
Exercise 1 Solutions

THURSDAY, JANUARY 15

1. (i) Suppose r > 0 is fixed and let x ∈ B(z, r). Let fi have contraction ratio
ri. Then

d(fi(x), z) ≤ d(fi(x), fi(z)) + d(fi(z), z) ≤ rir + d(fi(z), z).

So, we just need to choose r sufficiently large so that rir+d(fi(z), z) ≤ r
for all i ∈ I. For example, the choice R = maxi∈I d(fi(z), z)/(1 − ri) is
sufficient.

(ii) Let Φ(E) =
⋃

i∈I fi(E). Observe that

Φ(Kn) =
⋃
i∈In

fi(Φ(Q)) =
⋃
i∈In

⋃
i∈I

fi(fi(Q)) = Kn+1.

Moreover, since Φ(Q) ⊂ Q, we see from the first equality that Φ(Kn) ⊂
Kn.

(iii) By the Banach contraction mapping principle, K = limn→∞ Φn(Q). Since
Φn(Q) ⊂ Q, it follows that K ⊂ Q and therefore K ⊂ Kn for all n ∈
N. Conversely, by definition of convergence in the Hausdorff metric,
Φn(Q) ⊂ K(ε) for all ε > 0 and n sufficiently large depending on ε.
Therefore

⋂∞
n=1Kn ⊂ K(ε) for all ε > 0, and therefore

⋂∞
n=1Kn = K.

2. (i) Recall that Φ(E) =
⋃

i∈I fi(E) is a contraction map, say with contraction
ratio r. Moreover, an easy computation shows that dH(A ∪ F,B ∪ F ) ≤
dH(A,B). Therefore

dH(Φ(A) ∩ F,Φ(B) ∩ F ) ≤ dH(Φ(A),Φ(B)) ≤ rdH(A,B).

Thus E 7→ Φ(E) ∪ F is a contraction map on K(X), so it has a unique
fixed point KF which is the claimed set.

(ii) Write Ψ(E) =
⋃

i∈I fi(E) ∪ F .
First, observe that F (n) = Ψn(F ):

Ψ(F (n)) =
n⋃

k=0

⋃
i∈Ik

⋃
j∈I

fij(F ) ∪ F = F ∪
n+1⋃
k=1

⋃
i∈Ik

fi(F ) = F (n+1).

Since F ⊂ KF , it follows that F (n) = Ψn(F ) ⊂ KF for all n. Moreover,
by the Banach contraction mapping principle, it follows that KF =
limn→∞ F (n).

(iii) This is K∅ (unless F = ∅, in which case it is ∅).
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(iv) If KF = K∅, then F ⊆ KF ⊂ K∅. If F ⊂ K∅, then

K∅ = K∅ ∪ F =
⋃
i∈I

fi(K∅) ∪ F.

By uniqueness of KF , it follows that KF = K∅.

3. (i) Let Φ denote the Cantor IFS. There are a lot of choices here. For example,
you could take any fixed starting point x, and take the orbit

E =
∞⋃
n=0

Φn({x}).

This is an invariant set by construction, and moreover E is a countable
set and therefore not all of C.
If using uncountability of C feels bothersome, another option is to take
C \ {0}. Since 0 /∈ Φ({x}) for all x ̸= 0, C \ {0} is invariant.

(ii) One option is to take R, or another is to take [0,∞) for a proper closed
subset. A more interesting option is to take

⋃∞
n=0{3nx : x ∈ C}. Check

that this is actually invariant!
(iii) First, E must contain a non-zero point: if 0 ∈ E, then its image under

the second map is 2/3, which must be in E. But then if x ̸= 0, x3−n ∈ E
for all n ∈ N is an infinite subset of E.

4. First, one can check that the map g(x) = d(x, f(x)) is 2-Lipschitz and there-
fore continuous. Since X is compact, there is an x∗ ∈ X which minimizes
g.

If x∗ ̸= f(x∗), then d(f(x∗), f(f(x∗))) < d(x∗, f(x∗)) = g(x∗) contradicting
minimality of g(x∗). Moreover, if z is another fixed point of f and z ̸= x∗,
then d(x∗, z) = d(f(x∗), f(z)) < d(x∗, z), which is a contradiction. Therefore
x∗ is the unique fixed point of f .

Finally, let x0 ∈ X be arbitrary and write xn = fn(x0) for n ∈ N. First,
observe that d(x∗, xn+1) = d(x∗, f(xn)) ≤ d(x∗, xn). Therefore the sequence
an := d(x∗, xn) is a decreasing sequence (bounded below by 0) and has some
limit α.

Since X is compact, to show that x∗ = limn→∞ xn, it suffices to show that
every accumulation point of (xn) is x∗. Thus suppose z = limk→∞ xnk

is
the limit of some subsequence. Note that d(x∗, z) = limk→∞ d(x∗, xnk

) = α.
Moreover, since f is continuous,

d(x∗, f(z)) = lim
n→∞

d(x∗, f(xnk
)) = lim

n→∞
ank+1 = α.

But if z ̸= x∗, then α = d(x∗, f(z)) < d(x∗, z) = α, which is a contradiction.
Therefore z = x∗, as required.
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