Oath Dice Odds

ALEX RUTAR

ABSTRACT. We compute some odds related to the combat system in the Oath board game.

CONTENTS

1.	Oath dice odds	1
1.1.	. Combat Mechanics	1
1.2.	. Defender dice odds	1
1.3.	. Attacker dice odds	2

1. OATH DICE ODDS

1.1. **Combat Mechanics.** Both the attacking and defending dice are standard 6-sided dice. The defence dice have the following states:

count
2
2
1
1

The attack dice have the following states

When defending, the counts are computed by first adding up all the +1 and +2 states, and then multiplying 2 raised to the power of the number of $\times 2$ dice. When attacking, the counts are computed by adding all the states, and then rounding down to the nearest integer. Then, after rolling the dice, the attacker must sacrifice a number of units equal to the number of +2 states.

1.2. **Defender dice odds.** Suppose the defender is rolling *n* dice. It is convenient to think of the outcomes as elements of $\Omega_n \cong \{1, \ldots, 6\}^n$ using the correspondence

ALEX RUTAR

between sides of the dice and $\{1, \ldots, 6\}$. Then a defensive dice roll is the random variable $D : \Omega_n \to \{0, 1, \ldots, 2^n\}$ given by the rule

$$D(a_1, \dots, a_n) = \left(\#\{i : a_i \in \{3, 4\}\} + 2 \cdot \#\{i : a_i = 5\}\right) \cdot 2^{\#\{i:a_i=6\}}$$

where #A denotes the cardinality of the set A. Let's compute the distribution of D, i.e. $\mathbb{P}(D = 2^m \ell)$ where ℓ is odd. We obtain a value j precisely when there are k dice which show $\times 2$, and the remaining dice sum to exactly $2^{m-k}\ell$, for some $0 \le k \le m$. There are $\binom{n}{k}$ ways to roll k dice showing $\times 2$. To compute the number of ways for the remaining dice to show precisely $2^{m-k}\ell$, we first observe that the number of ways for n - k dice to sum to exactly $2^{m-k}\ell$ is the coefficient of $x^{2^{m-k}\ell}$ in the expansion of $(2 + 2x + x^2)^{n-k}$. Then, writing $2 + 2x + x^2 = 1 + (1 + x)^2$ and expanding the binomial twice,

$$(2+2x+x^2)^{n-k} = \sum_{i=0}^{n-k} \binom{n-k}{i} (x+1)^{2i}$$
$$= \sum_{i=0}^{n-k} \binom{n-k}{i} \sum_{j=0}^{2i} \binom{2i}{j} x^j$$

so that

$$[x^{2^{m-k}\ell}](2+2x+x^2)^{n-k} = \sum_{i=0}^{n-k} \binom{n-k}{i} \binom{2i}{2^{m-k}\ell}.$$

Since $\#\Omega_n = 6^n$, we conclude that

$$\mathbb{P}(D=2^{m}\ell)=6^{-n}\sum_{k=0}^{m}\sum_{i=0}^{n-k}\binom{n}{k}\binom{n-k}{i}\binom{2i}{2^{m-k}\ell}.$$

1.3. Attacker dice odds. Now, let's compute the attacker dice odds, which are somewhat more straightforward but have some somewhat annoying rounding cases that we need to deal with. First, define a random variable $A_0 : \Omega_n \to \{0, 1/2, 1, ..., 2n\}$ given by the rule

$$A_0(a_1,\ldots,a_n) = \#\{i:a_i \in \{0,1,2\}\}/2 + \#\{i:a_i \in 3,4\} + 2 \cdot \#\{i:a_i = 6\}.$$

so that $A \coloneqq \lfloor A_0 \rfloor : \Omega_n \to \{0, 1, \dots, 2n\}$ represents the attacking dice roll. In fact, it will be useful to also keep track of the number of lost units from the dice roll as well. Let $S : \Omega_n \to \{0, \dots, n\}$ denote the number of units lost for a +2 on an attacking dice:

$$S(a_1,\ldots,a_n) = \#\{i:a_i=6\}$$

We can use the same trick as before to compute the joint distribution of A_0 and S: $\mathbb{P}(A_0 = z \text{ and } S = k)$ is precisely the coefficient of $x^z y^k$ in the expansion of

 $(3x^{1/2} + 2x + x^2y)^n$. Expanding the binomial twice, we have

$$(3x^{1/2} + 2x + x^2y)^n = \sum_{k=0}^n \binom{n}{k} x^k (2 + xy)^k (3x^{1/2})^{n-k}$$
$$= \sum_{k=0}^n \binom{n}{k} 3^{n-k} x^{(n+k)/2} \sum_{j=0}^k \binom{k}{j} (xy)^j 2^{k-j}$$
$$= \sum_{k=0}^n \sum_{j=0}^k \binom{n}{k} \binom{k}{j} 3^{n-k} 2^{k-j} x^{j+(n+k)/2} y^j.$$

First, let's compute the coefficients of $[x^j]$ in the above scenarios. Write $p_n(x, y) = (3x^{1/2} + 2x + x^2y)^n$. Re-indexing to sum over even or odd values of k, we have the following four cases:

(a) If n = 2m and $j \in \{0, ..., 2n\}$, then

$$[x^{j}]p_{n}(x,j) = \sum_{k=0}^{m} \binom{n}{2k} \binom{2k}{j-m-k} 3^{n-2k} 2^{3k+m-j} y^{j-m-k}$$

(b) If n = 2m and $j \in \{0, ..., 2n - 1\}$, then

$$[x^{j+1/2}]p_n(x,j) = \sum_{k=0}^m \binom{n}{2k+1} \binom{2k+1}{j-m-k} 3^{n-2k-1} 2^{(3k+1)+m-j} y^{j-m-k}.$$

(c) If n = 2m + 1 and $j \in \{0, ..., 2n\}$, then

$$[x^{j}]p_{n}(x,j) = \sum_{k=0}^{m} \binom{n}{2k+1} \binom{2k+1}{j-m-k-1} 3^{n-2k-1} 2^{(3k+2)+m-j} y^{j-m-k-1}.$$

(d) If n = 2m + 1 and $j \in \{0, ..., 2n - 1\}$, then

$$[x^{j+1/2}]p_n(x,j) = \sum_{k=0}^m \binom{n}{2k} \binom{2k}{j-m-k} 3^{n-2k} 2^{3k+m-j} y^{j-m-k}.$$

Now, substituting y = 1 into the above equations, if $j \in \{0, ..., 2n - 1\}$ and n = 2m,

$$\mathbb{P}(A=j) = \sum_{k=0}^{m} 3^{-2k} 2^{3k-m-j} \binom{n}{2k} \binom{2k}{j-m-k} + \frac{2}{3} \binom{n}{2k+1} \binom{2k+1}{j-m-k}$$

and if $j \in \{0, ..., 2n - 1\}$ and n = 2m + 1,

$$\mathbb{P}(A=j) = \sum_{k=0}^{m} 3^{-2k} 2^{3k-m-j} \left(\frac{2}{3} \binom{n}{2k+1} \binom{2k+1}{j-m-k-1} + \frac{1}{2} \binom{n}{2k} \binom{2k}{j-m-k}\right)$$

and

$$\mathbb{P}(A=2n) = 6^{-n}$$

since the only way to roll 2n is for every dice to roll +2.

Moreover, the joint distributions can be extracted by simultaneously capturing the coefficient of x and y. Let $\ell \in \{0, ..., 2n\}$. If n = 2m and $j \in \{0, ..., 2n-1\}$,

$$\mathbb{P}((A,S) = (j,l)) = 3^{-2(j-m-\ell)} 2^{2j-4m-3\ell} \left(\binom{n}{2(j-m-\ell)} \binom{2(j-m-\ell)}{\ell} + \frac{2}{3} \binom{n}{2(j-m-\ell)+1} \binom{2(j-m-\ell)+1}{\ell} \right)$$

and if n = 2m + 1 and $j \in \{0, ..., 2n - 1\}$,

$$\mathbb{P}((A,S) = (j,l)) = 3^{-2(j-m-\ell)} 2^{2j-4m-3\ell-1} \left(\frac{3}{2} \binom{n}{2(j-m-l)-1} \binom{2(j-m-l)-1}{\ell} + \binom{n}{2(j-m-\ell)} \binom{2(j-m-\ell)}{\ell} \right)$$

and finally if j = 2n, then we must have $\ell = n$ so

$$\mathbb{P}((A,S) = (2n,n)) = 6^{-n}$$

and $\mathbb{P}((A, S) = (2n, \ell)) = 0$ for $\ell \neq n$.

University of St Andrews, University of St Andrews, Mathematical Institute, St Andrews KY16 9SS

Email address: alex@rutar.org