Exercise 2 Solutions

THURSDAY, JANUARY 22

1. (i) We first observe in the definition of the Hausdorff content of a compact
set K that it suffices to consider covers using finite families of open
sets. By definition of the Hausdorff content, get a family of sets { £; }7°,
covering K such that

[e.o]

D (diam E;)* < H(K) +e.

=1

For each E;, let 6; > 0 be sufficiently small so that (diam E; + 26;)° <
(diam E;)* + €27, Then, for each E;, consider the open neighbourhood

V; = E°). Then {V;}2, is an open cover for K and therefore has a finite
sub-cover, say {V;,, ...,V }. Observe that

k k
Z (diam V;,) Z (diam F; + 26;)* < HE(K) + 2e.
n=1 n=1

Since € > 0 was arbitrary, this completes the proof of this observation.
Now, let (K,,);2, be a sequence of compact sets with K = lim,,_,, K.
Write ¢ = H: (K) and let ¢ > 0. By the above observation, get a finite
family of open sets {V1, ..., V;} covering K such that

k
Z(diam Vi)) <c+e.

i=1

Now consider the new sets W V(" for some 1 > 0. Since the sets V;
cover K, the sets W; cover K Therefore for all n sufficiently large
depending on 7, K,, € I, W; so that

k k
H(K,) < Z diam W;)® Z diam V; + 2n)?
Since k is fixed (independently of n) and 7 > 0 is arbitrary,

k
lim sup H?_( Z (diam V;)* < c+e.

n—o0

Since € > 0 was arbitrary, the result follows.
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2.

(ii)
(iii)

(i)

(i)

(iii)

(iv)

(i)

Let K, = {j/N : 0 < j < N}. Then HY?(K,) = 0 for all n, whereas
lim,, o K,, = [0, 1] has H'/2([0,1]) > 0.

Let K,, = [0,1/n], so H'/?(K,,) = oco. However, lim,,_,o, K,, = {0} and
which has 1/2-dimensional Hausdorff measure 0.

If {B(x;,27")}; is a cover for F, then {B(z;,27")} is also a cover for E.
Therefore fr(u) > fg(v). For the other inequality, note that any ball of
radius 27" can be covered by 2 - 2“7 balls of radius 27*. Any such ball
of radius 27" which intersects E can in turn be covered by 2 balls of
radius 27" centred in E. Therefore

No-u(E) < 42" Ny (E).

Taking logarithms and rearranging, the conclusion follows.
The analogue is the following: there is a constant M,; > 0 so that for
v<u,

0 < fe(u) = fe(v) <d(u—v)+ M.

Suppose 27" < r < 27" and let B(z,r) be an arbitrary ball. Then
B(z,r) intersects at most 5 dyadic intervals of side-length 27". Con-
versely, any interval of side-length 27" is contained in any ball B(z, r)
where z is in the interval. Therefore

A (E) < N.(E) < 5A.(E).

Let r > 0 and let {B(z;,r)}", be a cover for £ with m = N,(E). Then
{B(x;,2r)}, is a cover for B so

m(E™) < 2r - N,(E).

Conversely, let {y;}¥_, be a maximal r-separated subset of F, so that
the Lebesgue measure of the intersections of the balls B(y;,r/2) are 0.
By maximality, { B(y;,r)}%_, is a cover for E, so N,(E) < k. Moreover,
B(y;,r/2) c E" for all i, so

This completes the proof.

Observe that K, is a union of 9= an dyadic intervals. Moreover, each
dyadic interval in this union intersects K. Taking into account the
endpoints of the intervals, it follows that

931 an < A(K)<3- 931 On

Thus the claim follows from Q2(iii).
To complete the proof, take logarithms, divide by log(1/r) and pass to
the limit.



(ii)

(iii)

If dimy K = 0 there is nothing to prove, so we may assume otherwise.

We will use the mass distribution principle. Let ¢}, = 92%n=19% denote the
number of distinct dyadic intervals in the construction of K. Using the
method of subdivision, let ;» be a measure supported on K such that
p(I) = ¢, " for all dyadic intervals in the construction of I.

Let 0 < s < dimp K be arbitrary. Applying (i), there exists a constant
¢ > 0 such that ¢, > ¢2** for all k € N. Now, suppose A is an arbitrary
Borel set with diam A < 1, and let k£ € N be such that 2% < diam A <
27%+1. Then A intersects at most 4 dyadic intervals of side-length 2%,
SO

u(A) < 46121 < 471k < 8071(diam A)°.

Therefore y is s-Frostman so dimyg K > s. Since s < dimg K was arbi-
trary, it follows that dimy K = dimg K.
It is enough to choose the sequence (a, ) ; € {0, 1}" judiciously.

(1) noe—1<u +--+u, <na

for all n € N. To start, we can take u; = 0. Now suppose we have chosen
(u1,...,uy) satistying (1). Then (n+1)aa—1 < noand (n+1)a < na+1,
so we may choose u,+; € {0,1} so that

m+Da—1<wuy+ -+ Uy +tp1 < (n+ 1)

Now, let:

* (uy,)r2, satisfy (1) with o = s.

* (v,)22, satisfy (1) with a = 1.
We inductively define a sequence (a,,);2, with partial sums s,, = a; +
.-+ a, as follows.
Begin with a; = v; and m; = 1. Now, suppose we have defined (a,,)
for some m,, € N.

Mn
n=1

* If nis odd, by (1), we may choose N > n sufficiently large so that

Sptur+ -+ un 1
2 < —.
@) n—+ N _S+n
Then set a,,+; = ujforj=1,..., N and let m;, ;1 = m,, + N.

* If nis even, by (1), we may choose N > n sufficiently large so that

1 sp+v+--+oy
3 t——< .
®) n - n+ N
Then set a,,+; =v;forj=1,..., N and let m,;; = m,, + N.

The choice (2) ensures that lim inf,,_,., s, < s and the choice (3) ensures
that limsup,, ., s, > t.
It remains to verify the other inequalities. For n € N, we may write

Sp=Ur+ F Uy +01+ - F Uy, + -+ 4+ F Uy, T+ U
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(iv)

(The final term may consist instead of terms vy, . . ., vy, but the argument
is the same in that case.) Then using (1),

Sy < miS + mat +mss+ -+ +myt + £s < nt.
Therefore lim sup,,, ., n~'s, < t. For the lower bound,
Sp>(mys—1)+ (mot — 1)+ -+ (myt — 1) +4s —1>ns —k — 1.
But my1 > my, + k by the choice of N,son > k(k+ 1)/2 and

liminfn='s, > s
n—o0

as required.
Now, let us give an alternative proof of the previous question using
1-Lipschitz functions, and moreover prove the bonus.
Let’s first show that we may equivalently choose an appropriate Lips-
chitz function. More precisely, we prove the following: Suppose f is an
increasing 1-Lipschitz function with f(0) = 0. Then there exists a sequence
(an)2>, € {0, 1} such that f(k) —1 < 32 _, a, < f(k) forall k € N.
The construction proceeds by induction. Let s,, = a; + - - - + a,, denote
the partial sum, where s, = 0. Suppose we have constructed (a,)%_,
such that f(k) — 1 < s, < f(k).

e If s, +1 < f(k+1), set apy1 = 1, and note that sy < f(k+ 1)
by assumption, and since f is 1-Lipschitz, f(k +1) < f(k)+1 <
Sk—|—2:Sk+1—|—1.

e Otherwise, if sy, +1 > f(k+1),setagy; = 0. Then spy > f(k+1)—1
by assumption, and since f is increasing, sy11 = si < f(k) <
f(k+1).

This completes the proof of the claim.

Given a function f satisfying the above properties, if (a,)52, is the
associated sequence, we write K; = K(a,);2,. In particular, we may
check that there is a constant M > 0 so that for all ©w > 0,

log No—u(K7y)

log 2 —flu)| = M.

(This is immediate if u is an integer, and if n < u < n + 1 use the fact
that f(n) < f(u) < f(n) + 1.) Therefore,
f(u)

dimp K = liminf —=
ding Ay llrngol U )

dimp Ky = limsup M
U—00 U

Let 0 < s <t < 1be arbitrary. We define a 1-Lipschitz function g as
follows. Suppose we have chosen values 0 = 21 < y; < 23 <y, < ---

4



diverging to infinity. Having chosen such values, we define g to be the
unique Lipschitz function such ¢(0) = 0, g has slope s on the intervals
[z;,y;], and g has slope t on the intervals [y;, z;11]. Clearly su < g(u) < tu
regardless of the choice of the x; and y;. Moreover, for all n € N,

(4:) Yn Yn Yn
g<xn+1) _ g<yn) + t(In+1 — y”) >t — ty_n
Tni1 Tnt1 Lnt1

Therefore, if we choose the z,, and y, such that lim, . z,/y, = 0
and lim,, o0 Yn/Tpin = 0 it follows that liminf, . g(u)/u = s and
limsup,, .., g(u)/u = t. Thus the corresponding set K satisfies the re-
quired properties.

Next, let us turn our attention to the actual bonus problem. We must
construct two increasing 1-Lipschitz functions f and g with f(0) =
g(0) = 0. Let Ky and K, denote the corresponding sets. The heart of the
strategy is the following straightforward observation:

log No—u (K U K,)
log 2

—max{ f(u), g(u)}| < 2M.

So, it suffices to choose the functions f and g with the following proper-
ties:

(i) liminf, o u™ f(u) = liminf, ,o u tg(u) = s, and

(1) limy oo vt max{f(u),g(u)} =t.
The first condition guarantees that dimy K; = dimg K, = s and the
second condition guarantees that dimp (K U K) = t.
Suppose we have chosen sequences 0 = w; < 71 < 1 < 21 < Wy <
xo < Yg < 72 < --- diverging to infinity. Define the function f to have
slope s on the intervals [z;, y;] and slope ¢ on the remaining intervals,
and define the function g to slope s on the intervals [z;, w;;1] and slope ¢
on the remaining intervals. The point is that whenever f has slope s on
some interval, g has slope ¢ on that interval as well as on the preceding
and following interval; and similarly with f and g swapped. Similarly
to before, we suppose moreover that the gaps diverge:

Yn Zn

. Wn, . Tn . .
lim — = lim — = lim &= = lim
n—oo X, n—00 Yy, n—o00 Z, n—00 W41

=0

The computation from (4) already shows that (i) holds. Moreover, the
computation from (4) shows for u € [z,, z,1] that

BAC) P )
U Zn
and, for u € [z, 41, z,4+1] that
(_u) >t—t “n
U Tnt1



This establishes (ii), as required.

4. (i) Let j # kbe such that f; = fi. Then jk # kj whereas fjx = fi;.
(ii)) Now, let j # k be such that f; = fix and j,k € I". Iterating the
invariance relationship,

K=JhE) = {J AE).
iezn iezn\{j}

Therefore, by uniqueness K is the attractor of the modified IFS @'.
(iii) Let s > 0 be the unique solutionto ) ,_;r; = 1. Then,

() -z xoa
i€T ieIn 1€\ {3}
since 7§ > 0. But the map
t— Z rt
ieT™\{j}

is strictly decreasing in ¢, so the similarity dimension of ®' must be
strictly less than s.



