

Exercise 3

DUE 12:15PM ON THURSDAY, JANUARY 29

The questions.

1. (3 pt.) Let (X, d) be a compact metric space.
 - Fix an IFS $\{f_i\}_{i \in \mathcal{I}}$ and a probability vector $\mathbf{p} \in \mathcal{P}(\mathcal{I})$. Let $z \in X$ be fixed. Using the contraction mapping principle, prove that

$$\mu_{\mathbf{p}} = \lim_{n \rightarrow \infty} \sum_{\mathbf{i} \in \mathcal{I}^n} p_{\mathbf{i}} \delta_{f_{\mathbf{i}}(z)}$$

in the dual Lipschitz metric.

- (ii) Let $F \subset X$ be non-empty and compact. Prove that $\text{diam } F = \text{diam } \mathcal{P}(F)$.
- (iii) Let $Q \subset X$ be a fixed compact set. For each $\mathbf{i} \in \mathcal{I}^*$, let $\nu_{\mathbf{i}}$ be a Borel probability measure with $\text{supp } \nu_{\mathbf{i}} \subset f_{\mathbf{i}}(Q)$. Prove that

$$\mu_{\mathbf{p}} = \lim_{n \rightarrow \infty} \sum_{\mathbf{i} \in \mathcal{I}^n} p_{\mathbf{i}} \nu_{\mathbf{i}}$$

in the dual Lipschitz metric.

2. (4 pt.) Let $\{f_i\}_{i \in \mathcal{I}}$ be a self-similar IFS in \mathbb{R} with attractor K . Let \mathbf{p} be a probability vector with $p_i > 0$ for all $i \in \mathcal{I}$. Suppose moreover that K is not a singleton. Also, assume that there is a common contraction $r = r_i$ for all $i \in \mathcal{I}$ (*the conclusion is still true without this last assumption, but it simplifies notation a decent amount*).

- (i) Show that there exists an $m \in \mathbb{N}$ and a $\delta > 0$ such that for all $z \in \mathbb{R}$, there is an $\mathbf{i} \in \mathcal{I}^m$ such that

$$B(z, \delta) \cap f_{\mathbf{i}}(K) = \emptyset.$$

- (ii) Prove that there is a number $\xi \in (0, 1)$ so that for any $n \in \mathbb{N}$ and $z \in \mathbb{R}$,

$$\mu_{\mathbf{p}}(B(z, \delta r^{(n-1)m})) \leq \xi^n.$$

- (iii) Conclude that there is a number $t > 0$ and a constant $C > 0$ so that $\mu_{\mathbf{p}}(A) \leq C(\text{diam } A)^t$ for all Borel sets A .

3. (3 pt.) Let μ be a finite compactly supported Borel measure on \mathbb{R}^d and let $s \in \mathbb{R}$. Prove that $\{x \in \mathbb{R}^d : \underline{\dim}_{\text{loc}}(\mu, x) < s\}$ is a Borel set.

4. (2 pt. bonus) Consider the self-similar IFS $\{f_1, f_2, f_3\}$ in \mathbb{R} where $f_1(x) = x/3$, $f_2(x) = x/3 + 2/9$, and $f_3(x) = x/3 + 2/3$. Set $\mathcal{I} = \{1, 2, 3\}$.

(i) Show for all $n \in \mathbb{N} \cup \{0\}$ and $\mathbf{i}, \mathbf{j} \in \mathcal{I}^n$ that either $|f_{\mathbf{i}}(0) - f_{\mathbf{j}}(0)| = 0$ or

$$|f_{\mathbf{i}}(0) - f_{\mathbf{j}}(0)| \geq 3^{-(n+1)}.$$

(ii) Determine a non-negative integer matrix A and a non-negative integer vector v for which there is a constant $c \geq 1$ so that

$$c^{-1} \|A^n v\|_1 \leq \#\{f_{\mathbf{i}} : \mathbf{i} \in \mathcal{I}^n\} \leq c \|A^n v\|_1.$$

Note: depending on how you think about this counting problem, there are multiple natural choices for A . Probably, the matrix should be either 2×2 or 3×3 .

(iii) Conclude that

$$\dim_H K = \frac{\log((3 + \sqrt{5})/2)}{\log 3}.$$

Hint: Use Gelfand's formula.