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1. INTRODUCTION AND PRELIMINARIES

Perhaps one of the oldest branches of mathematics is the study of geometry. What
is geometry? The Merriam–Webster dictionary [Mer22] defines geometry as

a branch of mathematics that deals with the measurement, properties, and
relationships of points, lines, angles, surfaces, and solids;

and more broadly,

the study of properties of given elements that remain invariant under specified
transformations.

A classical setting for the study of geometry is the geometry of smooth objects, such
as circles, lines, or graphs of smooth functions.

In contrast, classical examples of sets such as the middle-third Cantor set or the
graph of the Weierstrass function are very far from being smooth. Such sets were
originally considered to be aberrations that had to be handled in the development
of (rigorous) mathematical analysis. However, especially in the past century, it has
become clear that such irregular sets are surprisingly abundant.

The goal of these notes is to provide an introduction to the study of irregular
sets, with a particular focus on those sets on the structured end of the spectrum.
Particular attention will be given to sets exhibiting self-similarity. Self-similarity
generally describes the phenomenon in which microscopic parts of a set have a
similar structure to the set as a whole. We will also see that self-similarity ties in
naturally with invariance under some smooth or continuous action. In particular,
we will be able to draw on tools from ergodic theory and probability theory.

1.1. Context of the course. These notes are prepared for a course with about 24
lecture hours in total, and therefore the scope is limited heavily by time constraints.
In particular, a vast amount of interesting material concerning fractal geometry
and dynamical systems is omitted. I have attempted to go very deep into a
particular topic (regularity of self-similar sets) to give a flavour for the subject.
This depth has come at the substantial cost of having a quite narrow focus. If you
are interested in a more comprehensive introduction, I would recommended the
books [BSS23; BP17; Fal85; Fal97; Mat95].

1.2. Notational conventions. The natural numbers N begin at the index 1. Some-
times, I may use N0 to denote the natural numbers starting at 0. Usually, we will
work in R, or in Rd for some d ∈ N.

In the worst case scenario we will work in a complete separable metric space
(X, d). For x ∈ X and r > 0, B(x, r) denotes the closed ball of radius r centred at x.
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The open ball will be denoted by B◦(x, r), but will be rarely used. The distance
between a point and a set is denoted by

d(x,E) := inf{d(x, y) : y ∈ E}.

The diameter of a set E ⊂ X is the maximal distance between any pair of points:

diamE = sup{d(x, y) : x, y ∈ E}.

Note that for all x ∈ E, it holds that E ⊂ B(x, diamE). For r > 0, the open
r-neighbourhood of a set E is the set

E(r) = {x ∈ X : d(x,E) < r}.

Note that E(r) is a union of open balls, and therefore open.

1.3. Measures in metric spaces. The goal of this section is to provide an overview
of the measure-theoretic concepts that will be important in this course, but it does
assume you’ve already seen a good amount of abstract measure theory. You can
find more detailed exposition of the concepts here in any good measure theory
book. I personally recommend Folland’s book [Fol99].

1.3.1. General measures. Let X be an arbitrary set.

Definition 1.1. A function µ : 2X → [0,∞] is called an outer measure if µ∗(∅) = 0
and for arbitrary subsets A, {Bn}∞n=1 of X with A ⊂

⋃∞
n=1Bn,

µ(A) ≤
∞∑
n=1

µ(Bn).

There is essentially one method we will use in this course to define outer measures.
The idea is to define an outer measure by specifying the value on a special family
of sets E , and then computing the ‘subadditive hull’: the maximal subadditive set
function (i.e., an outer measure) which is bounded above by the values on E . For
example, when constructing Lebesgue measure on R, the family E might be the
set of all closed intervals.

Lemma 1.2. Let X be an arbitrary set and let E ⊂ 2X be such that ∅ ∈ E and x ∈ E .
Then, let ϕ : E → [0,∞] be any function such that ϕ(∅) = 0. For A ⊂ X , define

µ(A) = inf

{∑
i

ϕ(Ei) : Ei ∈ E and A ⊂
⋃
i

ϕ(Ei)

}
.

Then µ is an outer measure on X .

Proof. Note that µ is well-defined since X ∈ E and satisfies µ(∅) = 0 since
ϕ(∅) = 0.
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It remains to show that µ is subadditive. Let A ⊂ X and {Bn}∞n=1 be such that
A ⊂

⋃∞
n=1Bn. Let ε > 0 be arbitrary. For each n ∈ N, get {En,j}j ⊂ E such that

such that Bn ⊂
⋃

j En,j and∑
j

ϕ(Ej) ≤ µ(Bn) + ε2−n.

Then A ⊂
⋃

n,j En,j , and

µ(A) ≤
∞∑
n=1

∑
j

ϕ(En,j) ≤ ε+
∞∑
n=1

µ(Bn).

Since ε > 0 was arbitrary, the proof is complete. □

Remark 1.3. In fact, µ is the unique maximal outer measure on X satisfying
µ(Ei) ≤ ϕ(Ei) for all Ei ∈ E .

If M is a σ-algebra on X , we say that the outer measure µ restricted to the sets
in M is a measure if it is countably additive on disjoint sets in M.

Every space X supports a trivial Σ-algebra on which an outer measure is a
proper measure: namely, the σ-algebra Σ = {∅, X}. However, this σ-algebra
is not particularly useful since we cannot actually measure any interesting sets.
Conversely, it turns in many cases because of set-theoretic obstructions, it is
unreasonable to hope that Σ can consist of every subset of X .

If X comes with some additional structure, then we would like the σ-algebra
to interact nicely with this additional structure. If X is a topological space, at the
very least, we would like the σ-algebra to contain the open (equivalently, closed)
sets. Such a σ-algebra is called a Borel σ-algebra.

1.3.2. Carathéodory’s criterion. A powerful abstract criterion for proving that outer
measures are measures on large σ-algebras is Carathéodory’s criterion. If µ is an
outer measure on X , we say that a set F ⊂ X is µ-measurable if

µ(E) = µ(E ∩ F ) + µ(E ∩ F c) for all E ⊂ X.

Since µ is an outer measure, the inequality µ(E) ≤ µ(E ∩ F ) + µ(E ∩ F c), so we
only have to prove the converse inequality. The converse inequality is also trivial
if µ(E) = ∞, so we need only worry about sets E with finite µ-outer measure.

Theorem 1.4. If µ is an outer measure on X , then the collection M of µ-measurable sets
is a σ-algebra and the restriction of µ to M is a (complete) measure.

The proof is not too long but a bit outside the scope of this overview. You can find
the details in [Fol99, §1.11].

1.3.3. Metric outer measures. Now suppose in addition that (X, d) is a complete
metric space. For sets E,F ⊂ X , we write

d(E,F ) = inf{d(x, y) : x ∈ E, y ∈ F}.
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An important class of measures in metric spaces is the following.

Definition 1.5. An outer measure µ on X is a metric outer measure if for all sets E,
F with d(E,F ) > 0,

µ(E ∪ F ) = µ(E) ∪ µ(F ).

This property is very useful because, when combined with Carathéodory’s crite-
rion, it provides an easily checkable condition for a general outer measure to be a
bona fide Borel measure.

Proposition 1.6. If µ is a metric outer measure on X , then every Borel subset of X is
µ-measurable.

Proof. By Theorem 1.4, it suffices to show that every closed set is µ-measurable.
Let F be an arbitrary closed set. Recall that we must show for E ⊂ X with
µ(E) < ∞ that

µ(E) ≥ µ(E ∩ F ) + µ(E \ F ).

Let An = {x ∈ E \ F : d(x, F ) ≥ n−1} denote those points which are far from
F . Since F is closed, E \ F =

⋃∞
n=1An. Also, d(F,An) ≥ n−1. Therefore, µ(E) ≥

µ(E ∩ F ) + µ(An).
To complete the proof, it suffices to show that µ(E\F ) = limn→∞ µ(An). TODO:

write details □

1.4. Constructing measures by repeated subdivision. A particularly useful
method for constructing measures, especially in this course, is by repeated subdivi-
sion.

Begin with a compact metric space (X, d) and let {Jn}∞n=1 be a sequence of finite
index sets. Let

J =
∞⋃
k=0

k∏
n=1

J1 × · · · Jk.

Now, suppose we are given a hierarchy of non-empty compact subsets of Xi

indexed by sequences i = (i1, . . . , ik) where k ∈ N0 and in ∈ Jn for all n (in other
words, i ∈ J1 × · · · × Jk), satisfying the following conditions:

(i) X∅ = X ,
(ii) Xij ⊂ Xi for all k ∈ N0, i ∈ J1 × · · · × Jk, and j ∈ Jk+1.

(iii) lim
k→∞

sup
i∈J1×···×Jk

diamXi = 0.

Note that the sets Xij need not be disjoint. Write

Xk =
⋃

i∈J1×···×Jk

Xi.

Note that X = X0 ⊃ X1 ⊃ X2 ⊃ · · · is a nested sequence of non-empty compact
sets, so K =

⋂∞
k=0Xk is itself a non-empty compact set.

Next, consider an assignment µ, initially defined on the sets Xi, with the
following additional properties:
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(a) µ(X∅) < ∞.
(b) µ(Xi) =

∑
j∈Jk+1

µ(Xij) for all k ∈ N0 and i ∈ J1 × · · · × Jk.
(c) lim

k→∞
sup

i∈J1×···×Jk

µ(Xi) = 0.

In words, the second condition says that all of the mass of µ is divided equally
among the “children” of Xi. The third condition is just a non-degeneracy condition
analogous to the condition on diamXi.

In order to extend µ to a genuine measure, we first extend it as an outer measure
by the rule

µ(E) = inf

{∑
i∈E

µ(Xi) : E ∩K ⊂
⋃
i∈E

Xi

}
.

It is not too difficult to verify that µ(Xi) is the pre-assigned value for i ∈ J .
Moreover, since the measures µ(Xi) and diameters diamXi converge to 0, one can
additionally check that µ is a metric outer measure. Therefore µ defines a Borel
measure on the metric space X .

Example 1.7. This gives a way to define Lebesgue measure on the interval X =
[0, 1]. Let J1 = J2 = · · · = {0, 1} so that {Xi : i ∈ J1 × · · · × Jk} is the set of dyadic
intervals in [0, 1] of width 2−k. Take µ(Xi) = 2−k for i ∈ {0, 1}k, and one can check
that various conditions are satisfied.

1.5. The dual Lipschitz metric. In this section, we introduce an important metric
on the space of measures on a compact metric space.

Definition 1.8. Let (X, d) be a compact metric space and let P(X) denote the space
of Borel probability measures on X . The dual Lipschitz metric is defined by

dP(µ, ν) = sup

{∣∣∣∣∫
X

g(x) dµ(x)−
∫
X

g(x) dν(x)

∣∣∣∣ : g : X → R is 1-Lipschitz
}
.

Note that if g is a Lipschitz function and c ∈ R, then g− c is Lipschitz function and
moreover∣∣∣∣∫

X

g(x) dµ(x)−
∫
X

g(x) dν(x)

∣∣∣∣ = ∣∣∣∣∫
X

(g(x)− c) dµ(x)−
∫
X

(g(x)− c) dν(x)

∣∣∣∣ .
In particular, it suffices to restrict our attention to those Lipschitz functions with
g(x0) = 0, for some fixed x0 ∈ X . Since X is compact, this allows us to assume
that ∥g∥∞ ≤ diamX .

Remark 1.9. One way to understand the dual Lipschitz metric is as the dual space
of the space of continuous linear functionals on the space C(X) of continuous
functions from X to R, equipped with the supremum norm. Given a measure
µ ∈ P(X), it acts on C(X) by integration:

µ(f) =

∫
X

f dµ.
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The corresponding operator norm on P(X) is the induced by the norm on C(X).

∥µ∥ = sup {|µ(f)| : f ∈ C(X), ∥f∥∞ ≤ 1} .

The weak* topology is the topology of pointwise convergence: a sequence (µn)
converges to µ if and only if

∫
X
f dµn converges to

∫
X
f dµ for all f ∈ C(X).

Moreover, one can prove that the Lipschitz functions on X are dense in C(X). For
example, this is a consequence of the Stone–Weierstrass theorem.

The main fact concerning the dual Lipschitz metric is the following.

Proposition 1.10. Let (X, d) be a compact metric space. Then (P(X), dP) is a compact
metric space.

Proof. Perhaps I will include more details later, but here is a sketch for now.
The fact that dP is symmetric, has dP(µ, µ) = 0, and satisfies the triangle

inequality, is not too difficult. Now assume that dP(µ, ν) = 0. This means that∫
f dµ =

∫
f dν for all Lipschitz functions f . Moreover, the set of Lipschitz

functions is dense in C(X) by the Stone–Weierstrass theorem. Therefore
∫
f dµ =∫

f dν for all continuous functions f . Therefore by the Riesz Representation
Theorem, µ− ν must be the zero measure, so µ = ν.

Next, to show completeness, let (µn) be a Cauchy sequence in P(X). By
definition of dP , µn(f) is a Cauchy sequence for any 1-Lipschitz function f , and
therefore converges to some number λ(f) ∈ R. Since f 7→ µn(f) is a positive linear
functional, λ is a positive linear functional. Moreover, λ is bounded since

|λ(f)| = lim
n→∞

∣∣∣∣∫
X

f dµn

∣∣∣∣ ≤ lim
n→∞

∫
X

∥f∥∞ dµn] ≤ ∥f∥∞ .

Since the Lipschitz functions are dense in C(X), therefore λ extends to a bounded
linear functional on C(X). By the Riesz representation theorem, λ arises as inte-
gration against a measure:

λ(f) =

∫
X

f(x) dµ(x).

Taking f to be the constant function, we see that µ is a probability measure. The
Cauchy property of the sequence (µn) then implies that µn converges to µ.

Finally, total boundedness can be proven by considering special families of
finitely supported measures. Let ε > 0 be arbitrary and let {B◦(xj, ε)}mj=1 be a
finite cover for X . We first modify this cover to consist only of disjoint sets: let
E1 = B◦(x1, ε) and for n > 1 let

En = B◦(xn, ε) \
n−1⋃
j=1

B◦(xj, ε).

By construction, En ⊂ B◦(xn, ε). For notational reasons, it is convenient to assume
that xn ∈ En for all n = 1, . . . ,m (this can be ensured with slightly more judicious
construction of the original finite cover).
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Now, given a general probability measure µ, we can define a finitely supported
measure

ν =
m∑

n=1

δxnµ(En).

Here, δxn is the Dirac mass on the point xn. Since the sets En are disjoint, ν is a
probability measure. Moreover, if g is 1-Lipschitz, since En ⊂ B(xn, ε),∣∣∣∣∫ g dµ−

∫
g dν

∣∣∣∣ ≤ m∑
n=1

µ(En)ε = ε.

Therefore dP(µ, ν) ≤ ε.
It remains to approximate the space of measures supported on {x1, . . . , xm}

by a finite set of measures. This set of measures is essentially contained in the
m-fold product [0, 1]m. Therefore one may take, for example, the set of all measures
assigning mass ij/N to xj for ij ∈ Z with 0 ≤ ij ≤ N , where N is chosen sufficiently
large depending on m and ε. □

2. SELF-SIMILARITY AND DIMENSION THEORY

We begin these notes by rigorously introducing the notion of a self-similar set,
and with it the basic aspects of dimension theory (of sets) that will accompany us
throughout these notes.

The middle-thirds Cantor set is almost always the first example that one sees
of a fractal set. It will accompany us throughout this section as a very basic, yet
fundamental example.

Example 2.1. The most concrete construction of the middle-thirds Cantor set is as
an inductive construction using a sequence of nested intervals.

We will construct C =
⋂∞

n=0 Cn where Cn is a disjoint union of 2n compact
intervals each of width 3−n.

Begin with C0 = [0, 1]. Now, suppose we have constructed Cn =
⋃2n

i=1[ai, bi] for
pairwise disjoint compact intervals [ai, bi] with bi − ai = 3−n. We subdivide this
interval into two sub-intervals of length 3n−1, the first of which has left-endpoint
ai, and the second of which has right-endpoint bi. Specifically, these two intervals
are given by

[ai, ai + 3−n+1] and [bi − 3−n+1, bi].

We then set

Cn+1 =
2n⋃
i=1

[ai, ai + 3−n+1] ∪ [bi − 3−n+1, bi].

Explicitly:
• C0 = [0, 1],
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• C1 = [0, 1/3] ∪ [1/3, 1],
• C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1],
• etc.

Note that the sets Cn are nested: C0 ⊃ C1 ⊃ C2 ⊃ · · · . Therefore C =
⋂∞

n=0Cn is a
legitimate non-empty compact set.

We can already see a few basic properties. By a diagonalization argument
(indeed, the one attributed to Cantor himself!), the Cantor set is uncountable.
However, it also has length 0: this is since C ⊂ Cn and Cn has length (2/3)n.

2.1. Iterated function systems and attractors. Hutchinson introduced an elegant
general framework for self-similar sets in [Hut81], which we now introduce.

Definition 2.2. Let (X, d) be a metric space. We say that a function f : X → X is a
contraction map if there is a number λ ∈ [0, 1) so that for all x, y ∈ X ,

d(f(x), f(y)) ≤ λd(x, y).

We call the number λ the contraction ratio of f .
We moreover say that f is a contractive similarity if λ > 0 and the above inequal-

ity is an equality.

Contraction maps are just those Lipschitz maps which move all pairs of points
closer together.

Recall that any contraction map has a unique fixed point.

Proposition 2.3 (Banach contraction mapping). Let (X, d) be a non-empty complete
metric space and suppose f : X → X is a contraction map. Then there is a unique x∗ ∈ X
such that f(x∗) = x∗, and moreover x∗ = limn→∞ fn(x)1 for any starting point x ∈ X .

If you do not recall the proof, it is a good exercise to prove it. Here is a brief sketch.
The sequence of n-fold compositions fn(x) is Cauchy (here, we use contraction),
and so has a limit, say x∗. By continuity of f , we certainly see that x∗ is a fixed
point. Finally, there can be no other fixed points for if y were a fixed point, then
d(x∗, y) = d(f(x∗), f(y)) ≤ λd(x∗, y) which can only happen if y = x∗.

Contraction maps act naturally on sets as well. Recall the Hausdorff distance on
sets.

Definition 2.4. Let A,B ⊂ X be non-empty sets. The Hausdorff distance between
A and B is defined as

dH(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

Here, d(x,E) := infy∈E d(x, y) is the distance between the point x and the set E.

If A and B have dH(A,B) < r, then the open r-neighbourhood of A contains B,
and the r-neighbourhood of B contains A. In fact, it is not too much more difficult
to show that the Hausdorff distance is the smallest such value of r for which this
is occurs.

1Superscripts will always denote n-fold composition, and never differentiation.
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We will be primarily interested in compact sets. Here, the theory is particularly
elegant.

More importantly, if X is itself a complete metric space, then K(X) is also
complete.

Theorem 2.5 (Blaschke Selection). Let (X, d) be a metric space and let K(X) denote
the set of all non-empty compact subsets of X . Then (K(X), dH) is a metric space.
Moreover:

(i) If X is complete, then (K(X), dH) is complete.
(ii) If X is totally bounded, then (K(X), dH) is totally bounded.

In particular, if X is compact, then K(X) is compact.

Proof. First, let’s check that dH actually defines a metric. That dH(A,A) = 0 and
dH(A,B) = dH(B,A) is immediate from the definition. Compactness implies that if
dH(A,B) = 0, then in fact A = B. To see the triangle inequality, let A,B,C be non-
empty and compact. Using the triangle inequality in X , we observe that A ⊂ B(r1)

and B ⊂ C(r2), then A ⊂ C(r1+r2). Now if dH(A,B) = s, dH(B,C) = t, and ε > 0,
then A ⊂ B(s+ε) and B ⊂ C(t+ε) so A ⊂ C(s+t+2ε). The other inclusion is analogous,
so dH(A,C) ≤ s+t+2ε. Since ε > 0 was arbitrary, dH(A,C) ≤ dH(A,B)+dH(B,C).

Next, assuming that X is complete, we prove that K(X) is complete. Let
(An)

∞
n=1 be a Cauchy sequence of compact sets.

We first reduce to the case that the sets An are nested. Define

Kn =
∞⋃
k=n

Ak.

Observe that limn→∞ dH(An, Kn) = 0. Certainly An ⊂ Kn. The other inequality in
the definition of the Hausdorff distance follows since An is itself Cauchy: for all
ε > 0, there exists an N ∈ N so that for all N ≤ n ≤ k, Ak ⊂ A

(ε)
n , and therefore

Kn ⊂ A
(ε)
n .

Now, let us check that the sets Kn are compact. Since the sets Kn are closed and
nested, it suffices to show that K1 is totally bounded. Let ε > 0 be arbitrary. Let
N be sufficiently large so that dH(AN , Ak) < ε/2 for all k ≥ N . Then, consider the
family of balls {B◦(x, ε/2) : x ∈ AN}. This is an open cover for AN , and therefore
has a finite sub-cover {B◦(xj), ε/2)}mj=1 by compactness of AN . Moreover, since
U := {B◦(xj), ε)}mj=1 is a cover for A(ε/2)

N , it follows that U is also a cover for Ak for
all k ≥ N , by choice of N . Therefore, KN can be covered by finitely many balls
of radius ε. But K1 = A1 ∪ · · · ∪ AN−1 ∪KN is a union of Kn with finitely many
compact sets, and therefore can also be covered by finitely many balls. Since ε > 0
was arbitrary, it follows that K1 is totally bounded.

We now have a nested sequence of compact sets (Kn)
∞
n=1. Let K =

⋂∞
n=1Kn,

which is itself non-empty and compact. It remains to see that limn→∞ dH(Kn, K) =
0 in the Hausdorff metric. Suppose for contradiction that there is a ε > 0 and a
subsequence (nk)

∞
k=1 such that

Ek := Knk
\K(ε) ̸= ∅.
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Since the sets Knk
are compact and nested, the sets Ek are also compact and nested.

Therefore, there exists a point x ∈ Ek for all k ∈ N. Moreover, by definition of Ek,
d(x,K) ≥ ε. But x ∈ Knk

for all k ∈ N and the sets Knk
are nested, so in fact x ∈ K.

This is a contradiction.
In particular, we conclude that Kn ⊂ K(ε) for all n sufficiently large. Since

K ⊂ Kn for all n, we conclude that limn→∞ dH(Kn, K) = 0 as required.
Finally, assuming that X is totally bounded, we show that K(X) is totally

bounded. Let ε > 0 be arbitrary. Since (X, d) is totally bounded, there exists
a finite cover {B◦(xj, ε)}mj=1 for X . Let U be the set of all non-empty subsets of
{x1, . . . , xm}. Certainly U ⊂ K(X).

Now, give K ∈ K(X), let A ⊂ {x1, . . . , xm} be given by

A = {xj : B
◦(xj, ε) ∩K ̸= ∅}.

Note that A is non-empty by definition K ⊂ A(ε). Conversely, since d(x,K) < ε
for any x ∈ A, A ⊂ K(ε). Therefore dH(A,K) < ε. Since this holds for any compact
set K and ε > 0 was arbitrary, we conclude that (K(X), dH) is totally bounded. □

One can check that contraction maps also act as contractions on the space K(X).
However, the “limiting” theory is still not too interesting: for a compact set K ⊂ X ,
limn→∞ fn(K) = {x∗}, where x∗ is the unique fixed point of f .

Instead of considering a single contraction map, we will instead consider finite
families of maps.

Definition 2.6. A contracting iterated function system (or IFS for short) on a non-
empty complete metric space (X, d) is a collection of maps (fi)i∈I , where I is a
non-empty finite index set, such that each fi is a contraction map on X .

An IFS Φ = {fi}i∈I no longer acts on X naturally (since single points, in general,
map to many points). However, the action on K(X) generalizes correctly when
acting on subsets of X . In particular, if K ⊂ X is compact, then

Φ(K) :=
⋃
i∈I

fi(K).

is a finite union of compact sets, and therefore still compact.
Hutchinson’s observation is that the action of Φ is again a contraction.

Theorem 2.7. Let (X, d) be a complete metric space and let Φ = {fi}i∈I be an IFS.
Suppose fi has contraction ri. Then Φ: K(X) → K(X) is a contraction with contraction
ratio maxi∈I ri.

Proof. Let A,B ⊂ X be arbitrary non-empty compact sets with dH(A,B) = t.
Let i ∈ I be arbitrary. We first observe that dH(fi(A), fi(B)) ≤ ri · t. Indeed,

suppose x ∈ fi(A) and write x = fi(a). By compactness, get b ∈ B such that
d(a, b) = d(a,B). Then

d(x, fi(B)) ≤ d(x, fi(b)) = d(fi(a), fi(b)) ≤ rid(a, b) = rid(a,B) ≤ rit.

The inequality with A and B swapped holds by the symmetric argument.



12 ALEX RUTAR

In particular,

sup
x∈Φ(A)

d(x,Φ(B)) = max
i∈I

sup
x∈fi(A)

d(x,Φ(B)) ≤ max
i∈I

ri · t.

Again, the inequality holds with A and B swapped by the symmetric argument.
This completes the proof of the claim. □

Rephrasing the conclusion of this theorem, we obtain the following key corollary.

Corollary 2.8. Let (X, d) be a non-empty complete metric space and let {fi}i∈I be an
IFS. Then there exists a unique non-empty compact set K ⊂ X such that

K =
⋃
i∈I

fi(K).

This unique non-empty invariant compact set K is called the attractor of the IFS
{fi}i∈I .

Example 2.9. Let us return again to the Cantor set example. Recall the notation
from Theorem 2.1. We can realize the middle-thirds Cantor set as the attractor of
an IFS.

Fix the index set I = {1, 2} and maps f1(x) = x/3 and f2(x) = x/3 = 2/3.
Observe that f([0, 1]) = [0, 1/3] and f2([0, 1]) = [2/3, 1]. In other words, Φ(C0) =
C1.

In fact, we will see that Φ(Cn) = Cn+1. With our current notation, it is a bit hard
to understand what is going on, so let us introduce some better book-keeping to
have a better idea of what is happening.

Instead of speaking of the intervals [ai, bi], let us instead speak of sequences
i ∈ In. Given a sequence i = (i1, . . . , in) ∈ In, we write fi = fi1 ◦ · · · ◦ fin . Then,
we write Ii = fi1 ◦ · · · ◦ fin([0, 1]).

A short computation shows that if Ii = [a, b], then Ii1 = [a, a + 3−(n+1)] and
Ii2 = [b−3−(n+1), b]. (One way to think about right-hand composition is to imagine
Ii ∼= [0, 1], and then Iij ∼= Ij , so the “placement relative to the parent” is the same
as the “absolute placement relative to the original interval”.) In particular, this
shows for n ≥ 0 that

Cn =
⋃
i∈In

Ii.

Now the action of Φ is totally transparent:

Φ(Cn) =
⋃
i∈In

f1 ◦ fi([0, 1]) ∪ f2 ◦ fi([0, 1])

=
⋃

j∈In+1

Ij = Cn+1.

This in particular shows that limn→∞ Cn = C in the Hausdorff metric (fill in the
details!). Recalling the contraction mapping principle, this means that C must be
the attractor of the IFS Φ.
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2.2. Hausdorff dimension. Informally, one would hope that the dimension of
a geometric object gives some meaningful notion of “size”, but one which does
not concern itself too precisely with the exact appearance of the object itself but
rather some more general, global property. For linear objects, such as real vector
spaces, a notion of dimension arises naturally from the algebraic structure as the
‘number of coordinates’ required to uniquely identify a point in space. Smooth
objects, which are locally linear, then inherit such a notion of dimension ‘for free’.

However, the sets that we have constructed in the previous section are very far
from being smooth. The goal in this section is to introduce some of the fundamental
ways to define dimension in a purely geometric way.

One way to think about dimension is through scaling. It is quite natural to ask
for the area of a (mathematically ideal) sheet of paper. But asking for the volume
or the length of a sheet of paper doesn’t make sense: the sheet has has zero volume,
and ‘infinite’ length. So, a sheet of paper is 2-dimensional in the sense the natural
measurement scale is 2-dimensional.

How can we define concepts like ‘length’ or ‘area’ in a universal way? The
principle of scaling gives one answer: a 2-dimensional object, like a disc, has area
which scales by the square of the diameter; whereas a 3-dimensional object, like a
solid sphere, has volume which scales by the cube of the diameter. So, if we know
nothing else, if we are given a general set E and we are told that it is s-dimensional,
then we would expect that scaling it by some factor λ would in turn scale its ‘size’
by a factor of λs.

In order to choose the ideal exponent s, we need to determine the ‘size’ (like
length, or area, or volume) of some abstract geometric object from an s-dimensional
reference point. This is the role of Hausdorff measure.

Definition 2.10. Let s ≥ 0. Then the s-dimensional Hausdorff (outer) measure of a set
E is defined by

Hs(E) := lim
δ→0

Hs
δ(E)

where, for 0 < δ ≤ ∞,

Hs
δ(E) = inf

{
∞∑
j=1

diam(Uj)
s : E ⊂

∞⋃
j=1

Uj and diamUj ≤ δ

}
.

We call any family of sets {Uj} with diamUj ≤ δ and E ⊂
⋃∞

j=1 Uj a δ-cover for E.

The limit limδ→0Hs
δ(E) exists by monotonicity, though it may of course take value

+∞.
Note that Hs

δ for δ > 0 is very far from being a measure. On the other hand, the
outer measure Hs is in fact a proper Borel measure.

Proposition 2.11. For s ≥ 0, Hs is a metric outer measure. In particular, every Borel set
is Hs-measurable.

Proof. Suppose d(E,F ) = ε > 0 and let 0 < δ < ε. Then if {Uj} is any cover
of E ∪ F using sets of diameter at most δ, each Uj must intersect at most one of
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the two sets E and F . Therefore, we can partition {Uj} into two parts based on
whether Uj ∩ E = ∅ or Uj ∩ F = ∅. In particular,∑

j

(diamUj)
s ≥ Hs

δ(E) +Hs
δ(F ).

Since {Uj} was an arbitrary δ-cover, it follows that Hs
δ(E ∪ F ) ≥ Hs

δ(E) +Hs
δ(F ).

Taking the limit as δ goes to 0, combined with the fact that Hs is an outer measure
(and therefore subadditive) yields the claim. □

Let us briefly note a few important properties of Hausdorff measure.

Lemma 2.12. Suppose f : X → Y is a λ-Lipschitz for some λ > 0. Let E ⊂ X be
arbitrary. Then Hs(f(E)) ≤ λsHs(E).

In particular, if f : X → X is a similarity map, then Hs(f(E)) = λsHs(E).

Proof. Observe that if f is λ-Lipschitz and U is non-empty, then diam f(U) ≤
λ diamU .

Now for the proof. If Hs(E) = ∞, there is nothing to prove. Otherwise,
suppose {Ui}∞i=1 is an arbitrary λ−1δ-cover for E. Then {f(Ui)}∞i=1 is a δ-cover for
f(E) and satisfies

∞∑
i=1

(diam f(Ui))
s ≤ λs

∞∑
i=1

(diamUi)
s.

But {Ui}∞i=1 was an arbitrary λ−1δ-cover, so

Hs
δ(f(E)) ≤ Hs

λ−1δ(E).

Taking the limit as δ goes to zero completes the proof. □

In the special case that X = Rd, we see that Hausdorff s-measure is translation
invariant. However, it is very much not σ-finite, except in the special case that
s = d.

Hausdorff measure gives us a way to measure the size of some set from an
s-dimensional vantage point. Hausdorff dimension is the exponent s from which
that vantage point is the most natural.

Definition 2.13. The Hausdorff dimension of a set E is defined equivalently by

dimH E = inf{s ≥ 0 : Hs(E) = 0} = sup{s ≥ 0 : Hs(E) = ∞}.

Before we continue, let us briefly justify why such an exponent exists.

Lemma 2.14. Suppose 0 ≤ s < t.
(i) If Hs(E) < ∞, then Ht(E) = 0.

(ii) If Ht(E) > 0, then Hs(E) = ∞.
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Proof. If Hs(E) < ∞, then for all δ > 0, there exists a δ-cover {Uj} for E with∑∞
j=1(diamUj)

s ≤ Hs(E) + 1. Therefore

H(E) ≤
∞∑
j=1

(diamUj)
t ≤ δt−s

∞∑
j=1

(diamUj)
s ≤ δt−s(Hs(E) + 1).

Since t > s, δt−s converges to 0 so Ht(E) = 0.
The second statement is just the contrapositive of the first. □

Considering again the example of a sheet of paper, the exponent 1 is too small
(since the sheet has infinite length) whereas the exponent 3 is too large (since the
sheet has zero volume). Coming up with visual intuition for fractional exponents
is more difficult, but mathematically it works fine.

An interesting feature of Hausdorff dimension is that it is defined as an infi-
mum over all possible covers. To give an upper bound on dimension, it suffices to
come up with some explicit family of good covers.

Example 2.15. Recall the middle-thirds Cantor set C. At level n, there are 2n

construction intervals each of diameter 3−n. Therefore,

Hs(C) ≤ 2n3−ns.

Taking s = log 2/ log 3, it follows that Hs(C) ≤ 1, and therefore dimH C ≤ log 2
log 3

.

In contrast, proving a lower bound over all covers can be somewhat more difficult.
To obtain lower bounds, an essential approach is to use measures which are
well-distributed over the set E. We introduce this method in the next section.

2.3. The mass distribution principle and Frostman’s lemma. In the next section,
we prove an important converse to the mass distribution principle called Frostman’s
lemma.

In order to state Frostman’s lemma, it is more natural to use Hausdorff content
instead of Hausdorff measure. Hausdorff content is the set function Hs

∞(E), and
it is in a sense the opposite of Hausdorff s-measure in that there are no size
constraints on the allowed covers of E. Hausdorff content is an outer measure,
but unlike Hausdorff measure, it is very far from being a measure. In general,
Hs

∞(E) ≤ Hs(E), but it can be much smaller: for example, Hs
∞(E) ≤ (diamE)s <

∞.
However, it can often be used in place of Hausdorff measure, because of the

following lemma.

Lemma 2.16. Let s ≥ 0. Then Hs(E) = 0 if and only if Hs
∞(E) = 0. In particular,

dimHE = inf{s ≥ 0 : Hs
∞(E) = 0}.

Proof. Of course, Hs
∞(E) ≤ Hs(E) for all sets E. Thus, suppose E has Hs

∞(E) =
0. Let δ > 0 be arbitrary. By definition of Hausdorff content, get a cover {Ui}∞i=1

for E such that
∑∞

i=1(diamUi)
s < δs. In particular, diamUi < δ for all i. Therefore,
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{Ui}∞i=1 is in fact a δ-cover for E, and therefore Hs
δ(E) < δs as well. Since δ > 0 was

arbitrary, it follows that Hs(E) = 0. □

We now begin with the following lower bound for Hausdorff content.

Lemma 2.17 (Mass distribution principle). Let E ⊂ Rd be compact and suppose µ
is a finite Borel measure with suppµ ⊂ E such that µ(A) ≤ c(diamA)s for all bounded
A ⊂ Rd. Then

Hs
∞(E) ≥ µ(E) · c−1.

In particular, if µ is not the zero measure, then dimH E ≥ s.

Proof. Let {Uj}∞j=1 be an arbitrary cover of E, and let xj ∈ Uj for each j. Then

µ(E) ≤
∞∑
j=1

µ(Uj) ≤
∞∑
j=1

c(diamUj)
s.

Since {Uj} was arbitrary, it follows that Hs(E) ≥ c−1. □

An explanation in words for the mass distribution principle is as follows: since
the measure cannot concentrate too much on any fixed ball B(x, r), the only way
is for the measure to be supported on many balls, i.e. for its support to have large
dimension.

Conversely, it turns out that such measures must always exist. This result is
due to Otto Frostman [Fro35].

Lemma 2.18 (Frostman’s lemma). For all d ∈ N there exists a constant cd > 0 such
that the following holds. Let E ⊂ [0, 1]d be compact and let α = Hs

∞(E). Then there
exists a Borel measure µ with suppµ ⊂ E and µ(E) ≥ α such that µ(A) ≤ cd(diamA)s

for all bounded A ⊂ Rd.

Proof. We will only need two features of the Hausdorff content Hs
∞(E): firstly,

that it is an outer measure, and secondly that it satisfies Hs
∞(E) ≤ (diamE)s for

all sets E.
The spirit of the proof is essentially to inductively normalize the Hausdorff

content on the set E so that it becomes a measure. We construct the measure using
the method of subdivision from §1.4, using the dyadic cubes as our indices.

Translating E if necessary, we may assume that E is contained in a single
dyadic cube [0, 2j]d for some j ∈ Z. Call this cube Q0.

We inductively assign weights µ(Q) to the dyadic cubes contain in Q0 with the
additional requirement that µ(Q) ≤ Hs

∞(Q ∩ E).
Assign Q0 mass µ(Q0) = Hs

∞(E). Now, suppose Q is an arbitrary dyadic cube
to which we have assigned mass µ(Q) ≤ Hs

∞(Q ∩ E). Recall that Q has 2d dyadic
sub-cubes at the next level. Call them {P1, . . . , P2d}. Then, define µ(Pj) in such a
way that:

(i)
∑2d

j=1 µ(Pj) = µ(Q)
(ii) µ(Pj) ≤ Hs

∞(Pj ∩ E).
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Such a choice is always possible since Hausdorff content is sub-additive, so

µ(Q) ≤ Hs
∞(Q ∩ E) ≤

2d∑
j=1

Hs
∞(Pj ∩ E).

It is not too difficult to check that that this inductive assignment of mass
satisfies the requirements for the method of subdivision. The resulting measure
µ has, by definition, µ(E) = α. Moreover, if a dyadic cube has Q ∩ E = ∅, then
µ(Q) ≤ Hs

∞(Q ∩ E) = 0. Therefore suppµ ⊂ E.
Finally, if Q is any dyadic cube, by construction of µ, µ(Q) ≤ (diamQ)s. There

are two cases: if Q ⊂ Q0, then µ(Q) ≤ Hs
∞(Q∩E) ≤ (diamQ)s; and if Q0 ⊂ Q then

the inequality follows from the inequality for Q = Q0 by monotonicity. But any set
A with diameter satisfying 2j ≤ diamA < 2j+1 for some j ∈ Z intersects cd dyadic
cubes at level j. Therefore, µ(A) ≤ cd(diamQ)s, completing the proof. □

Remark 2.19. This lemma is started for compact sets, but it is also true for general
Borel sets (or even analytic sets). The difficulty is primarily of set-theoretic nature;
the details can be found for example in [BP17, Appendix B].

2.4. Box dimension. The Hausdorff dimension is defined using covers of all
possible sizes. In contrast to the Hausdorff dimension, the definition of box
dimension is comparatively much simpler and only takes into account balls of a
fixed radius.

For a totally bounded set E and r > 0, we let Nr(E) denote the smallest number
m for which there exist points {x1, . . . , xm} ⊂ E such that E ⊂

⋃m
i=1 B(xi, r).

The upper box dimension is the limit

dimB E = lim sup
r→0

logNr(E)

log(1/r)
.

The lower box dimension, denoted by dimBE, is defined similarly albeit with a limit
infimum in place of the limit supremum. When dimBE = dimBE, we say that the
box dimension exists and write dimBE for the common value.

One way to think of the box dimension is as a modification of the Hausdorff
dimension to only permit covers of a fixed radius. In particular, we have the
following lemma:

Lemma 2.20. Let E ⊂ Rd be a bounded set. Then

dimHE ≤ dimBE ≤ dimBE.

Proof. The most interesting inequality is to show that dimH E ≤ dimBE. Let
s = dimB E, let ε > 0 and δ > 0 be arbitrary. It suffices to show that Hs+ε

δ (E) < ∞,
independently of δ.

By definition of the upper box dimension, get 0 < r < δ and a family of balls
{B(xi, r)}mi=1 which covers E and with m ≤ r−(s+ε). Therefore,

Hs+ε
δ (E) ≤

m∑
i=1

(2r)s+ε ≤ 2s+ε < ∞
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as required. □

2.5. Invariant measures for iterated function systems. We have now seen that
the Hausdorff dimension of a general set can always be bounded below by a
general measure. However, for the special sets which we are most interested in,
we hope that the measures may take a particularly nice form.

Definition 2.21. A weighted IFS is an IFS {fi}i∈I combined with a family of weights
p = {pi}i∈I with the property that pi ≥ 0 and

∑
i∈I pi = 1. Such weights are called

probability vectors, and we let P = P(I) denote the set of all probability vectors on
I.

Recall that every IFS has an associated attractor K satisfying K =
⋃

i∈I fi(K).
We now show that every weighted IFS has an associated invariant measure µp

satisfying, for Borel sets E,

µp(E) =
∑
i∈I

piµp(f
−1
i (E)).

The general strategy of the proof is analogous to the existence of the attractor K:
we will show that a weighted IFS acts as a contraction map on the space P(X) of
probability measures on the metric space X . We use the dual Lipschitz metric on
P(X), which we recall was introduced in §1.5.

Theorem 2.22. Let {fi}i∈I be an IFS and p a set of weights. Then there exists a unique
Borel probability measure µp satisfying

µp(E) =
∑
i∈I

piµp(f
−1
i (E)).

In particular, suppµp ⊂ K.

Proof. For each i, let fi have contraction ratio ri.
Define a map Ψ: P(X) → P(X) by the rule

Ψ(µ)(A) =
∑
i∈I

piµ(f
−1
i (A)).

Unpacking definitions, observe for measurable functions g : X → R that∫
g dΨ(µ) =

∑
i∈I

pi

∫
(g ◦ fi) dµ.

For notational compactness, let L denote the 1-Lipschitz functions from X to R.
Note the following key observation: if g is 1-Lipschitz, then r−1

i (g ◦ fi) is also
1-Lipschitz. Then to see that Ψ is a contraction map,

dP(Ψ(µ),Ψ(ν)) = sup

{∣∣∣∣∫
X

g dΨ(µ)−
∫
X

g dΨ(ν)

∣∣∣∣ : g ∈ L
}
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= sup

{∣∣∣∣∣∑
i∈I

pi

∫
X

(g ◦ fi) dµ−
∫
X

(g ◦ fi) dν

∣∣∣∣∣ : g ∈ L

}

≤
∑
i∈I

pi sup

{∣∣∣∣∣∑
i∈I

∫
X

(g ◦ fi) dµ−
∫
X

(g ◦ fi) dν

∣∣∣∣∣ : g ∈ L

}

≤
∑
i∈I

pi sup

{
ri

∣∣∣∣∣∑
i∈I

∫
X

r−1
i (g ◦ fi) dµ−

∫
X

r−1
i (g ◦ fi) dν

∣∣∣∣∣ : g ∈ L

}

≤
∑
i∈I

piri sup

{
ri

∣∣∣∣∣∑
i∈I

∫
X

h dµ−
∫
X

h dν

∣∣∣∣∣ : h ∈ L

}
≤ max

i∈I
ridP(µ, ν).

The result therefore follows by the Banach contraction mapping principle.
To see that suppµp ⊂ K, observe that

suppµp ⊂
⋃
i∈I

fi(suppµp).

Therefore by uniqueness of the attractor, K ∪ suppµp = K, so suppµp ⊂ K as
required. □

In general, the measures of the sets fi(K) for i = (i1, . . . , in) ∈ I∗ satisfy the
following bound:

µp(fi(K)) ≥ pi where pi = pi1 · · · pin .

However, since the images fi(K) may overlap, the actual mass could be substan-
tially larger. If the images are disjoint, then this cannot happen. This assumption
is particularly important, and has a name:

Definition 2.23. We say that the IFS {fi}i∈I satisfies the strong separation condition
if the attractor K satisfies fi(K) ∩ fj(K) = ∅ for all i ̸= j.

Let’s prove the previous assertions.

Lemma 2.24. Let {fi}i∈I be an IFS with weights (pi)i∈I . Then for all i ∈ I∗, µp(fi) ≥
pi. Suppose moreover that the strong separation condition holds. Then µp(fi) = pi for all
i ∈ I∗.

Proof. We prove both claims at the same time by induction. The base case is
immediate: µp(K) = 1. Then, for general i ∈ I∗ \ {∅}, applying the self-similarity
relationship,

µp(fi(K)) =
∑
j∈I

pjµp(f
−1
j (fi(K))).

If i = jk, then f−1
j (fi(K)) = fk(K) so

pjµp(f
−1
j (fi(K))) = pjµp(fk(K)).
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By induction, µp(fk(K)) ≥ pk, with equality under the strong separation condition.
Since the remaining terms in the summation are non-negative, this completes the
proof of the general claim.

For the strong separation condition claim, we must prove that the remaining
terms are zero. Therefore suppose j is such that i = ik where i ̸= j. Since
fi(K) ∩ fj(K) = ∅ and fi(K) ⊂ K,

f−1
j (fi(K)) ∩K = ∅

so µp(f
−1
j (fi(K))) = 0. □

2.6. Dimensions of self-similar sets. Finally, we specialize our discussion of
dimension to the case of self-similar sets.

There is a natural candidate for the dimension of the attractor of a self-similar
IFS, called the similarity dimension. It is the exponent s ≥ 0 for which∑

i∈I

rsi = 1.

Such an exponent s is uniquely defined since the function t 7→
∑

i∈I r
t
i is continu-

ous, strictly decreasing with limit 0, and takes value #I ≥ 1 at t = 0. This number
is always an upper bound for the dimension.

Lemma 2.25. Let {fi}i∈I be a self-similar IFS with attractor K and let s denote the
similarity dimension. Then Hs(K) ≤ (diamK)s < ∞. In particular, dimH K ≤ s.

Proof. Iterating the self-similarity relationship,

K =
⋃
i∈In

fi(K).

Moreover, since fi is a similarity map with similarity ratio ri, diam fi(K) =
ri · diamK. Since ri converges to 0 as n diverges to infinity, it follows that

Hs(K) ≤
∑
i∈In

(diamK · rsi) = (diamK)s ·

(∑
i∈I

rsi

)n

= (diamK)s

as claimed. □

The core idea when working with self-similar sets is that the sets fi(K) give a
natural collection of sets to form good covers. However, this upper bound is not
sharp in general—the issue, essentially, is that the sets fi(K) need not be disjoint.

If we can guarantee that the sets fi(K) are always disjoint, it turns out that
the above inequality is an equality. Recall the definition of the strong separation
condition from the previous section, which states that fi(K) ∩ fj(K) = ∅ for all
i ̸= j in I.

Assuming the strong separation condition, we will prove that the Hausdorff
dimension of K is exactly the similarity dimension. Since (in most cases) the
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easiest way to lower bound Hausdorff dimension is the mass distribution principle
(Lemma 2.17), we wish to construct a measure µ supported on K with the property
that µ(A) ≤ C(diamA)s for all bounded Borel sets A.

How can we construct the measure µ? Let us optimistically hope that µ = µp is
actually an invariant measure for the IFS, and we will choose p judiciously. If µp is
going to be s-Frostman, at the very least, it should be s-Frostman on the sets fi(K)
for i ∈ I∗.

Recall Lemma 2.24, which states under the strong separation condition that
µp(fi(K)) = pi. On the other hand, recall that diam fi(K) = ri diamK. Therefore,
we would like the probability vector p to be chosen so that pi = rsi. This will be
the case if pi = rsi for all i ∈ I. But the similarity dimension s is chosen precisely
so that

∑
i∈I r

s
i = 1, so this a probability vector exactly when s is the similarity

dimension.
The only missing piece is a way to convert statements about the sets fi(K) to

statements about general sets. We complete the details in the below proof.

Theorem 2.26. Let {fi}i∈I be a self-similar IFS in R, where fi(x) = rix+ ti. Denote the
attractor by K and the similarity dimension by s. If {fi}i∈I satisfies the strong separation
condition, then 0 < Hs(K) < ∞ so dimHK = s.

Proof. We already saw that Lemma 2.25 that Hs(K) < ∞. For the lower
bound, consider the measure µp where p = (rsi )i∈I , which is a probability vector
since s is the similarity dimension. A direct computation gives, for i ∈ I∗, that
µp(fi(K)) = rsi.

Now, let A be a general Borel set with diamA = r. The key geometric observa-
tion is as follows: A intersects a bounded number the sets fi(K) where ri ≈ r. To
make this precise, we first define a stopping-time. For r ∈ (0, 1), let

I(r) = {i ∈ I∗ \ {∅} : ri ≤ r < ri−}.

Here, if i = (i1, . . . , in) is not the empty word, then i− = (i1, . . . , in−1). Observe
that

K =
⋃

i∈I(r)

fi(K).

Therefore, since suppµp ⊂ K, we may bound

µp(A) =
∑
i∈I(r)

µp(A ∩ fi(K))

≤
∑
i∈I(r)

fi(K)∩A̸=∅

rsi

≤ r−s
min ·#{i ∈ I(r) : fi(K) ∩ A ̸= ∅} · rs.

Here, rmin = mini∈I ri.
To bound {i ∈ I(r) : fi(K) ∩ A ̸= ∅}, we must use the strong separation

condition. Since the sets fi(K) are disjoint, there exists a 0 < ε < 1 so that the
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ε-neighbourhoods fi(K(ε)) are disjoint as well. Let α = K(ε) denote the Lebesgue
measure.

If fi(K)∩A ̸= ∅, then fi(K
(ε)) is contained in the (diamK+1)·r-neighbourhood

of A. Moreover,

m(fi(K
(ε))) = riα ≥ rmin · r · α.

On the other hand, the (diamK+1) · r-neighbourhood of A has Lebesgue measure
at most 2 · r · (diamK + 1). Since the sets fi(K(ε)) are disjoint, we conclude that

#{i ∈ I(r) : fi(K) ∩ A ̸= ∅} ≤ 2 · (diamK + 1)

rmin · α

as required. □

For general self-similar sets, the Hausdorff dimension need not be the same as the
similarity dimension since the sets fi(K) may overlap. On the other hand, even
though we do not know the exact value of the Hausdorff dimension, it turns out
that we can prove implicitly that the Hausdorff measure at the critical exponent is
always finite, and moreover that the Hausdorff and box dimensions coincide.

Theorem 2.27. Let E be a non-empty compact subset of Rd and let a > 0 and r0 > 0.
Suppose for every closed ball B(x, r) with x ∈ E and r < r0 there is a map g : E →
E ∩B(x, r) such that

(2.1) ar|x− y| ≤ |g(x)− g(y)| for all x, y ∈ E.

Then, writing s = dimH E, we have that Hs(E) ≤ 4sa−s < ∞ and dimBE = dimBE =
s.

Proof. Let Pr(E) denote the maximum number of disjoint closed balls of radius
r with centres in E. This is the same as Nr(E) up to a constant, so we may use it in
place of Nr(E) in the definition of the upper box dimension.

Suppose that there is an r < min{a−1, r0} such that Pr(E) > a−sr−s. By as-
sumption, there is a t > s so that m := Pr(E) > a−tr−t. By definition of Pr(E), get
distinct points {x1, . . . , xm} ⊂ E such that the balls B(xi, r) are pairwise disjoint.
For each i, by assumption, get a map gi : E → E ∩B(xi, r) satisfying (2.1).

Heuristically, {gi}mi=1 is a (not necessarily contracting) IFS with an attractor that
is a subset of E. We will find a lower bound for the dimension of the attractor, and
therefore for E, by constructing a measure by the method of subdivision and then
using the mass distribution principle.

Let δ = min{dist(B(xi, r), B(xj, r)) : 1 ≤ i < j ≤ m}. Let i, j ∈ {1, . . . ,m}k,
and let ℓ be minimal so that iℓ ̸= jℓ. Then applying (2.1),

(2.2) dist(gi(E), gj(E)) ≥ (ar)ℓ−1 dist(B(xiℓ , r), B(xjℓ , r) ≥ (ar)ℓδ.

Finally, let µ be the measure defined on E by the method of repeated subdi-
vision such that µ(gi(E)) = m−k for all i ∈ {1, . . . ,m}k. Let A be any Borel set in
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Rd with diamA < δ and let k be the unique integer such that (ar)k+1δ ≤ diamA <
(ar)kδ. By (2.2), A intersects at most one set gi(E) for i ∈ {1, . . . ,m}k. Therefore

µ(A) ≤ m−k < (ar)kt ≤ (δar)−t(diamA)t.

Thus by the mass distribution principle, dimHE ≥ t > s.
Therefore, we conclude that if dimH E = s, then Pr(E) ≤ a−sr−s for all r

sufficiently small. Thus dimB E ≤ s. Moreover, by doubling the radii of the balls,
E can be covered by Pr(E) balls of radius 2r, and therefore

Hs
4r(E) ≤ a−sr−s(4r)s

so Hs(E) ≤ 4sa−s. □

In particular, this result applies to self-similar sets. This result holds independently
of any separation assumptions! However, the result is purely implicit: we know
that the Hausdorff and box dimensions coincide, but we do not know what the
value is. On the other hand, knowing that dimBK = dimHK can be useful in
practice, for example when computing the Hausdorff dimension, since it is easier
to lower bound the upper box dimension.

Corollary 2.28. Let {fi}i∈I be a self-similar IFS with attractor K, and let s = dimHK.
Then Hs(K) < ∞ and s = dimB K = dimBK.

Proof. It suffices to verify that the assumptions for Theorem 2.27 are satisfied.
Take r0 = 1, set rmin = mini∈I ri, and let a = rmin(diamK)−1.

Now let x ∈ K and r ∈ (0, 1) be arbitrary. Since x ∈ K, there is an i ∈ I∗ such
that x ∈ fi(K) and

rrmin < ri(diamK) ≤ r.

In particular, fi(K) ⊂ B(x, r), and moreover since fi is a similarity map

|fi(x)− fi(y)| = ri|x− y| ≥ ar|x− y|

by the definition of a. □

2.7. Dimensions of measures. To conclude this section, we turn our attention to
the dimensions of measures.

Let us first recall the mass distribution principle and Frostman’s lemma. Given
a compact set E, Hs

∞(E) > 0 if and only if we could find an s-Frostman measure
with support contained in E. Stated with balls instead of with general sets, the
Frostman condition says that there is a constant C > 0 so that µ(B(x, r)) ≤ Crs for
all balls B(x, r).

However, if we are only interested in Hausdorff measure, then we need only
concern ourselves with balls B(x, r) of small radius. Secondly, if we are only
interested in Hausdorff dimension, then we would moreover expect that we can
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moreover stop worrying about the precise constant C > 0 and instead focus on
the infimum over exponents s for which a measure is s-Frostman.

It turns out that the best viewpoint from which to weaken these assumptions
is through the local dimension of a measure.

Definition 2.29. Let µ be finite Borel measure. Then the lower local dimension of µ
at x ∈ suppµ is given by

dimloc(µ, x) = lim inf
r→0

log µ(B(x, r))

log r
.

The upper local dimension is defined analogously, with a limit supremum in place
of the limit infimum. We say that the local dimension exists if the lower and upper
local dimensions coincide, and let dimloc(µ, x) denote the common value.

Using this, we can define analogues of dimension for measure.

Definition 2.30. The Hausdorff dimension of a finite Borel measure µ is

dimH µ = ess inf
x∼µ

dimloc(µ, x)

and the packing dimension of a finite Borel measure µ is

dimP µ = ess inf
x∼µ

dimloc(µ, x).

We also define the upper Hausdorff dimension and the upper packing dimension in an
analogous way:

dimH µ = ess sup
x∼µ

dimloc(µ, x),

dimP µ = ess sup
x∼µ

dimloc(µ, x).

We say that a measure µ is lower exact dimensional if dimH µ = dimH µ, upper
exact dimensional if dimP µ = dimP µ, and exact dimensional if dimH µ = dimH µ =
dimP µ = dimP µ.

Remark 2.31. Because of time constraints, we haven’t discussed packing measure
and packing dimension. I will just comment that packing dimension is very closely
related to the upper box dimension:

dimP E = inf{dimBEi : E ⊂
∞⋃
i=1

Ei}.

I have posted a link to some notes about packing dimension on the course webpage
if you want to read more.

The Hausdorff dimension is more closely related to the lower box dimension,
though it is not countably stabilized lower box dimension. So, upper bounding
packing dimension requires one to say something about all covers, whereas to
upper bound Hausdorff dimension one only must provide a sequence of arbitrarily
fine covers.
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Let us work our way up from Frostman-type bounds until we reach the local
dimension.

We begin with a density theorem.

Proposition 2.32. Let E ⊂ Rd be a Borel set, let µ be a finite Borel measure on Rd, and
let 0 < c < ∞.

(i) If lim supr→0 r
−sµ(B(x, r)) ≤ c for all x ∈ E, then Hs(E) ≥ c−1µ(E).

(ii) If lim supr→0 r
−sµ(B(x, r)) ≥ c for all x ∈ E, then Hs(E) ≤ c−110sµ(E).

Proof. The first part is a slightly refined version of the mass distribution princi-
ple. For each δ > 0, let

Eδ = {x ∈ E : µ(B(x, r)) < crs for all 0 < r ≤ δ}.

Let {Ui}i be a δ-cover for E, and therefore for Eδ. If there is an xi ∈ Ui ∩ Eδ, then

µ(Ui) ≤ µ(B(xi, diamUi)) ≤ c(diamUi)
s.

Therefore,

µ(Eδ) ≤
∑

Ui∩Eδ ̸=∅

µ(Ui) ≤ c
∑
i

(diamUi)
s.

Since {Ui}i was an arbitrary δ-cover, it follows that µ(Eδ) ≤ cHs
δ(E) ≤ cHs(E). But

the sets Eδ are increasing and E =
⋃

δ>0Eδ, so µ(E) = limδ→0 µ(Eδ) and therefore
µ(E) ≤ cHs(E).

For the second part, first suppose E is bounded and let

B = {B(x, r) : x ∈ E : 0 < r ≤ δ and µ(B(x, r)) > crs}.

By assumption, E ⊂
⋃

B∈B B. By Vitali’s covering lemma, there is a count-
able family of disjoint balls {B(xi, ri)}i such that E ⊂

⋃∞
i=1 B(xi, 5ri). Note that

diamB(xi, 5ri) ≤ 10δ, so

Hs
10δ(E) ≤

∑
i

(diamB(xi, 5ri))
s ≤

∑
i

(10ri)
s

≤ 10sc−1
∑
i

µ(B(xi, ri)) ≤ 10sc−1µ(Rd).

In the last step, we have used that the balls are disjoint. Taking δ → 0, we obtain
the desired conclusion.

If E were unbounded, then Hs(E) is the supremum of measures of bounded
subsets, so we may apply the argument in the case that E is bounded. □

We can rephrase this result in terms of local dimensions.

Corollary 2.33 (Billingsley’s lemma). Let E ⊂ Rd be a Borel set and let µ be a finite
Borel measure on Rd. Suppose µ(E) > 0. If

(2.3) s ≤ dimloc(µ, x) ≤ t

for all x ∈ E, then s ≤ dimH E ≤ t.
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Proof. Let ε > 0 be arbitrary. Then the inequalities in (2.3) equivalently yield,
for all x ∈ A, that

lim sup
r→0

r−(t+ε)µ(B(x, r)) ≥ 1,

lim sup
r→0

r−(s−ε)µ(B(x, r)) ≤ 1.

Therefore Proposition 2.32 implies that Ht+ε(E) < ∞ and Hs−ε(E) > 0. Since
ε > 0 was arbitrary, we conclude that s ≤ dimH E ≤ t. □

Remark 2.34. One way to think about why the lower local dimension is the correct
notion for Hausdorff dimension is essentially that the Hausdorff dimension asks
for covers at infinitely many scales, rather than all scales, which is precisely what
is meant by a limit infimum.

We can upgrade this density theorem to a conclusion using the dimension of
measures supported on E.

Corollary 2.35. Let E be a Borel set. Then

dimH E = sup{dimH µ : µ is a finite Borel measure with suppµ ⊂ E}.

Proof. First, suppose suppµ ⊂ E and let s = dimH µ. Let ε > 0. By definition
of the essential infimum, there is a subset F ⊂ suppµ with µ(F ) > 0 such that
dimloc(µ, x) ≥ s− ε/2 for all x ∈ F . In particular, for all x ∈ F ,

lim sup
r→0

r−(s−ε)µ(B(x, r)) ≤ 1.

Therefore Hs−ε(E) ≥ µ(F ) > 0 so dimH E ≥ s − ε. Since ε > 0 was arbitrary, the
lower bound follows.

That dimH E is attained as the dimension of a measure is an immediate conse-
quence of Frostman’s lemma (we only proved this in the case that E is compact,
but it is true for general Borel sets E). □

2.8. Dimensions of self-similar measures. To conclude this section, let us com-
pute the dimension of self-similar measures on a self-similar IFS satisfying the
strong separation condition.

We begin with some notation for probability vectors. Let I be a finite index set.
Then for p ∈ P(I), set

Ωp =
{
(in)

∞
n=1 ∈ IN : lim

n→∞

#{ℓ : iℓ = j for 1 ≤ ℓ ≤ n}
n

= pj for j ∈ I
}
.

In other words, this is the set of sequences with digits in I where the digit frequen-
cies exist and are given by the probability vector p.

Now, fix another probability vector w ∈ P . We define the cross entropy and
entropy respectively by

H(w,p) =
∑
i∈I

wi log(1/pi) and H(w) = H(w,w).
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Here, we write 0 log(1/0) = limp→0 p log(1/p) = 0.
Now, fix a self-similar IFS {fi}i∈I and an associated probability vector p. Let fi

have contraction ratio ri ∈ (0, 1). We define the Lyapunov exponent

χ(p) =
∑
i∈I

pi log(1/ri).

The Lyapunov exponent captures the asymptotic contraction rate at points typical
for the measure µw.

We will now determine the dimensions of self-similar measures. We first
observe the following reduction to balls which intersect precisely one image fi(K)
for i ∈ I∗. This will allow us to treat the µp-measures of balls in a purely symbolic
way.

Lemma 2.36. For all sufficiently small δ > 0 and for all p ∈ P with pi > 0 for all i ∈ I,
there is a constant c = c(p, δ) > 0 so that for all i ∈ I∗ and x ∈ fi(K),

c · pi ≤ µp

(
B(x, δ · ri)

)
≤ pi.

Proof. Since the IFS satisfies the strong separation condition, for all sufficiently
small δ > 0 the δ · ri-neighbourhood of fi(K) in K is again fi(K). Thus

µp

(
B(x, δ · ri)

)
≤ pi.

On the other hand, since δ > 0 is fixed, there is a uniform N ∈ N and a word
j ∈ IN so that

fi ◦ fj(K) ⊆ µp

(
B(x, diam(fi(K)) · δ)

)
.

Taking c = min{pj : j ∈ IN} gives the desired result. □

We also obtain a lemma which gives information about local dimensions in terms
of the digit frequencies of the symbolic representation. Here, for γ = (in)

∞
n=1 ∈ IN,

we write γ↿n = (i1, . . . , in) to denote the unique prefix of length n.

Lemma 2.37. Let w ∈ P(I) and let γ = (in)
∞
n=1 ∈ Ωw. Then

dimloc(µp, γ) =
H(w,p)

χ(w)
.

Proof. By Lemma 2.36, there is a δ > 0 and a c > 0 so that for any n ∈ N,

c · pγ↿n ≤ µ
(
B(π(γ), δ · rγ↿n)

)
≤ pγ↿n .

Thus

dimloc(µ, π(γ)) = lim
n→∞

log pγ↿n
log rγ↿n

= lim
n→∞

log
∏

i∈I p
nqi
i

log
∏

i∈I r
nqi
i

=
H(w,p)

χ(w)

from the definition of Ωw, as claimed. □
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In particular, we obtain following dimension formula for self-similar measures.

Proposition 2.38. Let {fi}i∈I be an IFS satisfying the strong separation condition and
let p,w ∈ P . Then for µw-a.e. x ∈ suppµw,

dimloc(µp, x) =
H(w,p)

χ(w)
.

In particular, µp is exact-dimensional with dimension

dimH µp =
H(p)

χ(p)
.

Proof. By Kolmogorov’s Strong Law of Large Numbers, wN(Ωw) = 1. Thus the
dimensional result follows from Lemma 2.37. □

3. ERGODIC THEORY INTERLUDE

In the previous section, when considering the dimension of self-similar measures,
we saw that the strong law of large numbers (which is a rather non-trivial result in
probability theory) played an important role.

The strong law of large numbers was useful because we were able to reduce
the study of a self-similar measure satisfying the strong separation condition
essentially to a study of the infinite product measure pN on the ‘symbol space’ IN.

We would like to be able to say meaningful things about general self-similar
measures, without assumptions on how the sets fi(K) are arranged geometrically
in space. In this case, such a symbolic reduction (at least, in the exact form that
way used) is not possible. A key tool for working with more general measures
will be (quite substantial) generalization of the strong law of large numbers called
the ergodic theorem.

The main goal of this section will be to prove Birkhoff’s ergodic theorem, which
is an analogue of the strong law of large numbers which essentially allows us to
replace independence with a weaker assumption called ergodicity.

3.1. Measure-preserving dynamics and ergodicity. The theory of dynamical
systems is about understanding the long-term behaviour of a map T : X → X
under iteration.

The space X is often referred to as the phase space and points x ∈ X refer to
possible states that a system might be in. The map T describes how the system
evolves in time. If the system is in state x at time 0, then it is in state T (x) at time
1, and in general T n(x) at time n.

The trajectory starting at a state x is called the (forward) orbit:

OT (x) = {x, T (x), T 2(x), T 3(x) . . .}.

There are many questions one might ask. Does a point x necessarily return
close to itself? If we fix a general set A, does the orbit of x visit A, and if so, how
often?
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Often, we are not interested in the behaviour for all values of x, but rather for
typical values. The fundamental setting is that of measure-preserving dynamics.

Definition 3.1. A measure preserving system is a tuple (X,B, µ, T ) where (X,B, µ)
is a probability space and T : X → X is a measurable and measure-preserving map:

T−1(A) ∈ B and µ(T−1(A)) = µ(A) for all A ∈ B.

Here are a few examples of measure-preserving systems.

1. Let X be a finite set with the σ-algebra of all subsets, let µ be normalized
counting measure, and let T : X → X be a bijection.

2. The identity map on any space is measure preserving.

3. The most important example for us is the following: as usual, let I be a finite
index set, and take X = IN as the set of all sequences, and equip it with the
product σ-algebra. We equip X with the shift map σ : X → X which deletes
the first element:

σ((in)
∞
n=1) = (in)

∞
n=2.

Let p ∈ P(I). An important family of sets is family of cylinder sets. Given a
finite sequence i = (i1, . . . , in) ∈ I∗, we define

[i] = {x ∈ IN : x↿n = i}.

In other words, [i] consists of the set of all infinite sequences which have i

as a prefix. Moreover, one can check that if [i] is a cylinder, then σ−1([i]) is a
finite union of cylinders with µp(σ

−1([i])) = µp([i]).

Since the family of sets {E : µ(σ−1(E)) = E} is a Dynkin class and the family
of cylinders is closed under finite intersection, it follows by the π-λ theorem
that pN is σ-invariant.

4. Another important example for us is as follows. Let K be the attractor
of an IFS {fi}i∈I satisfying the strong separation condition, with the addi-
tional property that the maps fi : K → K are bi-Lipschitz (and, in particular,
invertible). Then we may “reverse” iteration and define

T (x) = f−1
i (x) where x ∈ fi(K).

This is well-defined because of the strong separation condition, so there is
exactly one choice of a map fi for each x ∈ K.

The natural σ-algebra is analogous to the previous example: it is {fi(K) :
i ∈ I∗}. This σ-algebra is invariant for the measure µp.

5. A final example, which will not be important in this course but is an impor-
tant in other settings, is the circle rotation. Let X = S1 = [0, 1]/ ∼ where ∼



30 ALEX RUTAR

is the equivalence relation identifying 0 and 1. We equip X with Lebesgue
measure.

For α ∈ R, let Rα : X → X denote rotation by angle α: Rα(x) = x + α
(mod 1). Since Lebesgue measure is translation invariant, Rα preserves
Lebesgue measure with the usual Borel σ-algebra.

A fundamental property of a measure-preserving dynamical is recurrence.

Theorem 3.2 (Poincaré recurrence). Let A be a measurable set with µ(A) > 0. Then
there is an n ∈ N such that µ(A ∩ T−nA) > 0. In particular, µ-a.e. x ∈ A returns to A.

Proof. Consider the sets A, T−1A, T−2A, etc. Since T is measure-preserving,
they all have the same measure, so for an integer k > 1/µ(A), the measures of
the pairwise intersections cannot all be 0. Say, 0 ≤ i < j ≤ k are such that
µ(T−iA ∩ T−jA) > 0. But

T−iA ∩ T−jA = T−i(A ∩ T−(j−i)A)

so the first claim follows taking n = j − i.
For the second claim, set

E = {x ∈ A : T nx /∈ A for all n ∈ N} = A \
∞⋃
n=1

T−nA.

Then E ⊂ A so T−nE ∩ E = ∅ for n ∈ N by definition. Therefore by the first part,
µ(E) = 0. □

Of the invariant measures in a measure-preserving system, the most fundamental
ones are called ergodic measures.

Definition 3.3. Let (X,B, µ, T ) be a measure-preserving system. A measurable
set is T -invariant if T−1A = A. The system is ergodic if there are no non-trivial
invariant sets: that is, every invariant set has either measure 0 or 1.

One can check that the T -invariant sets form a sub-σ-algebra of T ⊂ B. In
particular, if A is invariant, then so is X \ A.

If A is invariant and µ(A) ∈ (0, 1), then we can split X = A ∪ (X \ A), and the
action T keeps elements of A within A, and elements of X \ A within X \ A.

In this sense, we can interpret ergodicity is an irreducibility condition: if a sys-
tem is ergodic, then there is exactly one such component. The ergodic decomposition
(which we may see later in these notes) describes a general procedure by which
one can perform an essentially unique decomposition into ergodic components.

Example 3.4. Let X be a finite set with normalized counting measure. Then the
system is ergodic precisely when X consists of exactly one orbit.

Definition 3.5. A function f : X → Y is T -invariant if f(Tx) = f(x) for all x ∈ X .

In words, the invariant functions are precisely the ones which are constant on
the orbits of T . The primary example is the indicator function 1A, where A is an
invariant set.
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Ergodicity is an important hypothesis, and we can verify it in a number of
ways.

Lemma 3.6. Let (X,B, µ, T ) be a measure-preserving system. The following are equiva-
lent.

(i) The system is ergodic.
(ii) If T−1A = A (mod µ) then µ(A) ∈ {0, 1}.

(iii) If Y is any measure space and f : X → Y is measurable and invariant, then f is
constant a.e.

(iv) If f ∈ L1 is invariant, then f is constant a.e.
(v) If f ∈ L1 and f ◦ T = f a.e. then f is constant a.e.

Proof. To see that (iv) implies (i), apply (iv) to the indicator function 1A where
A is an invariant set.

To see that (i) implies (iii), suppose for contradiction that f is invariant but
not constant a.e. This means there is a measurable set U in the range of f such
that 0 < µ(f−1U) < 1. But such a set f−1(U) is necessarily invariant since f is
invariant:

T−1(f−1U) = {x ∈ X : f(Tx) ∈ U} = {x ∈ X : f(x) ∈ U} = f−1(U).

This contradicts ergodicity of the system.
Essentially the same proof shows that (ii) and (v) are equivalent and that (i)

implies (iv). Moreover, it is immediate that (iii) implies (iv) and (v) implies (iv).
Therefore, it remains to show that (iii) implies (v). We will show that an L1

invariant function is equal almost everywhere to a genuine measurable invariant
function. Suppose f ∈ L1 and Tf = f a.e. Set

g = lim sup
n→∞

f(T nx).

Note that g is T -invariant since g(Tx) is the limit of the shifted sequence f(T n+1x).
So, it remains to show that f = g a.e.

Observe that if f(T nx) = f(x) for all n ≥ 0, then f(x) = g(x). Moreover,
this is true if f(T n+1x) = f(T nx) for all n ≥ 0. Another way to write this is that
T nx ∈ {x ∈ X : f(Tx) = f(x) for all n ≥ 0, or equivalently

x ∈
∞⋂
n=0

T−n
(
{x ∈ X : f(Tx) = f(x)}

)
.

But the set {x ∈ X : f(Tx) = f(x)} has measure 1 (by assumption) and T is
measure-preserving, so this is a countable intersection of measure 1 sets and
therefore has measure 1. □

Recall that non-ergodic systems can be decomposed into two parts which “do not
interact”. The next proposition formalizes the positive version of this: a system is
ergodic if and only if any two non-trivial components “interact”.

Proposition 3.7. Let (X,B, µ, T ) be a measure-preserving system. Then the following
are equivalent.
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(i) (X,B, µ, T ) is ergodic.
(ii) For any B ∈ B, if µ(B) > 0 then

µ

(
∞⋃

n=N

T−n(B)

)
= 1

for every N ∈ N0.
(iii) If A,B ∈ B have µ(A) > 0 and µ(B) > 0, then µ(A ∩ T−nB) > 0 for infinitely

many n.

Proof. First assume (i) holds and fix B ∈ B. Set B′ =
⋃∞

n=N T−n(B) and observe
that

T−1(B′) =
∞⋃

n=N

T−n−1(B) =
∞⋃

n=N+1

T−n(B) ⊂ B′.

But µ(T−1(B′)) = µ(B′), so B′ = T−1(B′) (mod µ). Since µ(B′) ≥ µ(B) > 0, this
means µ(B′) = 1 by Lemma 3.6.

Next, assume (ii). Given A,B ∈ B with positive measure, by (ii) for every
N ∈ N0 we have

µ
(
A ∩

∞⋃
n=N

T−n(B)
)
= µ(A).

In particular, µ(A ∩ T−n(B)) > 0 for some n ≥ N . Since N was arbitrary, this
conclusion holds for infinitely many n.

Finally, assume (iii). Suppose A is invariant and µ(A) > 0. Recall that B = X\A
is also invariant, so A ∩ T−n(B) = ∅ for all n ∈ N. This implies that µ(B) = 0, so
µ(A) = 1. □

3.2. The ergodic theorem in finite spaces. To motivate the ergodic theorem, let’s
begin with the special case that X is a finite set, T : X → X is a bijection, and µ is
normalized counting measure on X .

Suppose f : X → R is some function. We are concerned with the average
values of f along orbits. Namely, for N ∈ N0, we write

SNf(x) =
1

N

N−1∑
n=0

f(T nx).

We are concerned with the limiting behaviour of this average.
First consider the case that X = {x, Tx, T 2x, . . . , T k−1x} consists of a single

orbit and #X = k. Recall that this is the case that the dynamics are ergodic. Then
if N ∈ N0 is arbitrary, if we write N = ℓk + r for 0 ≤ r < k. Now, each point in X
appears exactly n times in the list (x, Tx, T 2x, . . . , T ℓk−1x). Thus we can write

N−1∑
n=0

f(T nx) = ℓ
∑
y∈X

f(y) +
ℓk+r−1∑
n=ℓk

f(T nx).
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As N diverges to infinity, ℓ/N converges to 1/k and the latter term satisfies the
bound

1

N

∣∣∣∣∣
ℓk+r−1∑
n=ℓk

f(T nx)

∣∣∣∣∣ ≤ k

N
∥f∥∞

N→∞−−−→ 0.

Therefore, for all x ∈ X ,

lim
N→∞

SNf(x) =
1

k

∑
y∈X

f(y)

is precisely the expectation of f .
If T is not a bijection, then we can decompose X =

⋃m
i=1 Xi where T : Xi → Xi

is a bijection. Applying the above computation to each part Xi, we conclude for
x ∈ X that

lim
N→∞

SNf(x) =


1

|X1|
∑

y∈X1
f(y) : x ∈ X1

...
1

|Xm|
∑

y∈Xm
f(y) : x ∈ Xm

The expression on the right has a particular name: it is the conditional expectation
of f on the σ-algebra T of T -invariant sets.

3.3. Conditional expectation. Before we continue with the statement of Birkhoff’s
ergodic theorem, let us first recall the notion of conditional expectation.

As usual, (X,B, µ) is a probability space.

Definition 3.8. Let f ∈ L1(X) and let A ⊂ B be a sub-σ-algebra. Then a conditional
expectation for f relative to A is any A-measurable function from X to R which
satisfies ∫

A

g dµ =

∫
A

f dµ for all A ∈ A.

It will turn out that, up to null sets, there is exactly one conditional expectation.
So, we will denote the conditional expectation by E(f | A).

Let’s begin by checking that there is at most one conditional expectation.

Lemma 3.9. If g, h ∈ L1(X,A, µ) are such that
∫
A
g dµ =

∫
A
h dµ for all A ∈ A, then

g = h. In particular, if g and h are conditional expectations of an L1 function f , then
g = h a.e.

Proof. Since g and h are A-measurable, A := {x ∈ X : g(x) > h(x)} ∈ A. By
assumption, ∫

A

f dµ =

∫
A

g dµ =

∫
A

h dµ
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and therefore ∫
A

(g − h) dµ = 0.

But g > h on A, so in fact µ(A) = 0. Similarly, µ({x ∈ X : g(x) < h(x)}) = 0.
Therefore g = h a.e. □

One should think of the conditional expectation of f as the best guess for the
function f given information in the smaller σ-algebra A.

To establish the existence of the conditional expectation, let’s recall the Radon–
Nikodým derivative. Here, we state it only in the generality that we require. Recall
that ν is absolutely continuous with respect to µ, writing µ ≪ ν, if ν(E) = 0 for all E
with µ(E) = 0.

Theorem 3.10 (Radon–Nikodým). Let (X,B, µ) be a probability space and let ν be a
signed measure on (X,B) with ν ≪ µ. Then there exists an a.e. unique f ∈ L1(µ) such
that

ν(E) =

∫
E

f dµ for all E ∈ B.

Using this result

Proposition 3.11. Let f ∈ L1(X) and let A ⊂ B be a sub-σ-algebra. Then f has a
conditional expectation relative to A.

Proof. For E ∈ B, define

ν(E) =

∫
E

f dµ.

One can verify with a bit of work that ν is a signed measure and moreover ν ≪ µ.
Moreover, µ and ν both restrict to measures on A. Since ν ≪ µ on B, certainly

ν ≪ µ on A. Therefore we may apply Theorem 3.10 on the space (X,A, µ) to get a
function h ∈ L1(X,A) such that∫

E

f dµ = ν(E) =

∫
E

h dµ.

This function is a conditional expectation, as required. □

Example 3.12. The naming suggests a relationship with the usual notion of condi-
tional probability. Suppose A ∈ B is a set with µ(A) > 0; then the set A generates
the σ-algebra A = {∅, A,X \ A,X}. Since the conditional expectation E(f | A)
is A-measurable, this precisely means that it must be constant on the set A and
constant on the set X \ A.

By definition, the value on A must be the constant value∫
A

f dµ.
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In other words, this is precisely the expectation of f relative to the conditional
probability measure µ|A defined by µ|A(E) = µ(A ∩ E)/µ(A).

An important technical advantage of the conditional expectation is that we do
not require that the decomposition of the space be into components with positive
measure.

To conclude, let’s see how to place the conditional expectation in a more general
operator-theoretic framework and establish some additional properties.

Theorem 3.13. Let (X,B, µ) be a probability space and let A ⊂ B be a sub-σ-algebra.
Then there is a unique linear operator E(· | A) : L1(X,B, µ) → L1(X,A, µ) such that for
all f ∈ L1(X,B, µ),

(i) Chain rule:
∫
X
E(f | A) dµ =

∫
X
f dµ,

(ii) Product rule: E(gf | A) = g · E(f | A) for all g ∈ L1(X,A, µ) with gf ∈
L1(X,B, µ).

Moreover, the conditional expectation satisfies the following additional properties:
(iii) Positivity: If f ≥ 0, then E(f | A) ≥ 0 a.e.
(iv) Triangle inequality: |E(f | A)| ≤ E(|f | | A).
(v) Non-expanding: ∥E(f | A)∥1 ≤ ∥f∥1.

In particular, the conditional expectation is a continuous linear operator.

Proof. Existence of an operator satisfying (i) follows from Proposition 3.11.
That this is a linear operator also follows directly from the definition.

Next, we check (ii). Again by Lemma 3.9, it suffices to show that∫
A

E(fg | A) dµ =

∫
A

g E(f | A) dµ for all A ∈ A.

By linearity and dominated convergence, it suffices to verify this for indicator
functions g = 1E for E ∈ A. Indeed, for such g,∫

A

E(f1E | A) dµ =

∫
A

f1E dµ =

∫
A∩E

f dµ

and similarly ∫
A

1E E(f | A) dµ =

∫
A∩E

E(f | A) dµ =

∫
A∩E

f dµ

as claimed.
To see uniqueness, if T is any linear operator satisfying the chain and product

rules, for f ∈ L1(X,B, µ) and A ∈ A,∫
A

Tf dµ =

∫
X

1ATf dµ =

∫
X

T (1Af) dµ =

∫
1Af dµ =

∫
A

f dµ.

Therefore uniqueness follows by Lemma 3.9.
Finally, we check the additional properties. First, let’s see (iii). Suppose f ≥ 0

but E(f | A) < 0 on a set A ∈ A of positive measure. By the product rule and the
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chain rule,

0 ≤
∫
A

f dµ =

∫
X

1Af dµ =

∫
X

E(f | A) dµ =

∫
A

E(f | A) < 0

which is a contradiction.
Next, for (iv), decompose f into positive and negative parts f+ ≥ 0 and f− ≥ 0

such that |f | = f+ + f−. By positivity,

|E(f | A)| = |E(f+ | A)− E(f− | A)|
≤ |E(f+ | A)|+ |E(f− | A)|
= E(f+ | A) + E(f− | A)

= E(f+ + f− | A)

= E(|f | | A).

Finally, for (v), by the triangle inequality and the chain rule,

∥E(f | A)∥1 =
∫

|E(f | A)| dµ

≤
∫

E(|f | | A)

=

∫
|f | dµ

= ∥f∥1

as claimed. □

If A ⊂ B is a sub-σ-algebra, then L1(X,A, µ) ⊂ L1(X,B, µ), so the conditional
expectation can be understood as a projection onto the subspace of A-measurable
functions. Next, we will prove that the restriction of the conditional expectation to
L2 is exactly the orthogonal projection.

To prove this, we first recall Jensen’s inequality.

Proposition 3.14 (Jensen’s inequality). Let g : R → R be convex function and let
f ∈ L1(X,B, µ) be such that g ◦ f ∈ L1. Then

g ◦ E(f | A) ≤ E(g ◦ f | A)

Proof. First, observe the following inequality: if {fi}∞i=1 ⊂ L1 is a countable
family of functions such that supi fi ∈ L1, then

(3.1) E(sup fi | A) ≥ supE(fi | A).

To see this, observe that 2max{f1, f2} = f1 + f2 + |f1 − f2|, so the inequality holds
for supremums over finite sets by linearity and the triangle inequality. In gen-
eral, write f = supi fi. Then the sequence of functions (maxi=1,...,n fi) converges
monotonically to f from below, and therefore in L1 (by the dominated conver-
gence theorem), so the claim follows for countable families by continuity of the
conditional expectation.
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Now, if g is a convex function, then g(x) = supi(aix+ bi) for countably many
affine functions ℓi(x) = aix + bi. But the conditional expectation is linear, so
E(ℓi ◦ f | A) = ℓi ◦ E(f | A). Taking the supremum over all ℓi and using that
g ◦ f ∈ L1 yields the claim by (3.1). □

Remark 3.15. The restriction that g ◦ f ∈ L1 is not so strict since the negative
part of g ◦ f is always lower bounded by an L1 function (take any linear function
bounded below by g). Therefore if g ◦ f is not in L1, then the right hand side of
this inequality can be meaningfully interpreted as ∞.

Corollary 3.16. The restriction of the conditional expectation operator to L2(X,B, µ) is
precisely the orthogonal projection from L2(X,B, µ) to L2(X,A, µ).

Proof. Let π denote the conditional expectation, that is π(f) = E(f | A). By
Jensen’s inequality applied with the function g(x) = x2 (applicable since |f |2 ∈ L1

by assumption)

∥πf∥22 =
∫

|E(f | A)|2 dµ

≤
∫

E(|f |2 | A) dµ

=

∫
|f |2 dµ

= ∥f∥22

Therefore π maps L2 functions to A-measurable L2 functions. Moreover, π is the
identity map on L1(X,A, µ), and therefore on L2(X,A, µ).

Therefore, π is a projection. To show that it is an orthogonal projection, we
must show that it is self-adjoint. Indeed, if f, g ∈ L2 then fg ∈ L1 and we compute
using the chain rule then the product rule

⟨f, πg⟩ =
∫

f · E(g | A) dµ =

∫
E(f · E(g | A)) dµ =

∫
E(f | A) · E(g | A) dµ.

The computation yields the same result for ⟨πf, g⟩, so ⟨f, πg⟩ = ⟨πf, g⟩ as re-
quired. □

To conclude, let’s note that the conditional expectation of any L1 function against
the σ-algebra of T -invariant sets is itself T -invariant. When working in L1, to be
precise there is a minor technical detail. Since we identify functions up to null sets,
we must also identify measurable sets up to null sets. So, we must instead work
with σ-algebra T of T -invariant sets, but then augment T with the null sets of
B. The sets in the resulting σ-algebra are precisely the sets which are T -invariant
modulo µ. However, I will sweep this detail under the rug and simply refer to this
larger space whenever referring to the σ-algebra of T -invariant sets.

Lemma 3.17. Let (X,B, µ, T ) be a measure-preserving system and let T be the σ-algebra
of T -invariant sets. Then the space of T -invariant functions is exactly L1(X, T , µ). In
particular, for any f ∈ L1(X,B, µ), E(f | T ) is a T -invariant function.
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Proof. Let f ∈ L1(X,B, µ). Recall by change of variables that for E ∈ B,∫
E

g dµ ◦ T−1 =

∫
T−1E

g ◦ T dµ.

But if E ∈ T , then µ ◦ T−1(E) = µ(E) and T−1(E) = E so in fact∫
E

g ◦ T dµ =

∫
E

g dµ.

But this holds for all E ∈ T , so if g is T -measurable, then g ◦ T = g a.e. by
Lemma 3.9.

We actually proved the converse already in Lemma 3.6, but let’s repeat the
details here. Suppose g ◦ T = g a.e. and let E ⊂ R be any Borel set. Then, modulo
µ,

T−1(g−1(E)) = {x ∈ X : g(Tx) ∈ E} = {x ∈ X : g(x) ∈ E} = g−1(E).

Therefore g−1(E) is T -invariant, as required. □

3.4. Birkhoff’s pointwise ergodic theorem. We have now reached our main goal
of this section: the pointwise and L1 ergodic theorem.

Theorem 3.18 (Pointwise ergodic). Let (X,B, µ, T ) be a measure-preserving system
and let T denote the σ-algebra of T -invariant sets. Then for any f ∈ L1,

lim
N→∞

SNf = E(f | T ) µ− a.e.

In particular, if the system is ergodic, then the limit is constant:

lim
N→∞

SNf =

∫
X

f dµ µ− a.e.

Before we proceed with the proof of the pointwise ergodic theorem, let’s highlight
the utility of the theorem with some examples and applications.

Example 3.19. Recall in the case that T is ergodic and X is not too large (e.g., X is
a separable metric space) that for any set A ⊂ X with µ(A) > 0, the orbit of µ-a.e.
x ∈ X intersects A infinitely often. The ergodic theorem allows us to dispense
with the size restriction, and moreover tells us how often the orbit of x intersects
A (on average). Indeed, apply the ergodic theorem to the indicator function 1A.
Then for µ-a.e. x ∈ X ,

lim
N→∞

1

N
·#{0 ≤ n ≤ N − 1 : T nx ∈ A} = lim

N→∞
SN1A(x) =

∫
X

1A dµ = µ(A).

In other words, µ-a.e. x ∈ X hits A with frequency exactly proportional to the
measure of A.
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Example 3.20. For b ∈ N with b ≥ 2, call a number x ∈ [0, 1] normal in base b if the
base-b expansion x = 0.a1a2a3 . . . with ai ∈ {0, 1, . . . , b−1} if the frequency of digit
i is exactly 1/b:

lim
k→∞

1

k
#{1 ≤ n ≤ k : ai = i} =

1

b
.

This concept is well-defined a.e. since every irrational point has a unique base b
expansion.

Let’s show that a.e. x ∈ [0, 1] is normal in base b. First, modify the space [0, 1]
by identifying the endpoints; that is, we work in R /Z instead. Consider the map
Tb : R /Z → R /Z defined by Tb(x) = b (mod 1). Observe Tb preserves Lebesgue
measure: if E ⊂ [0, 1] is Borel, then (up to a finite set, which has measure 0)

T−1
b (E) =

b−1⋃
j=0

E + j

b

and the union is disjoint (again, up to a finite set). Thus by scaling properties of
Lebesgue measure

µ(T−1
b (E)) =

b−1∑
j=0

µ

(
E + j

b

)
=

b−1∑
j=0

1

b
µ(E) = µ(E).

In an exercise, it will also be proved that the Tb is ergodic.
Moreover, if x = 0.a1a2a3 · · · , then T kx = 0.ak+1ak+2ak+3 · · · . Therefore ak = i

if and only if T kx ∈ [i/b, (i + 1)/b). Therefore the claim follows by applying the
ergodic theorem with the indicator function 1[i/b,(i+1)/b).

Constructing explicit examples of normal numbers is surprisingly difficult.
The most classical one is Champernonwne’s constant, written in base 10 by con-
catenating all natural numbers:

0.12345678910111213141516171819202122232425262728 . . .

It has been shown that this number is normal in base 10 (but it is unknown if it is
normal in other bases). The analogous construction in base b is normal in base b.

On the other hand, by taking the countable intersection over all natural num-
bers b ≥ 2, this shows that a.e. x ∈ [0, 1] is normal in every base simultaneously.
However, perhaps surprisingly, there are no explicit examples of numbers which
are normal in all bases simultaneously! Regardless, it is conjectured that “naturally
occurring” irrational numbers (like π or e) are normal in all bases.

For our third example, let’s give an application to something more closely related
to fractal geometry.

Proposition 3.21. Let (X, d) be a complete metric space equipped with the Borel σ-algeba,
let T : X → X be Lipschitz, and let µ be a probability measure that is invariant and ergodic
for T . Then µ has exact lower dimension and exact upper dimension.
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Proof. Let λ be the Lipschitz constant of T , so that for all j ∈ N∪{0} and
x, y ∈ X ,

d(Tx, T j+1y) ≤ aT (x, T jy).

In particular, if T jy ∈ B(x, r), then T j+1y ∈ B(Tx, ar). Written instead using
indicator functions,

(3.2) 1B(x,r)(T
jy) ≤ 1B(Tx,ar)(T

j+1y).

Now apply the pointwise ergodic theorem to the indicator functions 1B(x,r) and
1B(Tx,ar), so for µ-a.e. y

µ(B(x, r)) = lim
N→∞

1

N

N−1∑
k=0

1B(x,r)(T
jy)

µ(B(Tx, ar)) = lim
N→∞

1

N

N−1∑
k=0

1B(Tx,ar)(T
j(Ty)).

(In the second equation that we apply the ergodic theorem to the point Ty, which is
equivalent since µ is T -invariant.) In particular, by (3.2), µ(B(x, r)) ≤ µ(B(Tx, ar))
for all x ∈ X and r > 0. Therefore,

dimloc(µ, Tx) = lim inf
r→0

log µ(B(Tx, ar))

log ar

≤ lim inf
r→0

log µ(B(x, r))

log a+ log r

= dimloc(µ, x).

But µ is T -invariant, so by change of variables∫
dimloc(µ, Tx) dµ(x) =

∫
dimloc(µ, x) dµ(x).

Thus we conclude in fact that dimloc(µ, Tx) = dimloc(µ, x) for µ-a.e. x ∈ X . Since
T is ergodic, this means that x 7→ dimloc(µ, x) is constant a.e., which means µ has
exact lower dimension.

The exact same proof works with the upper local dimension instead, as re-
quired. □

In principle, the pointwise a.e. convergence in the ergodic theorem may not imply
convergence in norm. However, in practice, essentially because we are working in
a probability space and the averages SNf are uniformly integrable, the pointwise
ergodic theorem implies convergence in norm.

To do this, let’s first set up some more functional-analytic notation.

Definition 3.22. Let V be a normed space (for us this will be some Lp space for
1 ≤ p ≤ ∞). We say that T : V → V is non-expanding if ∥Tv∥ ≤ ∥v∥ for all v ∈ V .
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This scheme is relevant for us because measure-preserving transformations are
always non-expanding. In fact, they are norm preserving.

Lemma 3.23. Let (X,B, µ, T ) be a measure-preserving system, let 1 ≤ p ≤ ∞, and let
T : Lp(X) → Lp(X) denote the induced map Tf(x) = f(Tx). Then T is a positive linear
operator with ∥Tf∥p = ∥f∥p for all f ∈ Lp.

Proof. Firstly, T is well-defined since changing the definition of f on a null set
E changes the definition of Tf on T−1E which is also a null set since T is measure
preserving. Next, linearity and positivity are immediate from the definition, so it
suffices to verify that it is norm preserving.

We begin with an L1 result. First, since T is measure preserving, observe for
indicator functions that∫

X

T1E dµ =

∫
X

1T−1(E) =

∫
X

1E dµ.

By linearity, this equation extends to arbitrary simple functions. If f is a non-
negative L1 function, write f as the pointwise limit of an increasing sequence of
simple functions fn with fn ≤ f . Since T is positive, limn→∞ Tfn = Tf pointwise
and the sequence (Tfn)

∞
n=1 is increasing. Therefore by the monotone convergence

theorem, ∫
Tf dµ = lim

n→∞

∫
Tfn dµ = lim

n→∞

∫
fn dµ =

∫
f dµ.

Next, for 1 ≤ p < ∞ and f ∈ Lp, recall that |f |p ∈ L1 so∫
|Tf |p dµ =

∫
T |f |p dµ =

∫
|f |p dµ.

Therefore, ∥Tf∥p = ∥f∥p. For p = ∞, since µ is a finite measure, ∥f∥∞ =
limp→∞ ∥f∥p, completing the proof. □

Remark 3.24. In the special case p = 2, the induced operator is called the Koopman
operator.

In particular, if T is non-expanding, then the averaging operators are also non-
expanding.

Corollary 3.25. Let 1 ≤ p ≤ ∞ and T : Lp(X) → Lp(X) be a non-expanding. Then for
all N ∈ N, the map SN : Lp(X) → Lp(X) defined by

SNf =
1

N

N−1∑
k=0

f ◦ T n

is non-expanding.
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Proof. Since ∥f ◦ T∥ ≤ ∥f∥ for all f ∈ Lp(X), it follows that ∥f ◦ T n∥ ≤ ∥f∥ for
all n ∈ N. Therefore by the triangle inequality,

∥SNf∥ ≤ 1

N

N−1∑
k=0

∥f ◦ T n∥ ≤ ∥f∥

as claimed. □

We can now state and prove the ergodic theorem in terms of averages.

Theorem 3.26 (Von Neumann’s ergodic theorem). Let (X,B, µ, T ) be a measure-
preserving system. Let 1 ≤ p < ∞. If f ∈ Lp, then there exists a T -invariant function
h ∈ Lp such that

lim
N→∞

∥SNf − h∥p = 0.

Proof. Let’s first handle the case that f = g is a bounded function. By the
pointwise ergodic theorem, we may define for µ-a.e. x ∈ X

h(x) = lim
N→∞

SNg(x).

Since g is bounded, h is also bounded; and since µ is a probability space, h ∈ Lp

for all 1 ≤ p ≤ ∞. Therefore by the dominated convergence theorem,

lim
N→∞

∥SNg − h∥p = 0.

In particular, the sequence {SNg}∞N=1 is Cauchy.
Now, let f ∈ Lp. We will show that {SNf}∞N=1 is a Cauchy sequence in Lp. Let

ε > 0 and, by density, get a bounded function g such that ∥f − g∥p ≤ ε. Then

∥Snf − Sn+kf∥p ≤ ∥Snf − Sng∥p + ∥Sng − Sn+kg∥p + ∥Sn+kg − Sn+kf∥p
≤ 2ε+ ∥Sng − Sn+kg∥p .

Here, we recall that the averaging operators Sn are non-expanding from Corol-
lary 3.25. But {SNg}∞N=1, so taking n sufficiently large (depending on g and ε), for
all k ∈ N,

∥Sng − Sn+kg∥p < ε.

It follows that {SNf}∞N=1 is Cauchy.
Write h = limN→∞ SNf . It remains to show that h is T -invariant. Indeed, we

compute

n+ 1

n
Sn+1f(x)− Snf(Tx) =

f(x)

n
.

Taking the limit in n yields the desired result. □



FRACTAL GEOMETRY AND DYNAMICAL SYSTEMS 43

3.5. Proof of the pointwise ergodic theorem. The standard proof of the ergodic
theorem (which we will see here) follows a common scheme in analysis: prove a
special case for some dense subspace, and then upgrade to the full space using
continuity. The proof of the Lp ergodic theorem shows why working with Lp norms
is easier: essentially, it suffices to prove the theorem in a dense subspace, and the
result in the total space follows by approximation in the dense subspace combined
with the fact that the averaging operators Sn are non-expanding. However, there
is no such analogous bound for pointwise results. Instead, it turns out that the
correct type of continuity is provided by a maximal inequality.

For example, the proof of the Lebesgue differentiation theorem follows this
scheme. The result is clear for uniformly continuous functions, uniformly con-
tinuous functions are dense in L1 functions, and the extra continuity is provided
by the Hardy–Littlewood maximal inequality. In our case, it will turn out that a
convenient space in which to work is L2. We will then upgrade the result to L1

(and almost everywhere) using a maximal inequality.
Let us begin by proving that there is a dense subspace of L1 on which the

ergodic theorem holds. To do this, we first need a Hilbert space lemma.

Lemma 3.27. Let T : V → V be a non-expanding linear operator on a Hilbert space.
Then v ∈ V is T -invariant if and only if it is T ∗-invariant.

Proof. Since (T ∗)∗ = T , it suffices to show that T ∗v = v implies that Tv = v.
Indeed,

∥v − Tv∥2 = ⟨v − Tv, v − Tv⟩
= ∥v∥2 + ∥Tv∥2 − ⟨Tv, v⟩ − ⟨v, Tv⟩
= ∥v∥2 + ∥Tv∥2 − ⟨v, T ∗v⟩ − ⟨T ∗v, v⟩
= ∥v∥2 + ∥Tv∥2 − ⟨v, v⟩ − ⟨v, v⟩
= ∥Tv∥2 − ∥v∥2

≤ 0

where the last inequality uses that T is non-expanding. □

Proposition 3.28. There is a dense subspace V ⊆ L1 such that the conclusion of the
pointwise ergodic theorem holds for all f ∈ V .

Proof. Recalling that L2 is dense in L1, it suffices to construct the space V as a
dense subspace of L2. Let V1 = ker(T − Id) denote the set of invariant L2 functions,
in which case the ergodic theorem is immediate since SNf = f for all N ∈ N.
Also, recall from Corollary 3.16 that the conditional expectation is precisely the
orthogonal projection onto V1.

Let V2 ⊂ L2 denote the linear span of the functions

{g − Tg : g ∈ L∞}.

For functions g ∈ V2, we compute∥∥g + T n+1g
∥∥
∞ ≤ ∥g∥∞ +

∥∥T n+1g
∥∥
∞ = 2 ∥g∥∞
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so that

lim
N→∞

1

N

N−1∑
n=0

T n(g − Tg) = lim
N→∞

1

N
(g − TN+1g) = 0

with convergence almost everywhere.
Now, the key observation is that L2 = V1 ⊕ V2. Assuming this for the moment,

by linearity of summation, if (f, g) ∈ V1 ⊕ V2 it follows that

lim
N→∞

SN(f + g) = f + lim
N→∞

SNg = f

which is precisely the action of the orthogonal onto V1. But then V1 ⊕ V2 is a dense
subspace L2 on which the theorem holds, as required.

So, it suffices to show that L2 = V1 ⊕ V2. First, since L∞ is dense in L2, observe
that V2 = {g − Tg : g ∈ L2}. So, it suffices to show that ⟨f, g − Tg⟩ = 0 for all
g ∈ L2 if and only if f ∈ V1, from which it follows that V2 = V ⊥

1 . Indeed, for any
f, g ∈ L2, we have the identity

⟨f, g − Tg⟩ = ⟨f, g⟩ − ⟨f, Tg⟩ = ⟨f, g⟩ − ⟨T ∗f, g⟩ = ⟨f − T ∗f, g⟩

Therefore, for f ∈ L2, ⟨f, g − Tg⟩ = 0 for all g ∈ L2 if and only if ⟨f − T ∗f, g⟩ = 0
for all g ∈ L2, which by Lemma 3.27 occurs if and only if f ∈ V1. □

Remark 3.29. With minor adaptation, and combined with the proof of Theo-
rem 3.26, this result is essentially enough to prove the Lp ergodic theorem. So,
if one is only interested in the norm case, the (more difficult) maximal ergodic
theorem can be bypassed entirely.

It remains to extend the result on the dense subspace to the full space. As claimed
earlier, this will be a consequence of a maximal inequality.

Theorem 3.30 (Maximal ergodic theorem). Let (X,B, µ, T ) be a measure-preserving
system. Let f ∈ L1 and write

f ∗ = sup
N∈N

SNf.

Then if g ∈ L1 is any T -invariant function, then∫
{x∈X:f∗(x)>g(x)}

(f − g) dµ ≥ 0.

From this general maximal inequality, we can obtain a somewhat more traditional
maximal inequality which is sufficient for our purposes.

Corollary 3.31. Let f ∈ L1 with f ≥ 0. Then for every t > 0,

µ ({x ∈ X : f ∗(x) > t}) ≤ 1

t

∫
f dµ.
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Proof. Apply Theorem 3.30 to the constant function t to get∫
f dµ ≥

∫
{x∈X:f∗(x)>t}

f dµ ≥
∫
{x∈X:f∗(x)>t}

t dµ ≥ t · µ ({x ∈ X : f ∗(x) > t})

as claimed. □

Let’s prove the pointwise ergodic theorem assuming the maximal inequality.
Afterwards, we will prove the maximal inequality.

Proof (of Theorem 3.18). Fix f ∈ L1. Let T denote the σ-algebra of T -invariant
sets and let S = E(· | T ), which we recall is a bounded linear operator on L1.
Apply Proposition 3.28 to get a dense subspace V ⊆ L1 such that the ergodic
theorem holds for all g ∈ V .

Then

|SNf − Sf | ≤ |SNf − SNg|+ |SNg − Sg|+ |Sg − Sf |
≤ SN |f − g|+ |SNg − Sg|+ |Sg − Sf |.

Here, we used the triangle inequality and the definition of SN . Moreover, SNg →
Sg a.e. so that

(3.3) lim sup
N→∞

|SNf − Sf | ≤ S|g − f |+ lim sup
N→∞

SN |f − g|

for a.e. x ∈ X .
Here is where the proof differs in a critical way. In the normed case, we could

use that SN is non-expanding, so we can control the latter term in terms of the
norm of f − g. In the pointwise case, however, no such bound holds. Instead, we
proceed as follows.

Suppose the left hand side of (3.3) is strictly larger than ε > 0 for some x. Then,
at least one of the expressions on the right hand side of (3.3) must be strictly larger
than ε/2. Therefore,

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ µ (|Sg − Sf | > ε/2)+µ

(
lim sup
N→∞

SN |f − g| > ε/2

)
.

By Markov’s inequality and since conditional expectation S is non-expanding,

µ (|Sg − Sf | > ε/2) ≤ 2

ε
∥S(g − f)∥1 ≤

2

ε
∥g − f∥1 .

By the maximal inequality, the analogous result holds for the second term:

µ

(
lim sup
N→∞

SN |f − g| > ε/2

)
≤ µ

(
sup
N→∞

SN |f − g| > ε/2

)
≤ 2

ε
∥f − g∥1 .

To summarize,

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ 4

ε
∥f − g∥1 .
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But g can be chosen from a dense subspace of V , so in fact

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
= 0.

Since ε > 0 was arbitrary, it follows that limN→∞ SNf = Sf for µ-a.e. x ∈ X . □

To finish everything up, it remains to prove the maximal ergodic theorem.

Proof (of Theorem 3.30). TODO: write □

3.6. Maker’s ergodic theorem.

4. APPLICATIONS OF PROBABILITY THEORY

4.1. Entropy and the Shannon–McMillan–Breiman theorem.

4.2. Local dimension and the law of large numbers.

4.3. Conditional expectation.

4.4. Rokhlin’s theorem and disintegration of measures.

5. EXACT DIMENSIONALITY OF SELF-SIMILAR MEASURES
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