Definition 2.7. We say that ϑP is primitive if M = MϑP
is primitive and its Perron–

Frobenius eigenvalue satisfies λ > 1.

We emphasise that for a random substitution ϑP , being primitive is indepen-
dent of the (non-degenerate) choice of probabilities P . In this sense, primitivity is
a property of ϑ rather than ϑP .

Since Mk
ϑP

= Mϑk
P

, the Perron–Frobenius eigenvalue of ϑk
P is λk.

2.7. Compatible random substitutions. Another standard assumption in the
study of random substitutions is compatibility, which gives that exact inflation
words have a well-defined abelianisation. In particular, the matrix of a compatible
random substitution is independent of the choice of probabilities, so the letter
frequencies are uniform and do not depend on the realisation. As discussed in
the introduction, the existence of uniform letter frequencies is fundamental in the
proofs of our main results.
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Definition 2.8. We say that a random substitution ϑP = (ϑ,P ) is compatible if for
all a ∈ A and u, v ∈ ϑ(a), we have Φ(u) = Φ(v).

Compatibility is independent of the choice of probabilities, and a random
substitution ϑP = (ϑ,P ) is compatible if and only if for all u ∈ A+, we have
that |s|a = |t|a for all s and t ∈ ϑ(u), and a ∈ A. We write |ϑ(u)|a to denote this
common value, and let |ϑ(u)| denote the common length of words in ϑ(u). For
convenience, we write |ϑ| = maxa∈A|ϑ(a)|. For a random substitution that is both
primitive and compatible, the (uniform) letter frequencies are encoded by the right
Perron–Frobenius eigenvector of the substitution matrix, which by compatibility
is independent of the choice of probabilities. In particular, we have the following
(see [Que87] for a proof in the deterministic case, which also holds in the random
case by compatibility).

Lemma 2.9 (Letter frequency bounds). If ϑP is a primitive and compatible random
substitution, then for all ε > 0 there is an integer N such that every word v of length at
least N satisfies

|v|(Ra − ε) < |v|a < |v|(Ra + ε)

for all a ∈ A.

The random Fibonacci substitution defined in Example 2.5 is compatible, since
Φ(ab) = Φ(ba) = (1, 1). It is also primitive, since the square of its substitution
matrix is positive. For any choice of probabilities, the right Perron–Frobenius
eigenvector is given by (τ−1, τ−2), where τ denotes the golden ratio. In terms of let-
ter frequencies, this means that in all sufficiently long legal words, approximately
τ−1 proportion of the letters are a and τ−2 proportion are b.

The following consequence of Lemma 2.9 is useful in the proof of Theorem A.

Lemma 2.10. Let ϑP = (ϑ,P ) be a primitive and compatible random substitution and
let q ≥ 1. For all ε > 0, there is an M ∈ N such that for every m ≥ M and v ∈ Lm

ϑ ,

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

m(Ra+ε)

≤
∑

w∈ϑ(v)

P[ϑP (v) = w]q

≤
∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

m(Ra−ε)

.

For q ≤ 1, the same result holds with reversed inequalities.

Proof. Since ϑP is compatible, the cutting points of inflation tiles are well-
defined, so breaking the sum into inflation tiles we obtain∑
w∈ϑ(v)

P[ϑP (v) = w]q =
∑

w1∈ϑ(v1)

P[ϑP (v1) = w]q
∑

w2∈ϑ(v2)

· · ·
∑

wm∈ϑ(vm)

P[ϑP (vm) = wm]q

=
∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

|v|a

.
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The result then follows by applying Lemma 2.9 to bound |v|a, noting that for all
a ∈ A we have

∑
s∈ϑ(a) P[ϑP (a) = s]q ≤ 1 if q ≥ 1 and

∑
s∈ϑ(a) P[ϑP (a) = s]q ≥ 1 if

q ≤ 1. □

2.8. Frequency measures. The main object that we associate with a given primi-
tive random substitution ϑP is the frequency measure µP . This measure quantifies
the relative occurrence of a given word in a random substitution. We now define
this measure precisely.

First, we define the expected frequency of a word v ∈ Lϑ by

freq(v) = lim
k→∞

E[|ϑk
P (a)|v]

E[|ϑk
P (a)|]

,

where, by primitivity, this limit is independent of the choice of a ∈ A. In fact, we
have the stronger property that the word frequencies exist P-almost surely in the
limit of large inflation words and are given by freq(v) for all v ∈ Lϑ (see [GS20]
for further details). Recalling that ξ(Xϑ) is the algebra of cylinder sets on Xϑ that
specify the origin, we define µP : ξ(Xϑ) ∪ {∅} → [0, 1] by µP (∅) = 0, µP (Xϑ) = 1,
and µP ([v]m) = freq(v) for v ∈ Lϑ and m ∈ {1−|v|, 2−|v|, . . . , 0}. This set function
extends to a unique measure (c.f. [GS20, Proposition 5.3 and Theorem 5.9])

Proposition 2.11 ([GS20]). The set function µP is a content with mass one which ex-
tends uniquely to a shift-invariant ergodic Borel probability measure on Xϑ.

We call the measure µP defined in Proposition 2.11 the frequency measure cor-
responding to the random substitution ϑP . Note that frequency measures are
dependent on the probabilities of the substitution. As such, for the subshift of a
primitive random substitution that is non-deterministic, there exist uncountably
many frequency measures supported on this subshift [GS20]. In contrast, the sub-
shift of a primitive deterministic substitution has precisely one frequency measure,
which is the unique ergodic measure [Que87].

Frequency measures corresponding to primitive and compatible random sub-
stitutions satisfy the following renormalisation lemma, which relates the measure
of a cylinder set of a legal word to measures of cylinder sets of shorter words via
the production probabilities of the random substitution. This result first appeared
in [GS20] and is central to the proof of the main result in [GMR+23].

Lemma 2.12 (Renormalisation). Let ϑP be a primitive and compatible random substi-
tution with corresponding frequency measure µP . Let n ∈ N and let k be an integer such
that every v ∈ Lk

ϑ has |ϑ(v)| ≥ n+ |ϑ(v1)|. Then for every u ∈ Ln
ϑ,

µP ([u]) =
1

λ

∑
v∈Lk

ϑ

µP ([v])

|ϑ(v1)|∑
j=1

P[ϑP (v)[j,j+m−1] = u].

Lemma 2.12 is plays an important role in the proof of Theorem A, as it relates
the sums

∑
u∈Ln

ϑ
µP ([u]) to sums over smaller words via the production proba-

bilities. This in turn allows us to obtain relations between τµP
and φk. Under

additional assumptions, simplified reformulations of Lemma 2.12 can be obtained
(see, for example, Lemma 2.18, which is used in Theorem D).
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2.9. Separation conditions and recognisability. In this section, we introduce
additional common assumptions which either (1) impose a certain separation
on inflation words, or (2) impose a certain uniformity on the inflation and the
probabilities. Under these conditions, we can obtain closed-form formulas for the
Lq-spectrum.

Definition 2.13. A random substitution ϑP = (ϑ,P ) satisfies the disjoint set condi-
tion if

u and v ∈ ϑ(a) with u ̸= v =⇒ ϑk(u) ∩ ϑk(v) = ∅

for all a ∈ A and k ∈ N. It satisfies the identical set condition if

u and v ∈ ϑ(a) =⇒ ϑk(u) = ϑk(v)

for all a ∈ A and k ∈ N. Moreover, we say that ϑP has identical production
probabilities if for all a ∈ A, k ∈ N and v ∈ ϑk(a),

P[ϑk−1
P (u1) = v] = P[ϑk−1

P (u2) = v]

for all u1 and u2 ∈ ϑ(a).

A consequence of the disjoint set condition is that for every a ∈ A, k ∈ N and
w ∈ ϑk(a), there is a unique v ∈ ϑk−1(a) such that w ∈ ϑ(v). In other words, every
exact inflation word can be uniquely de-substituted to another exact inflation
word. The following definition extends this idea of unique de-substitution from
inflation words to all elements in the subshift.

Definition 2.14. Let ϑP = (ϑ,P ) be a primitive and compatible random sub-
stitution. We call ϑP recognisable if for every x ∈ Xϑ there exists a unique
y = · · · y−1y0y1 · · · ∈ Xϑ and a unique integer k ∈ {0, . . . , |ϑ(y0)| − 1} with
S−k(x) ∈ ϑ(y).

The following follows routinely from the definition of recognisability (a proof is
given in [GMR+23, Lemma 4.5]).

Lemma 2.15. If ϑP is a primitive, compatible and recognisable random substitution, then
ϑP satisfies the disjoint set condition.

In contrast to the disjoint set condition, recognisability is stable under taking
powers (see [GMR+23, Lemma 4.6]).

Lemma 2.16. Let ϑP be a primitive and compatible random substitution and m ∈ N. If
ϑP is recognisable, then so is ϑm

P .

An alternative characterisation of recognisability is the following local version.
Intuitively, local recognisability means that applying a finite window to a sequence
is enough to determine the position and the type of the inflation word in the
middle of that window. The following result is given in [GMR+23, Lemma 4.4]
(see also [FRS22+, Proposition 5.7]).
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Lemma 2.17. Let ϑP = (ϑ,P ) be a primitive and compatible random substitution. If ϑP

is recognisable, then there exists a smallest natural number κ(ϑ), called the recognisability
radius of ϑP , with the following property: if x ∈ ϑ([a]) for some a ∈ A and x[−κ(ϑ),κ(ϑ)] =
y[−κ(ϑ),κ(ϑ)] for some y ∈ Xϑ, then y ∈ ϑ([a]).

As a consequence of this local characterisation of recognisability, for every legal
word u with length greater than twice the radius of recognisability there exists an
inflation word w, appearing as a subword of u, which has a unique decomposition
into exact inflation words. We call the largest such w the recognisable core of u.

Local recognisability allows us to obtain a stronger version of Lemma 2.12 for
recognisable random substitutions. This result is key to obtaining the coincidence
of the Lq-spectrum and its inflation word analogue under recognisability for q < 0,
and thus the conclusion of Theorem D.

Lemma 2.18. Let ϑP = (ϑ,P ) be a primitive and compatible random substitution, with
corresponding frequency measure µP and u ∈ Lϑ. If v ∈ Lϑ and w ∈ ϑ(v) contains u as
a subword, then

µP ([u]) ≥
1

λ
µP ([v])P[ϑP (v) = w].

If, additionally, ϑP is recognisable, |u| > 2κ(ϑ) and w′ is the recognisable core of u with
v′ ∈ Lϑ the unique legal word such that w′ ∈ ϑ(v′), then

µP ([u]) ≤
κ(ϑ)

λ
µP ([v

′])P[ϑP (v
′) = w′].

Proof. If u is a subword of w ∈ ϑ(v), then µP ([u]) ≥ µP ([w]). Thus applying
Lemma 2.12 to µP ([w]),

µP ([u]) ≥
1

λ
µP ([v])P[ϑP (v) = w].

Now, assume that ϑP is recognisable, |u| > 2κ(ϑ) and w′ ∈ ϑ(v′) is the recognisable
core of u. Let k be an integer such that every t ∈ Lk

ϑ has |ϑ(t)| ≥ k + |ϑ(v1)|. Since
there are at most κ(ϑ) letters of u preceding the recognisable core, if t ∈ Lk

ϑ is a word
for which u ∈ ϑ(t)[j,j+|u|−1] for some j ∈ {1, . . . , |ϑ(t1)|}, then ti · · · ti+|v|−1 = v′ for
some i ∈ {1, . . . , κ(ϑ)}. Moreover, since there is a unique way to decompose w′ into
exact inflation words, for each t ∈ Lk

ϑ there can be at most one j ∈ {1, . . . , ϑ(t1)}
such that u ∈ ϑ(t)[j,j+|u|−1]. Hence, it follows by Lemma 2.12 that

µP ([u]) =
1

λ

∑
t∈Lk

µP ([t])

|ϑ(t1)|∑
j=1

P[ϑP (t)[j,j+|u|−1] = u]

≤ 1

λ

κ(ϑ)∑
i=1

∑
t∈Lk

ϑ
ti···ti+|v|−1=v′

µP ([t])P[ϑP (v
′) = w′]

=
κ(ϑ)

λ
µP ([v

′])P[ϑP (v
′) = w′],

which completes the proof. □
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3. Lq-SPECTRA OF FREQUENCY MEASURES

In this section, we prove our main results on Lq-spectra of frequency measures.
Here, we relate the Lq-spectrum to a certain “symbolic” Lq-spectrum, which we
call the inflation word Lq-spectrum. Heuristically, the inflation word Lq-spectrum is
the natural guess for the Lq-spectrum if you do not account for non-uniqueness
in the positions in which legal words can appear in inflation words. This notion
is introduced in §3.1, where we also state and prove some of its key properties.
In particular, in Proposition 3.1, we prove a simple closed-form formula for the
inflation word Lq-spectrum under the disjoint set condition or the identical set
condition with identical production probabilities. In Proposition 3.2, we establish
basic monotonicity results.

Then, in §3.2 and §3.3, we establish the general bounds for the Lq-spectrum in
terms of the inflation word Lq-spectrum, giving Theorem A (the proof is given
in §3.4). We also prove that this bound is sharp in §3.5 under recognisability.
This proves the first part of Theorem D. However this bound need not hold in
general: we discuss a counterexample in Example 5.2. Finally, in §3.6, we prove
differentiability of the Lq-spectrum at q = 1 and show how to recover known
results for measure theoretic and topological entropy from our results concerning
Lq-spectra.

3.1. Inflation word Lq-spectra. Given a primitive random substitution ϑP =
(ϑ,P ), we can define an analogue of the Lq-spectrum in terms of its production
probabilities, in a similar manner to the inflation word analogue of entropy intro-
duced in [GMR+23]. In many cases, this notion coincides with the Lq-spectrum of
the frequency measure associated to ϑP . For each k ∈ N and q ∈ R, define

φk(q) = −
∑
a∈A

Ra log

 ∑
s∈ϑk(a)

P[ϑk
P (a) = s]q

 ,

where R = (Ra)a∈A is the right Perron–Frobenius eigenvector of the substitution
matrix of ϑP . We define the inflation word Lq-spectrum of ϑP by

Tϑ,P (q) = lim inf
k→∞

φk(q)

λk
.

We recall that λ is the spectral radius of the substitution matrix associated with the
random substitution. We similarly define the upper variant T ϑ,P by taking a limit
supremum in place of the limit infimum.

We first state some key properties of Tϑ,P (q) which follow easily from the
definition. Firstly, if the random substitution ϑP is compatible and satisfies either
the disjoint set condition or the identical set condition with identical production
probabilities, then the limit defining Tϑ,P (q) exists for all q ∈ R and is given by a
closed-form expression. For q ≥ 0, these properties transfer to the Lq-spectrum by
Theorem A.
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Proposition 3.1. Let ϑP be a primitive and compatible random substitution and q ∈ R.
If ϑP satisfies the disjoint set condition, then the limit defining Tϑ,P (q) exists and

Tϑ,P (q) =
1

λ− 1
φ1(q).

If ϑP satisfies the identical set condition and has identical production probabilities, then
the limit defining Tϑ,P (q) exists and

Tϑ,P (q) =
1

λ
φ1(q).

Proof. Fix q ∈ R. By the Markov property of ϑP , for all a ∈ A, k ∈ N and
v ∈ ϑk(a),

(3.1) P[ϑk
P (a) = v] =

∑
s∈ϑ(a)

P[ϑP (a) = s]P[ϑk−1
P (s) = v].

First, suppose ϑP satisfies the disjoint set condition. Then for every v ∈ ϑk(a) there
is a unique s(v) ∈ ϑ(a) such that v ∈ ϑk−1(s(v)). Thus, for all s ∈ ϑ(a) such that
s ̸= s(v), we have P[ϑk−1

P (s) = v] = 0, and so it follows by (3.1) that∑
v∈ϑk(a)

P[ϑk
P (a) = v]q =

∑
v∈ϑk(a)

P[ϑP (a) = s(v)]q P[ϑk−1
P (s(v)) = v]q

=
∑

s∈ϑ(a)

P[ϑP (a) = s]q
∑

u∈ϑk−1(s)

P[ϑk−1
P (s) = u]q

=

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

∏
b∈A

 ∑
u∈ϑk−1(b)

P[ϑk−1
P (b) = u]q

|ϑ(a)|b

where in the final equality we use compatibility to split the second sum into
inflation tiles. Thus

φk(q) = −
∑
a∈A

Ra

∑
b∈A

|ϑ(a)|b log

 ∑
u∈ϑk−1(b)

P[ϑk−1
P (b) = u]q


−
∑
a∈A

Ra log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q


= λφk−1(q) + φ1(q),

noting that
∑

a∈A Ra|ϑ(a)|b = λRb. It follows inductively that

1

λk
φk(q) =

k∑
j=1

1

λj
φ1(q)

k→∞−−−→ 1

λ− 1
φ1(q),

so the limit defining Tϑ,P (q) exists and is equal to (λ− 1)−1φ1(q).
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Next, suppose ϑP satisfies the identical set condition and has identical pro-
duction probabilities. Then P[ϑk−1

P (s1) = u] = P[ϑk−1
P (s2) = u] for all s1, s2 ∈ ϑ(a).

Hence, it follows by (3.1) that∑
v∈ϑk(a)

P[ϑk
P (a) = v]q =

∑
v∈ϑk(a)

P[ϑk−1
P (s) = v]q

for any choice of s ∈ ϑ(a). By compatibility and the independence of the action,

∑
v∈ϑk(a)

P[ϑk
P (a) = v]q =

∏
b∈A

 ∑
u∈ϑk−1(b)

P[ϑk−1
P (b) = u]q

|ϑ(a)|b

,

and thus

φk(q) =
∑
b∈A

∑
a∈A

Ra|ϑ(a)|b log

 ∑
v∈ϑk−1(b)

P[ϑk−1
P (b) = v]q

 = λφk−1(q),

noting that
∑

a∈ARa|ϑ(a)|b = Rb. It follows by induction that φk(q)/λ
k = φ1(q)/λ

for all k ∈ N, so we conclude that Tϑ,P (q) exists and equals λ−1φ1(q). □

Proposition 3.2. Let ϑP be a primitive and compatible random substitution. For all
q > 1 and q < 0, the sequence (λ−kφk(q))k is non-decreasing; and for all 0 < q < 1, the
sequence is non-increasing.

Proof. This is largely a consequence of Jensen’s inequality. Note that on the
interval (0, 1], the function x 7→ xq is convex if q > 1 or q < 0, and concave if
0 < q < 1. We first prove this for the case when q > 1 or q < 0. For all a ∈ A, k ∈ N
with k ≥ 2 and v ∈ ϑk(a), it follows by the Markov property of ϑP that

∑
v∈ϑk

P[ϑk
P(a) = v]q =

∑
v∈ϑk(a)

 ∑
s∈ϑ(a) : v∈ϑk−1(s)

P[ϑP(a) = s]P[ϑk−1
P (s) = v]

q

≤
∑

v∈ϑk(a)

(∑
s∈ϑ(a) : v∈ϑk−1(s) P[ϑP(a) = s]P[ϑk−1

P (s) = v]q∑
s∈ϑ(a) : v∈ϑk−1(s) P[ϑP(a) = s]

)

≤
∏
b∈A

 ∑
w∈ϑk−1(b)

P[ϑk−1
P (b) = w]q

|ϑ(a)|b

.

In the second line, we apply Jensen’s inequality, and in the third line, we use
compatibility to decompose each probability P[ϑk−1

P (s) = w] into inflation tiles. It
follows that

1

λk
φk(q) ≥ − 1

λk

∑
b∈A

Rb

∑
a∈A

Ra|ϑ(a)|b log

 ∑
w∈ϑk−1(b)

P[ϑk−1
P (b) = w]q


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=
1

λk−1
φk−1(q),

noting that
∑

a∈A Ra|ϑ(a)|b = λ.
The 0 < q < 1 case follows similarly, with Jensen’s inequality giving the

opposite inequality since x 7→ xq is concave. □

An analogous monotonicity result does not hold in general for the (λk − 1)−1φk(q)
bounds, even when q ≥ 0. A counterexample is given by the random period
doubling substitution (Example 5.7) with non-uniform probabilities.

3.2. Lq-spectra for non-negative q. The majority of the work in proving Theo-
rem A lies in proving the bounds in (1.1), (1.2) and (1.3). It suffices to prove the
bound for the case k = 1, since we then obtain the bound for other k ∈ N by
considering higher powers of the random substitution. We first prove the upper
bound for the case q > 1.

Throughout this section, we assume that the random substitution is primitive
and compatible.

Proposition 3.3. For all q > 1,

τµP
(q) ≤ 1

λ− 1
φ1(q).

Proof. Fix q > 1. Let ε > 0 and, for each n ∈ N, let m(n) be the integer defined
by

m(n) =

⌈
n

λ− ε

⌉
.

Then the integers n and m(n) satisfy the conditions of Lemma 2.12, so it follows
that

∑
u∈Ln

ϑ

µP ([u])
q =

∑
u∈Ln

ϑ

1

λ

∑
v∈Lm(n)

ϑ

µP ([v])

|ϑ(v1)|∑
j=1

P[ϑP (v)[j,j+n−1] = u]


q

.

Since q > 1, the function x 7→ xq is superadditive on the interval [0, 1], so

∑
u∈Ln

ϑ

µP ([u])
q ≥

∑
u∈Ln

ϑ

∑
v∈Lm(n)

ϑ

µP ([v])
q

1

λ

|ϑ(v1)|∑
j=1

P[ϑP (v)[j,j+n−1] = u]

q

≥ 1

λq

∑
v∈Lm(n)

ϑ

µP ([v])
q

|ϑ(v1)|∑
j=1

∑
u∈Ln

ϑ

P[ϑP (v)[j,j+n−1] = u]q.

We now bound the probability on the right of this expression by the production
probability of an inflation word. If w(u) ∈ ϑ(v) contains u as a subword in position
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j, then P[ϑP (v)[j,j+n−1] = u] ≥ P[ϑP (v) = w(u)]. Hence,∑
u∈Ln

ϑ

P[ϑP (v)[j,j+n−1] = u]q ≥
∑

w∈ϑ(v)

P[ϑP (v) = w]q

for all j ∈ {1, . . . , |ϑ(v1)|}.
Since ϑP is compatible, by Lemma 2.10 there exists an N ∈ N such that for all

n ≥ N and all v ∈ Lm(n)
ϑ

∑
w∈ϑ(v)

P[ϑP (v) = w]q ≥
∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

m(n)(Ra+ε)

.

Hence,

∑
u∈Ln

ϑ

µP ([u])
q ≥ 1

λq

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

m(n)(Ra+ε) ∑
v∈Lm(n)

ϑ

µP ([v])
q.

Taking logarithms, rearranging and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP ([u])
q

 ≤ − 1

n
log

 ∑
v∈Lm(n)

ϑ

µP ([v])
q

+
1

n
log λq

− m(n)

n

∑
a∈A

(Ra + ε) log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

 .

Noting that m(n)/n → (λ− ε)−1 as n → ∞, it follows by Lemma 2.2 that

τµP
(q) ≤ 1

λ− ε
τµP

(q) +
1

λ− ε

∑
a∈A

log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

+ cε

where c := (#A)maxa∈A log(
∑

s∈ϑ(a) P[ϑP (a) = s]q). But ε > 0 was arbitrary;
letting ε → 0 and rearranging,

τµP
(q) ≤ 1

λ− 1
φ1(q),

which completes the proof. □

We now prove the corresponding lower bound.

Proposition 3.4. For all q > 1,

τµP
(q) ≥ 1

λ
φ1(q).
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Proof. Let ε > 0 and, for each n ∈ N, let m(n) be the integer defined by

m(n) =

⌈
n

λ− ε

⌉
.

Since q > 1, the function x 7→ xq is convex on the interval [0, 1]. Hence, it follows
by Lemma 2.12 and two applications of Jensen’s inequality that

∑
u∈Ln

ϑ

µP ([u])
q =

∑
u∈Ln

ϑ

1

λ

∑
v∈Lm(n)

ϑ

µP ([v])

|ϑ(v1)|∑
j=1

P[ϑP (v)[j,j+n−1] = u]


q

≤
∑

v∈Lm(n)
ϑ

µP ([v])
∑
u∈Ln

ϑ

1

λ

|ϑ(v1)|∑
j=1

P[ϑP (v)[j,j+n−1] = u]

q

≤ |ϑ|q−1

λq

∑
v∈Lm(n)

ϑ

µP ([v])

|ϑ(v1)|∑
j=1

∑
u∈Ln

ϑ

P[ϑP (v)[j,j+n−1] = u]q.

We bound above the probability on the right of this expression by the production
probability of a sufficiently large inflation word contained in u. By compatibility,
there is an integer k(n) such that j + n ≤ |ϑ(v[1,m(n)−k(n)])| for all n ∈ N and
v ∈ Lm(n)

ϑ , where lim k(n)/n = 0. In particular, for every v ∈ Ln
ϑ, a realisation of

ϑ(v[2,m(n)−k(n)]) is contained in u as an inflation word, so∑
u∈Ln

ϑ

P[ϑP (v)[j,j+n−1] = u]q ≤
∑

w∈ϑ(v2···vm(n)−k(n))

P[ϑP (v2 · · · vm(n)−k(n)) = w]q.

We now bound this quantity uniformly for all v ∈ Lm(n)
ϑ . By Lemma 2.10 and the

above, there is an N ∈ N such that for all n ≥ N

∑
u∈Ln

ϑ

µP ([u])
q ≤ |ϑ|q−1

λq

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

(m(n)−k(n)−1)(Ra−ε)

.

Taking logarithms, rearranging and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP ([u])
q

 ≥ m(n)− k(n)− 1

n

∑
a∈A

(Ra − ε) log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q


− log(|ϑ|q−1/λq)

n

n→∞−−−→ 1

λ− ε

∑
a∈A

(Ra − ε) log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

 ,

But ε > 0 was arbitrarily, so

τµP
(q) ≥ 1

λ
φ1(q),
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which completes the proof. □

We now state the bounds for the q ∈ (0, 1) case. We do not give a proof here
since the arguments mirror the proofs of Proposition 3.3 and Proposition 3.4,
except with reversed inequalities since x 7→ xq is concave rather than convex and
subadditive as opposed to superadditive.

Proposition 3.5. If q ∈ (0, 1), then

1

λ− 1
φ1(q) ≤ τµP

(q) ≤ τµP
(q) ≤ 1

λ
φ1(q).

3.3. Lq-spectra for negative q: lower bounds. For q < 0, there exist primitive and
compatible random substitutions for which τµP

(q) and Tϑ,P (q) do not coincide
(see, for instance, Example 5.2). However, we still obtain that τµP

(q) ≥ Tϑ,P (q) for
all q < 0. To prove this, it suffices to show the sequence of bounds in (1.3) holds.
Again, we only need to prove the bound for k = 1 since the remaining bounds
follow by considering powers of the random substitution.

Proposition 3.6. If ϑP is a primitive and compatible random substitution, then for all
q < 0,

τµP
(q) ≥ 1

λ− 1
φ1(q).

Proof. Let ε > 0 be sufficiently small and for n sufficiently large, let m(n) be
the integer defined by

m(n) =

⌈
n

λ− ε

⌉
.

To avoid division by zero, we rewrite Lemma 2.12 in a form where we do not
sum over elements equal to zero. Here, we write u ◀ ϑ(v) to mean there is a
realisation w of ϑ(v) for which u appears as a subword of w. For each v ∈ Lm(n)

ϑ

and u ∈ Ln
ϑ, let J (v, u) = {j ∈ {1, . . . , |ϑ(v1)|} : u ∈ ϑ(v)[j,j+n−1]}. If j /∈ J (u, v),

then P[ϑP (v)[j,j+n−1] = u] = 0, and if u does not appear as a subword of any
realisations of ϑ(v), then J (u, v) = ∅. Therefore, we can rewrite Lemma 2.12 as

µP ([u]) =
1

λ

∑
v∈Lm(n)

ϑ
u◀ϑ(v)

µP ([v])
∑

j∈J (v,u)

P[ϑP (v)[j,j+n−1] = u].

Hence, by the subadditivity of the function x 7→ xq on the domain (0, 1],

∑
u∈Ln

ϑ

µP ([u])
q =

∑
u∈Ln

ϑ

1

λ

∑
v∈Lm(n)

ϑ
u◀ϑ(v)

µP ([v])
∑

j∈J (v,u)

P[ϑP (v)[j,j+n−1] = u]


q
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≤ 1

λq

∑
u∈Ln

ϑ

∑
v∈Lm(n)

ϑ
u◀ϑ(v)

µP ([v])
q
∑

j∈J (v,u)

P[ϑP (v)[j,j+n−1] = u]q

=
1

λq

∑
v∈Lm(n)

ϑ

µP ([v])
q
∑
u∈Ln

ϑ
u◀ϑ(v)

∑
j∈J (v,u)

P[ϑP (v)[j,j+n−1] = u]q.

For each j ∈ J (v, u), let wj(u) ∈ ϑ(v) be a word such that wj(u)[j,j+n−1] = u. Note
that there are at most K := 2|ϑ|(#A)|ϑ| different u ∈ Ln

ϑ such that wj(u)[j,j+n−1] = u.
Hence, ∑

u∈Ln
ϑ

u◀ϑ(v)

∑
j∈J (v,u)

P[ϑP (v)[j,j+n−1] = u]q ≤
∑
u∈Ln

ϑ
u◀ϑ(v)

∑
j∈J (v,u)

P[ϑP (v) = wj(u)]
q

≤ K
∑

w∈ϑ(v)

P[ϑP (v) = w]q

and it follows that∑
u∈Ln

ϑ

µP ([u])
q ≤ λ−qK

∑
v∈Lm(n)

ϑ

µP ([v])
q
∑

w∈ϑ(v)

P[ϑP (v) = w]q.

Thus, by Lemma 2.10, for all ε > 0 there is an integer N such that for all n ≥ N

∑
u∈Ln

ϑ

µP ([u])
q ≤ λ−qK

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

m(n)(Ra+ε)
 ∑

v∈Lm(n)
ϑ

µP ([v])
q

 .

Taking logarithms, rearranging and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP ([u])
q

 ≥ − 1

n
log

 ∑
v∈Lm(n)

ϑ

µP ([v])
q

+
1

n
log(λ−qK)

− m(n)

n

∑
a∈A

(Ra + ε) log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

 .

Noting that m(n)/n → (λ− ε)−1 as n → ∞, it follows by Lemma 2.2 that

τµP
(q) ≥ 1

λ− ε
τµP

(q) +
1

λ− ε

∑
a∈A

log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

+ cε

where c := (#A)maxa∈A log(
∑

s∈ϑ(a) P[ϑP (a) = s]q). Letting ε → 0 and rearrang-
ing,

τµP
(q) ≥ 1

λ− 1
φ1(q),

which completes the proof. □
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3.4. Proof of general bounds for the Lq-spectrum. Using the bounds proved in
the prior two sections, we can now complete the proof of Theorem A.

Proof (of Theorem A). Since, for each k ∈ N, the random substitution ϑk
P gives

rise to the same frequency measure as ϑP , applying Proposition 3.3, Proposition 3.4
and Proposition 3.5 to ϑk

P ,

1

λk
φk(q) ≤ τµP

(q) ≤ τµP
(q) ≤ 1

λk − 1
φk(q)

for all q > 1 and

1

λk − 1
φk(q) ≤ τµP

(q) ≤ τµP
(q) ≤ 1

λk
φk(q)

for 0 < q < 1. Letting k → ∞ gives

τµP
(q) = τµP

(q) = Tϑ,P (q) = T ϑ,P (q)

for all q ∈ (0, 1) ∪ (1,∞), so the limits defining τµP
(q) and Tϑ,P (q) both exist and

coincide. The same holds for q = 0 and q = 1 by continuity. The monotonicity of
the bounds λ−kφk(q) follows by Proposition 3.2. Finally for q < 0, for each k ∈ N,
applying Proposition 3.6 to ϑk

P gives that

τµP
(q) ≥ 1

λk − 1
φk(q).

Passing to the limit completes the proof. □

3.5. Lq-spectra for negative q under recognisability. While the upper bound
does not hold in general for q < 0, for recognisable random substitutions we can
obtain this using Lemma 2.18, which we recall is a refinement of Lemma 2.12 using
recognisability.

Proposition 3.7. If ϑP is a primitive, compatible and recognisable random substitution,
then for all q < 0,

τµP
(q) ≤ 1

λ− 1
φ1(q).

Proof. Let ε > 0 be sufficiently small and, for each n ∈ N sufficiently large, let
m(n) be the integer defined by

m(n) =

⌊
n

λ− ε

⌋
.

For each u ∈ Ln+2κ(ϑ)
ϑ , let w(u) denote the recognisable core of u. Further, let v(u)

denote the unique legal word such that w(u) ∈ ϑ(v(u)). Then, by Lemma 2.18,

(3.2) µP ([u]) ≤
κ(ϑ)

λ
µP ([v(u)])P[ϑP (v(u)) = w(u)].
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For all u ∈ Ln+2κ(ϑ)
ϑ , the recognisable core w(u) has length at least n so, by com-

patibility, there is an integer N such that if n ≥ N , then |v(u)| ≥ m(n) for
all u ∈ Ln+2κ(ϑ)

ϑ . In particular, for every u there exists a v ∈ Lm(n)
ϑ such that

µP ([v(u)]) ≤ µP ([v]) and a w ∈ ϑ(v) such that P[ϑP (v(u)) = w(u)] ≤ P[ϑP (v) = w].
Hence, it follows by (3.2) and Lemma 2.10 that∑

u∈Ln+2κ(ϑ)
ϑ

µP ([u])
q ≥ 1

λq

∑
v∈Lm(n)

ϑ

µP ([v])
q
∑

w∈ϑ(v)

P[ϑP (v) = w]q

≥ 1

λq

∏
a∈A

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

m(Ra−ε) ∑
v∈Lm(n)

ϑ

µP ([v])
q,

noting that since q < 0, the function x 7→ xq is decreasing on (0, 1]. Taking
logarithms, rearranging and dividing by n gives

− 1

n
log

∑
u∈Ln

ϑ

µP ([u])
q

 ≤ − 1

n
log

 ∑
v∈Lm(n)

ϑ

µP ([v])
q

+
1

n
log λq

− m(n)

n

∑
a∈A

(Ra − ε) log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

 .

Noting that m(n)/n → (λ− ε)−1 as n → ∞, it follows by Lemma 2.2 that

τµP
(q) ≤ 1

λ− ε
τµP

(q) +
1

λ− ε

∑
a∈A

log

 ∑
s∈ϑ(a)

P[ϑP (a) = s]q

+ cε

where c := (#A)maxa∈A log(
∑

s∈ϑ(a) P[ϑP (a) = s]q). Letting ε → 0 and rearrang-
ing,

τµP
(q) ≤ 1

λ− 1
φ1(q),

which completes the proof. □

3.6. Recovering entropy from the Lq-spectrum. Since the Lq-spectrum encodes
both topological and measure theoretic entropy, Theorem A provides an alternative
means of proving the coincidence of these quantities with the inflation word
analogues introduced in [GMR+23; Goh20] for primitive and compatible random
substitutions.

For notational simplicity, set

ρk = −
∑
a∈A

Ra

∑
s∈ϑk(a)

P[ϑk
P (a) = s] log(P[ϑk

P (a) = s]).
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Proof (of Corollary C). We first establish the result for topological entropy. By
Theorem A, the limit defining Tϑ,P (0) exists; in particular,

lim
m→∞

1

λk

∑
a∈A

Ra log(#ϑm(a))

exists. Since htop(Xϑ) = −τµP
(0) = −Tϑ,P (0), we conclude that

htop(Xϑ) = − lim
m→∞

1

λk

∑
a∈A

Ra log(#ϑm(a))

as claimed.
Now we consider measure theoretic entropy. We first make the following

elementary observation: if f and g are concave functions with f(1) = g(1) and
f(x) ≤ g(x) for all x ≥ 1, then f+(1) ≤ g+(1). Indeed, for all ϵ > 0,

f(1 + ϵ)− f(1)

ϵ
≤ g(1 + ϵ)− g(1)

ϵ
,

and taking the limit as ϵ goes to 0 (which always exists by concavity) yields the
desired inequality.

Recall that τµP
and λ−kφk are concave functions with τµP

(1) = φk(1) = 0 for
all k ∈ N. Moreover, φk is differentiable for all k ∈ N with φ′

k(1) = ρk and by
Proposition 3.2 and Theorem A,

(
λ−kφk

)∞
j=1

converges monotonically to τµP
from

below. In particular, ρk/λk is a monotonically increasing sequence bounded above
by τ+µP

(1), so that the limit indeed exists. Thus

τ+µP
(1) = lim

k→∞

ρk
λk

since φk(q)/(λ
k − 1) ≥ τµP

(q) for all q ∈ (0,∞), using the preceding observation.
The result for τ−µP

(1) follows by an identical argument, instead using mono-
tonicity and the corresponding bounds for q ∈ (0, 1). Thus τ ′µP

(1) = limk→∞ ρk/λ
k,

so the desired result follows by Lemma 2.1(c). □

4. RECOGNISABILITY AND THE MULTIFRACTAL FORMALISM

In this section we establish the multifractal formalism as stated in Theorem D.
Our proof will follow from a constrained variational principle, which is obtained
by considering typical local dimensions of one frequency measure µP relative to
another frequency measure µQ. Our strategy is to prove the almost sure existence
of relative letter frequencies in Lemma 4.3: this result, combined with recognis-
ability, gives Proposition 4.5. The multifractal formalism then follows from this
dimensional result combined with the formula for the Lq-spectrum proved in
Proposition 3.7—the proof is given in §4.2.

4.1. Non-typical local dimensions. To prove the multifractal formalism for a
given frequency measure µP , we show that for every α ∈ [αmin, αmax], there exists
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another frequency measure µQ such that dimH µQ ≥ τ ∗µP
(α) and dimloc(µP , x) = α

for µQ-almost every x ∈ Xϑ. Given a primitive set-valued substitution ϑ, per-
missible probabilities P and Q, m ∈ N and a ∈ A, define the quantity Hm,a

P ,Q(ϑ)
by

Hm,a
P ,Q(ϑ) =

∑
v∈ϑm(a)

−P[ϑm
Q(a) = v] logP[ϑm

P (a) = v].

Further, let Hm
P ,Q(ϑ) denote the vector (Hm,a

P ,Q(ϑ))a∈A. We first prove some proper-
ties of the quantity Hm

P ,Q(ϑ) which we will use in the proof of Proposition 4.5.

Lemma 4.1. If ϑ is a primitive and compatible set-valued substitution and P and Q are
permissible probabilities, then for all m ∈ N, a ∈ A and s ∈ ϑ(a),∑

v∈ϑm(s)

P[ϑm
Q(s) = v] logP[ϑm

P (s) = v] =
∑
b∈A

|ϑ(a)|bHm,b
P ,Q(ϑ).

Proof. Since ϑ is compatible, we can decompose each v ∈ ϑm(s) into inflation
words v = v1 · · · v|ϑ(a)|. By the Markov property of ϑP (respectively ϑQ),

P[ϑm
P (s) = v] = P[ϑm

P (s1) = v1] · · ·P[ϑm
P (s|ϑ(a)|) = v|ϑ(a)|].

Therefore∑
v∈ϑm(s)

P[ϑm
Q(s) = v] logP[ϑm

P (s) = v] =

=
∑
b∈A

|ϑ(a)|b
∑

w∈ϑm(b)

P[ϑm
Q(b) = w] logP[ϑm

P (b) = w]

=
∑
b∈A

|ϑ(a)|b Hm,b
P ,Q(ϑ),

which completes the proof. □

Lemma 4.2. If ϑ is a primitive and compatible set-valued substitution satisfying the
disjoint set condition, with right Perron–Frobenius eigenvector R, and P and Q are
permissible probabilities, then

1

λm
Hm

P ,Q(ϑ) ·R → 1

λ− 1
H1

P ,Q(ϑ) ·R

as m → ∞.

Proof. Since ϑ satisfies the disjoint set condition, for all m ∈ N and a ∈ A,

Hm+1
P ,Q (ϑ) ·R =

∑
a∈A

Ra

∑
v∈ϑm+1(a)

P[ϑm+1
Q (a) = v] logP[ϑm+1

P (a) = v]

=
∑
a∈A

Ra

∑
s∈ϑ(a)

P[ϑQ(a) = s] logP[ϑP (a) = s]
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+
∑
a∈A

Ra

∑
s∈ϑ(a)

P[ϑQ(a) = s]
∑

v∈ϑm(s)

P[ϑm
Q(s) = v] logP[ϑm

P (s) = v]

= H1
P ,Q(ϑ) ·R+

∑
b∈A

Hm,b
P ,Q(ϑ)

∑
a∈A

|ϑ(a)|bRa

= H1
P ,Q(ϑ) ·R+ λ

∑
b∈A

RbH
m,b
P ,Q(ϑ)

= H1
P ,Q(ϑ) ·R+ λHm

P ,Q(ϑ) ·R.

In the second equality we use the Markov property of ϑP and ϑQ, laws of loga-
rithms, and that

∑
v∈ϑm(s) P[ϑm

Q(s) = v] = 1 for all s ∈ ϑ(a); in the third we apply
Lemma 4.1; in the fourth we use that MϑR = λR. Applying the above inductively,

1

λm
Hm

P ,Q(ϑ) ·R =
m∑
j=1

1

λj
H1

P ,Q(ϑ) ·R
m→∞−−−→ 1

λ− 1
H1

P ,Q(ϑ) ·R,

which completes the proof. □

Any bi-infinite sequence x in the subshift of a recognisable random substitution
can be written as a bi-infinite concatenation of exact inflation words (wn,an), where
wn,an is an inflation word generated from the letter an. Given a recognisable set-
valued substitution ϑ, a ∈ A and w ∈ ϑ(a), we define the inflation word frequency
of (a, w) in x ∈ Xϑ by

fx(a, w) = lim
n→∞

fn
x (a, w)

fn
x (a, w) =

1

2n+ 1
#{m : am = a, wm,am = w,wm,am in x[−n,n]},

provided the limit exists. For a given frequency measure µP , the inflation word
frequency of a µP -typical word is determined by the production probabilities.
More specifically, we have the following.

Lemma 4.3. Let ϑP = (ϑ,P ) be a primitive, compatible and recognisable random sub-
stitution with corresponding frequency measure µP . For µP -almost every x ∈ Xϑ , the
inflation word frequency exists and is given by

fx(a, w) =
1

λ
RaP[ϑP (a) = w],

for all a ∈ A and w ∈ ϑ(a).

Proof. Let Aa,w be the set of points x ∈ Xϑ such that the above does not hold.
We show that Aa,w is a null set. Taking the complement and then the intersection
over all a, w gives a full-measure set with the required property. Given ε > 0, let
E(n, ε) be the set of x ∈ Xϑ such that∣∣fn

x (a, w)−
1

λ
RaP[ϑP (a) = w]

∣∣ > ε.
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By the Borel–Cantelli lemma, it suffices to show that∑
n∈N

µP (E(n, ε)) < ∞

for all ε > 0 in order to conclude that Aa,w is a nullset. To this end, we show that
µP (E(n, ε)) decays exponentially with n. Given u with |u| = 2n+1 > 2κ(ϑ), let uR

denote the recognisable core of u, which has length at least |u|−2κ(ϑ). Lemma 2.18
gives that

µP ([u]) ≤
κ(ϑ)

λ
µP ([v])P[ϑP (v) = uR] =

κ(ϑ)

λ
µP ([v])

|v|∏
i=1

P[ϑP (vi) = wi,vi ]

where each wi,vi is the inflated image of vi in uR. By compatibility, we can choose
an integer N such that every v of length at least N satisfies |v|(Ra − ε/3) ≤ |v|a ≤
|v|(Ra+ε/3) for all a ∈ A. For each v and a ∈ A, let Aa(v) denote the set of u′ ∈ ϑ(v)
such that the frequency of indices i ∈ {j : aj = a} with wi,a = w deviates from
P[ϑP (a) = w] by more than ε/3. Since ϑP acts independently on letters, it follows
by Cramér’s theorem that the sum

∑
u′∈A(v) P[ϑP (v) = u′] decays exponentially

with |v|a (and hence with |v|). In particular, there is a constant C > 0, independent
of the choice of v, such that

(4.1)
∑

u′∈A(v)

P[ϑP (v) = u′] ≤ e−Cn.

Note that if u is a sufficiently long legal word and has [u] ∩ E(n, ε) = ∅, then we
require that uR ∈ A(v). Indeed, if u′ /∈ A(v) and |v| ≥ N , then the relative inflation
word frequency of w is bounded above by

{j : aj = a}
|v|

|v|
|u|

(
P[ϑP (a) = w] +

ε

3

)
≤ 1

λ

(
Ra +

ε

3

)(
P[ϑP (a) = w] +

ε

3

)
≤ 1

λ
RaP[ϑP (a) = w] + ε

and, similarly, bounded below by RaP[ϑP (a) = w]/λ− ε; hence, [uR]∩E(n, ε) = ∅.
Let Vn denote set of all words which appear as the (unique) preimage of the
recognisable core of a word of length n. It then follows by Lemma 2.18 that

µP (E(n, ε)) ⩽
∑
u∈Ln

ϑ
[u]∩E(n,ε)̸=∅

µP ([u]) ≤
κ(ϑ)

λ

∑
v∈Vn

µP ([v])
∑

u′∈A(v)

P[ϑP (v) = u′] ⩽ e−Cn,

where in the final inequality we have used (4.1) and that

∑
v∈Vn

µP ([v]) ≤
n∑

j=1

∑
v∈Lj

ϑ

µP ([v]) ≤ n,
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absorbing this contribution and the κ(ϑ)/λ factor into the constant C. It follows
that

∞∑
n=1

µP (E(n, ε)) ≤
∞∑
n=1

e−Cn < ∞,

and the result then follows by the Borel–Cantelli lemma. □

Finally, we require the following bounds on the exponential scaling rate of mea-
sures of cylinders, which is essentially a consequence of Theorem A. In particular,
these give bounds on the possible local dimensions of the measure.

Proposition 4.4. If ϑP is a primitive and compatible random substitution with corre-
sponding frequency measure µP , then there are values 0 < s1 < s2 < ∞ and c1, c2 > 0
such that for all n ∈ N and v ∈ Ln(Xϑ) = Ln

ϑ,

s1 · n+ c1 ≤ log µP ([v]) ≤ s2 · n+ c2

Proof. By Theorem A, for all k ∈ N and q > 1,

τµP
(q) ≤ 1

λk − 1
φk(q);

and for q < 0,

1

λk − 1
φk(q) ≤ τµP

(q),

Moreover, for each k, with

βk,min := lim
q→∞

φk(q)

q(λk − 1)
= − 1

λk − 1

∑
a∈A

Ra log

(
min

v∈ϑk(a)
P[ϑk

P (a) = v]

)
βk,max := lim

q→−∞

φk(q)

q(λk − 1)
= − 1

λk − 1

∑
a∈A

Ra log

(
max

v∈ϑk(a)
P[ϑk

P (a) = v]

)
,

it follows that [βk,min, βk,max] ⊂ (0,∞) is a decreasing nested sequence of intervals,
so with βmin = limk→∞ βk,min and βmax = limk→∞ βk,max,

0 < βmin ≤ lim
q→∞

τµP
(q) ≤ lim

q→−∞
τµP

(q) ≤ βmax < ∞.

Applying Lemma 2.1(b) gives the result. □

Finally, we obtain our main conclusion concerning relative local dimensions.

Proposition 4.5. Let ϑ be a primitive, compatible and recognisable set-valued substitu-
tion, let P and Q be permissible probabilities, and let µP and µQ denote the respective
frequency measures. Then, for µQ-almost all x ∈ Xϑ,

(4.2) dimloc(µP , x) =
1

λ− 1

∑
a∈A

Ra

∑
v∈ϑ(a)

−P[ϑm
Q(a) = v] logP[ϑm

P (a) = v].
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Proof. Fix m ∈ N. It follows by Lemma 2.16 that since ϑP is recognisable, so is
ϑm
P . For each x ∈ Xϑ and n ∈ N with n > κ(ϑm), let un

−(x) denote the recognisable
core of x[−n,n] and let un

+(x) denote an inflation word of minimal length that
contains x[−n,n]. By compatibility, |un

−(x)|/(2n+ 1) → λ−m and |un
+(x)|/(2n+ 1) →

λ−m as n → ∞. Further, let vn−(x) be the legal word such that un
−(x) ∈ ϑm(vn−(x))

and vn+(x) be the legal word such that un
+(x) ∈ ϑm(vn+(x)). Then, it follows by

Lemma 2.18 and the definition of local dimension that

lim inf
n→∞

(
− 1

2n+ 1
log µP ([u

n
−(x)])−

1

2n+ 1
logP[ϑP (v

n
−(x)) = un

−(x)]

)
≤ dimloc(µP , x) ≤ dimloc(µP , x)

≤ lim sup
n→∞

(
− 1

2n+ 1
log µP ([u

n
+(x)])−

1

2n+ 1
logP[ϑP (v

n
+(x)) = un

+(x)]

)
.

By Proposition 4.4, there exists a constant C ≥ 0 such that for all x ∈ Xϑ,

0 ≤ lim inf
n→∞

− 1

2n+ 1
log µP ([u

n
−(x)]) ≤ lim sup

n→∞
− 1

2n+ 1
log µP ([u

n
+(x)]) ≤ C.

Hence, it follows from the above that

(4.3)

lim inf
n→∞

− 1

2n+ 1
logP[ϑP (v

n
−(x)) = un

−(x)]

≤ dimloc(µP , x) ≤ dimloc(µP , x)

≤ lim sup
n→∞

− 1

2n+ 1
logP[ϑP (v

n
+(x)) = un

+(x)] +
C

λm
.

We now show that for µQ-almost all x ∈ Xϑ,

lim inf
n→∞

− 1

n
logP[ϑP (v

n
−(x)) = un

−(x)] = lim sup
n→∞

− 1

n
logP[ϑP (v

n
+(x)) = un

+(x)]

=
1

λm
Hm

P ,Q(ϑ) ·R.

By compatibility, we can decompose the production probabilities into inflation
tiles as

P[ϑm
P (v

n
−(x)) = un

−(x)] =
∏
a∈A

∏
w∈ϑm(a)

P[ϑm
P (a) = w]Na,w(x,n),

where, for each a ∈ A and w ∈ ϑm(a), Na,w(x, n) denotes the number of a’s in vn−(x)
which map to w. It follows by Lemma 4.3, applied to ϑm

Q, that for µQ-almost all
x ∈ Xϑ,

1

2n+ 1
Na,w(x, n) →

1

λm
RaP[ϑm

Q(a) = w]

for all a ∈ A and w ∈ ϑm(a). Hence, it follows that

lim
n→∞

− 1

2n+ 1
logP[ϑm

P (v
n
−(x)) = un

−(x)]
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=
1

λm

∑
a∈A

Ra

∑
v∈ϑm(a)

P[ϑm
Q(a) = v] logP[ϑm

P (a) = v]

=
1

λm
Hm

P ,Q(ϑ) ·R,

with the same convergence holding for un
+(x) by identical arguments. Thus, it

follows from (4.3) that

1

λm
Hm

P ,Q(ϑ) ·R ≤ dimloc(µP , x) ≤ dimloc(µP , x) ≤
1

λm
Hm

P ,Q(ϑ) ·R+
C

λm
.

Since the above holds for all m ∈ N, by letting m → ∞ it follows by Lemma 4.2
that dimloc(µP , x) exists and

dimloc(µP , x) =
1

λ− 1
H1

P ,Q(ϑ) ·R,

which completes the proof. □

4.2. Proof of the multifractal formalism. In this section, we apply the results
obtained in the previous section, along with results on the Lq-spectrum under
recognisability, to prove Theorem D.

Proof (of Theorem D). We first obtain the results for the Lq-spectrum. Since every
recognisable random substitution satisfies the disjoint set condition, Proposition 3.1
gives that Tϑ,P (q) = (λ− 1)−1φ1(q) for all q ∈ R. If q < 0, then by Theorem A and
Proposition 3.7,

1

λ− 1
φ1(q) = Tϑ,P (q) ≤ τµP

(q) ≤ τµP
(q) ≤ 1

λ− 1
φ1(q),

so we conclude that τµP
(q) exists and equals (λ− 1)−1φ1(q). For q ≥ 0, the result

follows already from Corollary B.
We now obtain the results on the multifractal spectrum. In light of Proposi-

tion 2.3, it remains to show that fµP
(α) ≥ τ ∗µP

(α) for each α ∈ R. As proved above,
for all q ∈ R,

τµP
(q) =

1

λ− 1
φ1(q) =

1

λ− 1

∑
a∈A

RaTa(q)

where for each a ∈ A

Ta(q) = − log
∑

s∈ϑ(a)

P[ϑP (a) = s]q.

First, fix α ∈ (αmin, αmax) and let q ∈ R be chosen so that τ ′µP
(q) = α. Observe

that qα− τµP
(q) = τ ∗µP

(α). Then define Q by the rule

P[ϑQ(a) = s] = P[ϑP (a) = s]qeTa(q)
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for all a ∈ A and s ∈ ϑ(a). Then by Corollary C,

dimH µQ =
1

λ− 1

∑
a∈A

Ra

(
−
∑

v∈ϑ(a)

P[ϑQ(a) = v] logP[ϑQ(a) = v]
)

= q · 1

λ− 1

∑
a∈A

Ra

(
−
∑

v∈ϑ(a)

P[ϑQ(a) = v] logP[ϑP (a) = v]
)

− 1

λ− 1

∑
a∈A

RaTa(q)
∑

v∈ϑ(a)

P[ϑQ(a) = v]

= qα− τµP
(q) = τ ∗µP

(α)

since

τ ′µP
(q) =

1

λ− 1

∑
a∈A

Ra

−
∑

v∈ϑ(a) P[ϑP (a) = v]q logP[ϑP (a) = v]

e−Ta(q)

=
1

λ− 1

∑
a∈A

Ra

(
−
∑

v∈ϑ(a)

P[ϑQ(a) = v] logP[ϑP (a) = v]
)

.

In fact, this shows that dimloc(µP , x) = α for µQ-almost all x ∈ Xϑ by Proposi-
tion 4.5. Thus fµP

(α) ≥ dimH µQ = τ ∗µP
(α), as required.

The result for α = αmin (resp. α = αmax) follows similarly by taking a degen-
erate probability vector Q assigning equal value to the realisations of ϑ(a) with
maximal (resp. minimal) probabilities given by P , and zero otherwise. The corre-
sponding non-degenerate sub-substitution is also compatible and recognisable, so
the same arguments yield the corresponding bounds. □

5. EXAMPLES, COUNTEREXAMPLES AND APPLICATIONS

5.1. Failure of bounds for negative q without recognisability. In the following
two examples, we show the results in Theorem A do not extend in general to give
an upper bound for the Lq-spectrum in terms of the inflation word Lq-spectrum, for
q < 0. In Example 5.1, we construct a class of frequency measures on the full-shift
on two letters for which the Lq-spectrum and inflation word analogue differ in the
q < 0 case. The random substitutions that give rise to these frequency measures
are not compatible, but in Example 5.2 we present a compatible analogue.

In contrast, in Example 5.3, we give an example showing that the results for
q < 0 can hold for all q ∈ R under the identical set condition with identical
production probabilities.

Example 5.1. Let p1 < p2 ∈ (0, 1) such that p1 + 3p2 = 1 and let ϑP be the random
substitution defined by

ϑP : a, b 7→


ab with probability p1,

ba with probability p2,

aa with probability p2,

bb with probability p2.
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We show for all sufficiently small q < 0 that τµP
(q) > Tϑ,P (q). Observe that, for

each k ∈ N, the word vk = (ab)2
k ∈ ϑk+1(a) ∩ ϑk+1(b) occurs with probability

P[ϑk+1
P (a) = vk] = P[ϑk+1

P (b) = vk] = p2
k

1 .

Clearly, this is the minimal possible probability with which a level-k inflation
word can occur, so it follows that

lim
q→−∞

Tϑ,P (q)

q
= −1

2
log p1.

Now, let u ∈ L2k+1

ϑ be arbitrary. We show that µP ([u]) ≥ p2
k−1

1 p2
k−1

2 /2. Since
ϑ(a) = ϑ(b) with identical production probabilities, it follows by Lemma 2.12 that
for any choice of w ∈ L2k+1

ϑ

µP ([u]) =
1

2

(
P[ϑP (w)[1,2k+1] = u] + [ϑP (w)[2,2k+1+1] = u]

)
.

If P[ϑP (w)[1,2k+1] = u] ≥ p2
k−1

1 p2
k−1

2 , then we are done, otherwise at least half of the
letters in v must be sent to ab. But then for u to appear from the second letter, at least
half of the letters in v must be sent to ba or bb, so P[ϑP (w)[2,2k+1+1] = u] ≥ p2

k−1

1 p2
k−1

2 .
Hence, µP ([u]) ≥ p2

k−1

1 p2
k−1

2 /2 so, in particular,

min
u∈L2k+1

ϑ

µP ([u]) ≥
1

2
p2

k−1

1 p2
k−1

2 .

It follows that

lim
q→−∞

τµP
(q)

q
≤ −1

4
(log p1 + log p2) < −1

2
log p1 = lim

q→−∞

Tϑ,P (q)

q
.

By a slight modification of this example, we can construct a compatible random
substitution for which the two notions do not coincide.

Example 5.2. Let p1 < p2 ∈ (0, 1) such that p1 + 3p2 = 1 and let ϑP be the random
substitution defined by

ϑP : a, b 7→


ab ba with probability p1,

ba ab with probability p2,

ab ab with probability p2,

ba ba with probability p2.

By similar arguments to the previous example,

lim
q→−∞

τµP
(q)

q
≤ −1

8
(log p1 + log p2) < −1

4
log p1 = lim

q→−∞

Tϑ,P (q)

q
.

The random substitution in Example 5.2 satisfies the identical set condition
with identical production probabilities. These conditions are also satisfied by the
following example. However, here the Lq-spectrum and inflation word analogue
coincide for all q ∈ R by a direct argument.
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Example 5.3. We show that for the random substitution

ϑP : a, b 7→

{
ab with probability p,

ba with probability 1− p,

the limit defining τµP
(q) exists for all q ∈ R, and

τµP
(q) = Tϑ,P (q) =

1

λ
φ1(q) = −1

2
log(pq + (1− p)q).

Corollary B gives the result for all q > 0 and that τµP
(q) ≥ Tϑ,P (q) = 2−1φ1(q) for

all q < 0, so it only remains to verify for all q < 0 that

τµP
(q) ≤ Tϑ,P (q).

Since ϑ(v1) = ϑ(v2) for all v1, v2 ∈ Lϑ, it follows from Lemma 2.12 that for all
u ∈ L2m

ϑ and any v ∈ Lm+1
ϑ ,

µP ([u]) =
1

2

(
P[ϑ(v)[1,1+2m−1] = u] + P[ϑ(v)[2,2+2m−1] = u]

)
.

Let V2m = {(ab)m, (ba)m}. If u ∈ L2m
ϑ \ V2m, then u must contain bb as a subword.

This uniquely determines the cutting points in any inflation word decomposition,
so there exists a unique v and j(u) ∈ {1, 2} such that u ∈ ϑ(v)[j(u),2m+j(u)−1]. It
follows that∑

u∈L2m
ϑ

µP ([u])
q ≥

∑
u∈L2m

ϑ \V2m

(
1

2
P[ϑP (v)[j(u),j(u)+2m−1] = u]

)q

≥ 1

2q

∑
u∈L2m

ϑ \V2m

P[ϑP (v2 · · · vm) = u[3−j(u),2−j(u)+2m]]
q.

Now, for every w ∈ ϑ(v2 · · · vm) there is a u such that w = u[3−j(u),2−j(u)+2m]. Hence,∑
u∈L2m

ϑ

µP ([u])
q ≥ 1

2q

∑
w∈ϑ(v2···vm)

P[ϑP (v2 · · · vm) = w]q

and the conclusion follows by similar arguments to those used in the proofs of the
main theorems.

5.2. Examples with recognisability. We first provide examples of random substi-
tutions for which the multifractal formalism holds.

Example 5.4. Let p > 0 and let ϑp be the random substitution defined by

ϑp :

a 7→

{
abb with probability p,

bab with probability 1− p,

b 7→ aa.
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τ1/5
τ2/5

(A) Lq-spectra

τ∗
1/5

τ∗
2/5

(B) Multifractal spectra

FIGURE 1. Lq-spectra and multifractal spectra corresponding to a recog-
nisable substitution for p ∈ {1/5, 2/5}.

Certainly ϑp is compatible, with corresponding primitive substitution matrix

M =

(
1 2
2 0

)
,

Perron–Frobenius eigenvalue (1+
√
17)/2, and right Perron–Frobenius eigenvector(

−3 +
√
17

2
,
5−

√
17

2

)
.

One can verify that ϑ is recognisable since every occurrence of aa intersects an
image of b and the adjacent letters then determine the cutting points. Thus by
Theorem D, for all q ∈ R

τµp(q) = Tϑ,P (q) =
1

λ− 1
φ1(q) = −7−

√
17

8
log(pq + (1− p)q)

and measure µp satisfies the multifractal formalism. The asymptotes have slopes
−(7 −

√
17) log(p)/8 and −(7 −

√
17) log(1 − p)/8. A plot of the Lq-spectra and

multifractal spectra for two choices of p is given in Figure 1.
For p = 1/2, the Lq-spectrum of the measure µp is a straight line and the

multifractal spectrum is equal to htop(Xϑ) at htop(Xϑ), and −∞ otherwise.

In the following example, we highlight that the multifractal spectrum need not
have value 0 at the endpoints.

Example 5.5. Let ϑp be the random substitution defined by

ϑp :


a 7→


abb with probability p,

bab with probability p,

bba with probability 1− 2p,

b 7→ aaa.

Similarly to Example 5.4, ϑp is primitive, compatible and recognisable. Hence,
Theorem D gives that

τµp(q) = − 3

10
log(2pq + (1− 2p)q).
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τ1/5
τ2/5

(A) Lq-spectra

τ∗
1/5

τ∗
2/5

(B) Multifractal spectra

FIGURE 2. Lq-spectra and multifractal spectra corresponding to a recog-
nisable substitution for p ∈ {1/5, 2/5}.

The asymptotes have slopes −3 log(p)/10 and −3 log(1− 2p)/10. For p = 1/5 and
p = 2/5, the Lq-spectrum and multifractal spectrum of µp are plotted in Figure 2.
Here, we highlight that the endpoints of the multifractal spectrum need not be
equal to zero.

Example 5.6. Consider the random substitution on the three-letter alphabet A =
{a, b, c} defined by

ϑP :



a 7→

{
bbc with probability p1,

cbb with probability 1− p1,

b 7→

{
cca with probability p2,

acc with probability 1− p2,

c 7→

{
aab with probability p3,

baa with probability 1− p3,

for p1, p2, and p3 in (0, 1). It is immediate that this substitution is compatible,
and by considering the occurrences of 2, 3, or 4 letter repetitions, we see that
this substitution is also recognisable. Moreover, the hypotheses of [GMR+23,
Theorem 4.8] are satisfied since ϑ is constant length and #ϑ(a) = #ϑ(b) = #ϑ(c).
In particular, the corresponding subshift Xϑ is intrinsically ergodic with unique
measure of maximal entropy given by taking p1 = p2 = p3 = 1/2.

It follows from [GMR+23, Lemma 4.12] that the measure of maximal entropy
is not a Gibbs measure with respect to the zero potential, so the system does not
satisfy the usual specification property. For this choice of uniform probabilities,
the Lq-spectrum is a straight line passing through the point (1, 0) with slope
htop(Xϑ) = log(2)/2. More generally, the Lq-spectrum is given for all q ∈ R by the
formula

τµP
(q) = −1

6

(
log
(
(1− p1)

q + pq1
)
+ log

(
(1− p2)

q + pq2
)
+ log

(
(1− p3)

q + pq3
))

and the multifractal formalism is satisfied.
For an example on an alphabet of size two, one may consider the random
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substitution

ϑP :


a 7→

{
ababbb with probability p1,

abbabb with probability 1− p1,

b 7→

{
baabaa with probability p2,

babaaa with probability 1− p2,

for p1 and p2 in (0, 1). The analysis of this example proceeds identically as above.

5.3. Examples without recognisability. Finally, we consider the two most com-
monly studied examples of random substitutions: random period doubling and
random Fibonacci.

Example 5.7. Given p ∈ (0, 1), let ϑp be the random period doubling substitution
defined by

ϑp :

a 7→

{
ab with probability p,

ba with probability 1− p,

b 7→ aa,

and let µp denote the corresponding frequency measure. The substitution ϑp

satisfies the disjoint set condition, so for all q ∈ [0,∞),

τµp(q) = −2

3
log(pq + (1− p)q).

The asymptote as q → ∞ has slope −2 log(max{p, 1− p})/3, which gives a sharp
lower bound on the local dimensions of µp.

If p = 1/2, then the measure µp has linear Lq-spectrum for q ≥ 0 given by

τµ1/2
(q) =

2

3
(q − 1) log 2.

Since the substitution satisfies the disjoint set condition but is not recognisable,
our results do not give the Lq-spectrum for q < 0.

Example 5.8. The random Fibonacci substitution ϑp defined by

ϑp :

a 7→

{
ab with probability p,

ba with probability 1− p,

b 7→ a,

does not satisfy either the identical set condition nor the disjoint set condition.
Hence, we cannot apply Corollary B to obtain a closed-form formula for τµp(q).
However, we can still apply Theorem A to obtain a sequence of lower and upper
bounds. The case k = 1 gives the following bounds for all 0 < q < 1:

− 1

ϕ2
log(pq + (1− p)q) =

1

ϕ
φ1(q) ≤ τµp(q) ≤

1

ϕ− 1
φ1(q) = − log(pq + (1− p)q),
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−1/2

1/2

1

3/2

2

1 2 3 4 5 6

φk/(λ
k − 1)

φk/λ
k

FIGURE 3. Upper and lower bounds on the Lq-spectrum of the fre-
quency measure corresponding to the random Fibonacci substitution
with p = 1/2, for k = 3, 5, 7. The darker shades correspond to higher
values of k.

where ϕ denotes the golden ratio. Reversing the inequalities yields the correspond-
ing bounds for q > 1. Of course, by considering larger k we can obtain better
bounds. For p = 1/2, some bounds given by Theorem A are shown in Figure 3.
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