
Exercise 2 Solutions

THURSDAY, JANUARY 22

1. (i) We first observe in the definition of the Hausdorff content of a compact
set K that it suffices to consider covers using finite families of open
sets. By definition of the Hausdorff content, get a family of sets {Ei}∞i=1

covering K such that

∞∑
i=1

(diamEi)
s ≤ Hs

∞(K) + ε.

For each Ei, let δi > 0 be sufficiently small so that (diamEi + 2δi)
s ≤

(diamEi)
s + ε2−i. Then, for each Ei, consider the open neighbourhood

Vi = E
(δi)
i . Then {Vi}∞i=1 is an open cover for K and therefore has a finite

sub-cover, say {Vi1 , . . . , Vik}. Observe that

k∑
n=1

(diamVin)
s ≤

k∑
n=1

(diamEi + 2δi)
s ≤ Hs

∞(K) + 2ε.

Since ε > 0 was arbitrary, this completes the proof of this observation.
Now, let (Kn)

∞
n=1 be a sequence of compact sets with K = limn→∞Kn.

Write c = Hs
∞(K) and let ε > 0. By the above observation, get a finite

family of open sets {V1, . . . , Vk} covering K such that

k∑
i=1

(diamVi)
s ≤ c+ ε.

Now consider the new sets Wi = V
(η)
i for some η > 0. Since the sets Vi

cover K, the sets Wi cover K(η). Therefore, for all n sufficiently large
depending on η, Kn ⊂

⋃k
i=1 Wi so that

Hs
∞(Kn) ≤

k∑
i=1

(diamWi)
s ≤

k∑
i=1

(diamVi + 2η)s.

Since k is fixed (independently of n) and η > 0 is arbitrary,

lim sup
n→∞

Hs
∞(Kn) ≤

k∑
i=1

(diamVi)
s ≤ c+ ε.

Since ε > 0 was arbitrary, the result follows.
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(ii) Let Kn = {j/N : 0 ≤ j ≤ N}. Then H1/2(Kn) = 0 for all n, whereas
limn→∞Kn = [0, 1] has H1/2([0, 1]) > 0.

(iii) Let Kn = [0, 1/n], so H1/2(Kn) = ∞. However, limn→∞ Kn = {0} and
which has 1/2-dimensional Hausdorff measure 0.

2. (i) If {B(xi, 2
−u)}i is a cover for E, then {B(xi, 2

−v)} is also a cover for E.
Therefore fE(u) ≥ fE(v). For the other inequality, note that any ball of
radius 2−v can be covered by 2 · 2u−v balls of radius 2−u. Any such ball
of radius 2−u which intersects E can in turn be covered by 2 balls of
radius 2−u centred in E. Therefore

N2−u(E) ≤ 4 · 2u−vN2−v(E).

Taking logarithms and rearranging, the conclusion follows.
(ii) The analogue is the following: there is a constant Md ≥ 0 so that for

v ≤ u,

0 ≤ fE(u)− fE(v) ≤ d(u− v) +M.

(iii) Suppose 2−n ≤ r < 2−n+1 and let B(x, r) be an arbitrary ball. Then
B(x, r) intersects at most 5 dyadic intervals of side-length 2−n. Con-
versely, any interval of side-length 2−n is contained in any ball B(x, r)
where x is in the interval. Therefore

∆r(E) ≤ Nr(E) ≤ 5∆r(E).

(iv) Let r > 0 and let {B(xi, r)}mi=1 be a cover for E with m = Nr(E). Then
{B(xi, 2r)}mi=1 is a cover for E(r) so

m(E(r)) ≤ 2r ·Nr(E).

Conversely, let {yi}ki=1 be a maximal r-separated subset of E, so that
the Lebesgue measure of the intersections of the balls B(yi, r/2) are 0.
By maximality, {B(yi, r)}ki=1 is a cover for E, so Nr(E) ≤ k. Moreover,
B(yi, r/2) ⊂ E(r) for all i, so

m(E(r)) ≥
k∑

i=1

m(B(yi, r/2)) = kr ≥ rNr(E)

This completes the proof.

3. (i) Observe that Kn is a union of 2
∑k

n=1 an dyadic intervals. Moreover, each
dyadic interval in this union intersects K. Taking into account the
endpoints of the intervals, it follows that

2
∑k

n=1 an ≤ ∆r(K) ≤ 3 · 2
∑k

n=1 an .

Thus the claim follows from Q2(iii).
To complete the proof, take logarithms, divide by log(1/r) and pass to
the limit.
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(ii) If dimB K = 0 there is nothing to prove, so we may assume otherwise.
We will use the mass distribution principle. Let ℓk = 2

∑k
n=1 an denote the

number of distinct dyadic intervals in the construction of Kk. Using the
method of subdivision, let µ be a measure supported on K such that
µ(I) = ℓ−1

k for all dyadic intervals in the construction of I .
Let 0 < s < dimBK be arbitrary. Applying (i), there exists a constant
c > 0 such that ℓk ≥ c2ks for all k ∈ N. Now, suppose A is an arbitrary
Borel set with diamA < 1, and let k ∈ N be such that 2−k ≤ diamA <
2−k+1. Then A intersects at most 4 dyadic intervals of side-length 2−k,
so

µ(A) ≤ 4ℓ−1
k ≤ 4c−12ks ≤ 8c−1(diamA)s.

Therefore µ is s-Frostman so dimHK ≥ s. Since s < dimBK was arbi-
trary, it follows that dimHK = dimBK.

(iii) It is enough to choose the sequence (an)
∞
n=1 ∈ {0, 1}N judiciously.

(1) nα− 1 < u1 + · · ·+ un ≤ nα

for all n ∈ N. To start, we can take u1 = 0. Now suppose we have chosen
(u1, . . . , un) satisfying (1). Then (n+1)α−1 ≤ nα and (n+1)α ≤ nα+1,
so we may choose un+1 ∈ {0, 1} so that

(n+ 1)α− 1 < u1 + · · ·+ un + un+1 ≤ (n+ 1)α.

Now, let:
• (un)

∞
n=1 satisfy (1) with α = s.

• (vn)
∞
n=1 satisfy (1) with α = t.

We inductively define a sequence (an)
∞
n=1 with partial sums sn = a1 +

· · ·+ an as follows.
Begin with a1 = v1 and m1 = 1. Now, suppose we have defined (an)

mn
n=1

for some mn ∈ N.
• If n is odd, by (1), we may choose N ≥ n sufficiently large so that

(2)
sn + u1 + · · ·+ uN

n+N
≤ s+

1

n
.

Then set an+j = uj for j = 1, . . . , N and let mn+1 = mn +N .
• If n is even, by (1), we may choose N ≥ n sufficiently large so that

(3) t− 1

n
≤ sn + v1 + · · ·+ vN

n+N
.

Then set an+j = vj for j = 1, . . . , N and let mn+1 = mn +N .
The choice (2) ensures that lim infn→∞ sn ≤ s and the choice (3) ensures
that lim supn→∞ sn ≥ t.
It remains to verify the other inequalities. For n ∈ N, we may write

sn = u1 + · · ·+ um1 + v1 + · · ·+ vm2 + · · ·+ v1 + · · ·+ vmk
+ v1 + · · ·+ vℓ.
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(The final term may consist instead of terms v1, . . . , vℓ, but the argument
is the same in that case.) Then using (1),

sn ≤ m1s+m2t+m3s+ · · ·+mkt+ ℓs ≤ nt.

Therefore lim supn→∞ n−1sn ≤ t. For the lower bound,

sn ≥ (m1s− 1) + (m2t− 1) + · · ·+ (mkt− 1) + ℓs− 1 ≥ ns− k − 1.

But mk+1 ≥ mk + k by the choice of N , so n ≥ k(k + 1)/2 and

lim inf
n→∞

n−1sn ≥ s

as required.
(iv) Now, let us give an alternative proof of the previous question using

1-Lipschitz functions, and moreover prove the bonus.
Let’s first show that we may equivalently choose an appropriate Lips-
chitz function. More precisely, we prove the following: Suppose f is an
increasing 1-Lipschitz function with f(0) = 0. Then there exists a sequence
(an)

∞
n=1 ∈ {0, 1}N such that f(k)− 1 <

∑k
n=1 an ≤ f(k) for all k ∈ N.

The construction proceeds by induction. Let sn = a1 + · · ·+ an denote
the partial sum, where s0 = 0. Suppose we have constructed (an)

k
n=1

such that f(k)− 1 < sk ≤ f(k).
• If sk + 1 ≤ f(k + 1), set ak+1 = 1, and note that sk+1 ≤ f(k + 1)

by assumption, and since f is 1-Lipschitz, f(k + 1) ≤ f(k) + 1 <
sk + 2 = sk+1 + 1.

• Otherwise, if sk+1 > f(k+1), set ak+1 = 0. Then sk+1 > f(k+1)−1
by assumption, and since f is increasing, sk+1 = sk ≤ f(k) ≤
f(k + 1).

This completes the proof of the claim.
Given a function f satisfying the above properties, if (an)

∞
n=1 is the

associated sequence, we write Kf = K(an)
∞
n=1. In particular, we may

check that there is a constant M ≥ 0 so that for all u ≥ 0,∣∣∣∣ logN2−u(Kf )

log 2
− f(u)

∣∣∣∣ ≤ M.

(This is immediate if u is an integer, and if n ≤ u ≤ n + 1 use the fact
that f(n) ≤ f(u) ≤ f(n) + 1.) Therefore,

dimBKf = lim inf
u→∞

f(u)

u
,

dimBKf = lim sup
u→∞

f(u)

u
.

Let 0 ≤ s ≤ t ≤ 1 be arbitrary. We define a 1-Lipschitz function g as
follows. Suppose we have chosen values 0 = x1 < y1 < x2 < y2 < · · ·
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diverging to infinity. Having chosen such values, we define g to be the
unique Lipschitz function such g(0) = 0, g has slope s on the intervals
[xi, yi], and g has slope t on the intervals [yi, xi+1]. Clearly su ≤ g(u) ≤ tu
regardless of the choice of the xi and yi. Moreover, for all n ∈ N,

(4)

g(yn)

yn
=

g(xn) + s(yn − xn)

yn
≤ s+ t

xn

yn
,

g(xn+1)

xn+1

=
g(yn) + t(xn+1 − yn)

xn+1

≥ t− t
yn
xn+1

.

Therefore, if we choose the xn and yn such that limn→∞ xn/yn = 0
and limn→∞ yn/xn+1n = 0 it follows that lim infn→∞ g(u)/u = s and
lim supn→∞ g(u)/u = t. Thus the corresponding set K satisfies the re-
quired properties.
Next, let us turn our attention to the actual bonus problem. We must
construct two increasing 1-Lipschitz functions f and g with f(0) =
g(0) = 0. Let Kf and Kg denote the corresponding sets. The heart of the
strategy is the following straightforward observation:∣∣∣∣ logN2−u(Kf ∪Kg)

log 2
−max{f(u), g(u)}

∣∣∣∣ ≤ 2M.

So, it suffices to choose the functions f and g with the following proper-
ties:
(i) lim infu→∞ u−1f(u) = lim infu→∞ u−1g(u) = s, and

(ii) limu→∞ u−1max{f(u), g(u)} = t.
The first condition guarantees that dimBKf = dimBKg = s and the
second condition guarantees that dimB(Kf ∪Kg) = t.
Suppose we have chosen sequences 0 = w1 < x1 < y1 < z1 < w2 <
x2 < y2 < z2 < · · · diverging to infinity. Define the function f to have
slope s on the intervals [xi, yi] and slope t on the remaining intervals,
and define the function g to slope s on the intervals [zi, wi+1] and slope t
on the remaining intervals. The point is that whenever f has slope s on
some interval, g has slope t on that interval as well as on the preceding
and following interval; and similarly with f and g swapped. Similarly
to before, we suppose moreover that the gaps diverge:

lim
n→∞

wn

xn

= lim
n→∞

xn

yn
= lim

n→∞

yn
zn

= lim
n→∞

zn
wn+1

= 0

The computation from (4) already shows that (i) holds. Moreover, the
computation from (4) shows for u ∈ [zn, xn+1] that

f(u)

u
≥ t− t

yn
zn

and, for u ∈ [xn+1, zn+1] that

g(u)

u
≥ t− t

zn
xn+1

.
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This establishes (ii), as required.

4. (i) Let j ̸= k be such that fj = fk. Then jk ̸= kj whereas fjk = fkj.
(ii) Now, let j ̸= k be such that fj = fk and j, k ∈ In. Iterating the

invariance relationship,

K =
⋃
i∈In

fi(K) =
⋃

i∈In\{j}

fi(K).

Therefore, by uniqueness K is the attractor of the modified IFS Φ′.
(iii) Let s ≥ 0 be the unique solution to

∑
i∈I r

s
i = 1. Then,

1 =

(∑
i∈I

rsi

)n

=
∑
i∈In

rsi >
∑

i∈In\{j}

rsi

since rsj > 0. But the map

t 7→
∑

i∈In\{j}

rti

is strictly decreasing in t, so the similarity dimension of Φ′ must be
strictly less than s.
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